УДК 517.958, 530.145.6, 519.632.4

МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ РЕШЕНИЯ КРАЕВЫХ ЗАДАЧ ДЛЯ КВАНТОВО-МЕХАНИЧЕСКИХ СИСТЕМ

А.А. Гусев, О. Чулуунбаатар, С.И. Виницкий, А. Гуждж*

Объединенный институт ядерных исследований, г. Дубна, Россия *Институт физики, университет им. М. Кюри-Склодовска, г. Люблин, Польша

АННОТАЦИЯ

Представлена вычислительная схема метода конечных элементов высокого порядка точности решения краевых задач для эллиптического уравнения в частных производных, сохраняющая непрерывность производных приближенного решения. Эффективность алгоритмов и программ демонстрируется на примере точно-решаемых краевых задач на собственные значения для треугольной мембраны.

Ключевые слова: эллиптические уравнения в частных производных, краевые задачи на собственные значения, метод конечных элементов, интерполяционные полиномы.

Введение

В работах [1,2] разработаны символьно-численные алгоритмы и программы решения краевых задач для системы обыкновенных дифференциальных уравнений второго порядка методом конечных элементов (МКЭ) высокого порядка точности с использованием интерполяционных полиномов Эрмита (ИПЭ). Такая реализация МКЭ, в отличие от традиционной, с использованием интерполяционных полиномов Лагранжа (ИПЛ), обеспечивает непрерывность производных до заданного порядка приближенного решения не только на конечных элементах сетки, но и на границах конечных элементов [3], то есть сохранение тока носителей заряда в квантово-размерных полупроводниковых системах или тока вероятности в квантовомеханических задачах рассеяния [4].

В настоящей работе представлена вычислительная схема МКЭ решения краевой задачи на собственные значения для эллиптического уравнения в частных производных с использованием ИПЭ. Кусочнонепрерывный базис генерируется с помощью ИПЭ и обеспечивает непрерывность не только приближенного решения, но и его производных до заданного порядка в зависимости от гладкости переменных коэффициентов уравнения и границы области. Эффективность алгоритмов и программ демонстрируется на примере точно-решаемых краевых задач на собственные значения для треугольной мембраны.

Постановка задачи

Рассмотрим самосопряженную краевую задачу для эллиптичес-кого дифференциального уравнения второго порядка:

$$\left(-\frac{1}{g_0(z)}\sum_{i,j=1}^d \frac{\partial}{\partial z_i}g_{ij}(z)\frac{\partial}{\partial z_j} + V(z) - E\right)\Phi(z) = 0.$$
 (1)

Для коэффициентов главной части (1) выполняется условие равномерной эллиптичности в ограниченной области $z = (z_1, ..., z_d) \in \Omega$ евклидова пространства \mathbb{R}^d , т.е. существуют константы $v > 0, \mu > 0,$ такие, что для любых вещественных параметрах ξ_i выполняется неравенство $\mu \sum_{i=1}^{d} \xi_i^2 \leq \sum_{i,j=1}^{d} g_{ij}(z) \xi_i \xi_j \leq v \sum_{i=1}^{d} \xi_i^2$. Также предполагается, что $g_0(z) > 0$, $g_{ij}(z) = g_{ji}(z)$, и V(z) – функции, непрерывные вместе со своими обобщенными производными до заданного порядка в области, $z \in \overline{\Omega} = \Omega \cup \partial \Omega \subset \mathbb{R}^d$, с кусочно-полиномиальной границей $S = \partial \Omega \subset \mathbb{R}^{d-1}$, обеспечивающие существование нетривиальных решений, подчиненных граничным условиям первого (I) или второго (II) рода [5,6]

$$(I): \Phi(z)|_{s} = 0, \quad (II): \frac{\partial \Phi(z)}{\partial \hat{n}_{D}} = \sum_{i,j=1}^{d} (\hat{n}, \hat{e}_{i}) g_{ij}(z) \frac{\partial \Phi(z)}{\partial z_{j}} \bigg|_{s} = 0, \qquad (2)$$

где \hat{n} – внешняя нормаль к границе $S = \partial \Omega$ области Ω , \hat{e}_i – единичный вектор вектора $z = \sum_{i=1}^d \hat{e}_i z_i$, (\hat{n}, \hat{e}_i) – скалярное произведение в \mathbb{R}^d .

Для краевой задачи дискретного спектра (1)-(2) собственные функции $\Phi_m(z)$ из пространства Соболева $W_2^{s\geq 1}(\Omega), \Phi_m(z) \in W_2^{s\geq 1}(\Omega),$ соответствующие собственным значениям энергии $E_1 \leq E_2 ... \leq E_m \leq ...,$ удовлетворяют условиям нормировки и ортогональности

$$\int_{\Omega} g_0(z)\overline{\Phi}_m(z)\Phi_{m'}(z)dz = \delta_{mm'} \quad . \tag{3}$$

Решение МКЭ краевых задач (1)–(3) сводится к нахождению стационарных точек симметричного вариационного функционала [6,7]

$$\Xi(\Phi_m, E_m, z) = \iint_{\Omega} \left(\sum_{i,j=1}^d g_{ij}(z) \frac{\partial \overline{\Phi}_m(z)}{\partial z_i} \frac{\partial \Phi_m(z)}{\partial z_j} + g_0(z) \overline{\Phi}_m(z) (V(z) - E_m) \Phi_m(z) \right) dz.$$
(4)

Базисы лагранжевых и эрмитовых конечных элементов

1. В МКЭ область $\Omega = \Omega_h = \bigcup_{q=1}^Q \Delta_q$, заданная в виде многогранника, покрывается конечными элементами, в данном случае симплексами Δ_a с d+1 вершинами $\hat{z}_i = (\hat{z}_{i1}, ..., \hat{z}_{id})$ при j = 0, ..., d. Каждое ребро симплекса Δ_a разбиваем на p равных частей и проводим семейства параллельных гиперплоскостей, нумеруя каждую целым числом от 0 до р, начиная от соответствующей грани, например, как показано при d = 2 на Рис. 1 (см. также [8]. С. 220). Точки A_r пересечения гиперплоскостей нумеруем наборами чисел $[n_0, ..., n_d],$ целых $n_i \geq 0$, $n_0 + \ldots + n_d = p$. Координаты узловой точки $A_r \in \Delta_q$ определяются по формуле $\xi_r = (\xi_{r_1}, ..., \xi_{r_d}) = \sum_{j=0}^d (\hat{z}_{j1}, ..., \hat{z}_{jd}) n_j / p$ через координаты вершин $\hat{z}_{j} = (\hat{z}_{j1}, ..., \hat{z}_{jd}).$

При реализации МКЭ расчеты удобно проводить в локальных координатах z', связанных с исходными координатами z аффинным преобразованием, $z_j = \hat{z}_{0j} + \sum_{i=1}^d (\hat{z}_{ij} - \hat{z}_{0j}) z'_i$, j = 1, ..., d, в которых координаты вершин симплекса Δ следующие $\hat{z}'_{j} = (\hat{z}'_{j1}, ..., \hat{z}'_{jd}), \quad \hat{z}'_{jj'} = \delta_{jj'}.$ Тогда ИПЛ $\phi_r(z')$, равные единице в узловой точке A_r с координатами $\xi'_r = (\xi'_{r_1}, ..., \xi'_{r_d})$, характеризуемой числами $[n_0, ..., n_d]$, и нулю в остальных точках $\xi'_{r'} = (\xi'_{r'1}, ..., \xi'_{r'd})$, т.е., $\phi_r(\xi_{r'}) = \delta_{rr'}$ определяются по формуле:

$$\varphi_r(z') \equiv \varphi_r((z'_1, ..., z'_d)) = \left(\prod_{j=1}^d \prod_{n'_j=0}^{n_j-1} \frac{z'_j - n'_j / p}{n_j / p - n'_j / p}\right) \left(\prod_{n'_0=0}^{n_0-1} \frac{1 - z'_1 - ... - z'_d - n'_0 / p}{n_0 / p - n'_0 / p}\right).$$
(5)

а. Нумерация узлов A_r , r = 1, ..., (p+1)(p+2)/2, наборами чисел $[n_0, n_1, n_2]$ треугольника Δ для схемы с ИПЛ пятого порядка p' = p = 5 при d = 2. Линии (пять пересекающихся прямых) – нули ИПЛ $\varphi_{14}(z')$ (5), равного единице в точке, пронумерованной тройкой чисел $[n_0, n_1, n_2] = [2, 2, 1]$. 6. Изолинии ИПЛ $\varphi_{14}(z')$.

Приравнивание числителей в (5) нулю дает семейства уравнений прямых, направленных «горизонтально», «вертикально» и «наклонно» в локальной системе координат (z'_1, z'_2) , которая связана аффинным преобразованием с семейством «наклонно» расположенных прямых элемента Δ_q . На Рис. 1 дан пример иллюстрирующий построение ИПЛ при d = 2, r, r' = 1, ..., (p+1)(p+2)/2, p = 5 на элементе Δ .

Кусочно-полиномиальные функции $P_l(z)$, формирующие базис $\{P_l(z)\}_{l=1}^p$, которые строятся путем сшивки ИПЛ $\phi_r(z)$ на конечных элементах Δ_q : $P_l(z) = \{\phi_l(z), A_l \in \Delta_q; 0, A_l \notin \Delta_q\}, z \in \Omega_h = \bigcup_{q=1}^Q \Delta_q$, являются непрерывными функциями, но их производные терпят разрывы на границах элементов Δ_a .

2. Построим интерполяционные полиномы Эрмита порядка *p*', сшивкой которых можно получить кусочно-полиномиальные функции $P_l(z)$, сохраняющие непрерывность производных до заданного порядка к'.

Для построения ИПЭ в локальных координатах z' введем набор вспомогательных полиномов (ВП1):

$$\varphi_{r}^{\kappa_{1},\ldots,\kappa_{d}}(\xi_{r'}') = \delta_{rr'}\delta_{\kappa_{1}0}\dots\delta_{\kappa_{d}0}, \quad \frac{\partial^{\mu_{1}+\ldots+\mu_{d}}\varphi_{r}^{\kappa_{1},\ldots,\kappa_{d}}(z')}{\partial z_{1}'^{\mu_{1}}\dots z_{d}'^{\mu_{d}}} \bigg|_{z'=\xi_{r'}'} = \delta_{rr'}\delta_{\kappa_{1}\mu_{1}}\dots\delta_{\kappa_{d}\mu_{d}},$$

$$0 \le \kappa_{1}+\ldots+\kappa_{d} \le \kappa_{\max}-1, \quad 0 \le \mu_{1}+\ldots+\mu_{d} \le \kappa_{\max}-1,$$

$$(6)$$

с заданными значениями не только функций, но и их производных до порядка к_{тах} –1 в узловых точках ξ'_r . ВП1 даются выражениями

$$\varphi_{r}^{\kappa_{1},...,\kappa_{d}}(z') = w_{r}(z') \sum_{\mu_{1},...,\mu_{d}} a^{\kappa_{1},...,\kappa_{d},\mu_{1},...,\mu_{d}} (z'_{1} - \xi'_{r1})^{\mu_{1}} \times ... \times (z'_{1} - \xi'_{rd})^{\mu_{d}},$$

$$w_{r}(z') = \left(\prod_{j=1}^{d} \prod_{n'_{j}=0}^{n_{j}-1} \frac{(z'_{j} - n'_{j}/p)^{\kappa_{\max}}}{(n_{j}/p - n'_{j}/p)^{\kappa_{\max}}} \right) \left(\prod_{n'_{0}=0}^{n_{0}-1} \frac{(1 - z'_{1} - ... - z'_{d} - n'_{0}/p)^{\kappa_{\max}}}{(n_{0}/p - n'_{0}/p)^{\kappa_{\max}}} \right),$$

$$(6')$$

коэффициенты а^{*к*1,...,*к*_d,*μ*1,...,*μ*_d} вычисляются из рекуррентных гле соотношений, полученных в результате подстановки (6') в условия (6). При d > 1 и $\kappa_{\max} > 1$, число $N_{\kappa_{\max} p'}$ ИПЭ степени p' и кратности узлов κ_{\max} меньше числа полиномов $N_{1p'}$, формирующих базис в пространстве полиномов степени р' (например, ИПЛ из (5)), т.е. полиномы, удовлетворяющие (6), определены неоднозначно.

3. Для однозначного определения полиномиального базиса введём $K = N_{1p'} - N_{\kappa_{max}p'}$ вспомогательных полиномов $Q_s(z)$ двух

типов: ВП2 и ВП3, линейно-независимых от ВП1 и удовлетворяющих условиям в узловых точках $z' = \xi'_r$:

$$Q_{s}(\xi_{r}') = 0, \quad \frac{\partial^{\mu_{1}+...+\mu_{d}}Q_{s}(z)}{\partial z_{1}^{\mu_{1}}...z_{d}^{\mu_{d}}}\Big|_{z=\xi_{r}'} = 0, \quad s = 1,...,K.$$
(7)

Отметим, что для обеспечения непрерывности производных часть полиномов, называемых ВП2, должны удовлетворять условию

$$\frac{\partial^{k} Q_{s'}(z)}{\partial n^{k}} \bigg|_{z=\zeta_{s}} = \delta_{ss'} \delta_{kk'}, \ s = 1, \dots, K, s' = 1, \dots, T_{1}(\kappa'), k = k(s'),$$
(8)

где n – вектор в направлении внутренней нормали в некоторых выбранных точках ζ_s граней (размерности от 1 до d-1) d -мерного симплекса Δ_q в исходной системе координат, связанной аффинным преобразованием с соответствующими точками ζ'_s в локальной системой координат симплекса Δ , не совпадающими с узловыми точками ξ'_r .

Вычисляя число $T_1(\kappa')$ независимых параметров, требуемых для обеспечения непрерывности производных до порядка κ' , определяем его максимальное значение, которое можно получить для схем с заданными p и κ_{max} , и, соответственно, $T_1(\kappa')$ дополнительных условий (8).

Остается $T_2 = K - T_1(\kappa')$ независимых параметров и, соответственно, добавляется T_2 дополнительных условий, необходимых для однозначного определения полиномов, называемых ВПЗ,

$$Q_{s'}(\zeta'_s) = \delta_{ss'}, \ s = 1, ..., K, s' = T_1(\kappa') + 1, ..., K,$$
(9)

где ζ'_s – некоторые выбранные точки, не принадлежащие граням симплекса Δ , и не совпадающие с узловыми точками ξ'_r .

Схематическое изображение условий (6)–(9), из которых строятся базисные ИПЭ [$p \kappa_{max} \kappa'$]. Квадраты: точки ξ'_r в которых фиксируются значения функций и их производных, сплошные (пунктирные) стрелки: с началом в точках ζ_s , в которых фиксируются значения первой (второй) производной по направлению нормали в исходных координатах, соответственно, кружки: точки ζ'_s , в которых фиксируются значения функций.

Таблица

	$[p \kappa_{\max} \kappa']$	[131]	[141]	[231]	[152]
<i>p</i> '	$\kappa_{\max}(p+1)-1$	5	7	8	9
$N_{\kappa_{\max}p'}$	$(p+1)(p+2)\kappa_{\max}(\kappa_{\max}+1)/4$	18	30	36	45
$N_{1p'}$	(p'+1)(p'+2)/2	21	36	45	55
K	$p(p+1)(\kappa_{\max}-1)\kappa_{\max}/4$	3	6	9	10
$T_1(1)$	3 <i>p</i>	3	3	6	3
$T_1(2)$	9 <i>p</i>	9	9	18	9
Ограничение на порядок производных κ' : $3p\kappa'(\kappa'+1)/2 \le K$					

Характеристики полиномиального базиса при d=2.

Вспомогательные полиномы ВП2 и ВП3 даются выражением $z{-}>z'$

$$Q_{s}(z) = z_{1}^{k_{1}} \dots z_{d}^{k_{d}} (1 - z_{1} - \dots - z_{d})^{k_{0}} \sum_{\mu_{1},\dots,\mu_{d}} b^{s,\mu_{1},\dots,\mu_{d}} z_{1}^{\mu_{1}} \times \dots \times z_{d}^{\mu_{d}}, \quad (10)$$

где $k_t = 1$, если точка ζ_s , в которой заданы дополнительные условия (8) или (9), лежит на соответствующей грани симплекса, и $k_t = \kappa' в$ противном случае. Коэффициенты b^{s,μ_1,\dots,μ_d} определяются из системы линейных уравнений, полученных в результате подстановки (10) в условия (7)–(9).

В результате получаем набор базисных ИПЭ $\phi_l(z) = \{ \hat{\phi}_r^{\kappa}(z), Q_s(z) \},$ составленных из полиномов $Q_s(z)$ типа ВП2 и ВПЗ и полиномов $\hat{\phi}_r^{\kappa}(z)$ типа ВП1:

$$\hat{\varphi}_r^{\kappa}(z) = \varphi_l^{\kappa}(z) - \sum_{i=1}^K c_{\kappa r;s} Q_s(z),$$

где $c_{\kappa r;s} = \frac{\partial^k \varphi_r^{\kappa}(z)}{\partial n^k} \Big|_{z=\zeta_s}$, для $Q_i(z)$ из ВП2 и $c_{\kappa r;s} = \varphi_r^{\kappa}(\zeta_s)$,

для $Q_i(z)$ из ВПЗ.

4. Например, при d = 2 степень p' полинома по тангенциальной переменной t на границе треугольника совпадает со степенью полинома двух переменных, и для его однозначного определения требуется p'+1 параметр. Производная порядка κ' по нормальной переменной на границе будет полином степени $p'-\kappa'$, и для ее однозначного определения потребуется $p'-\kappa'+1$ параметров. Однако она определена только p'- κ' (p+1) параметрами: смешанными производными фиксированного порядка κ' по нормальной переменной и порядка от 0 до $\kappa_{max} - \kappa'-1$ по тангенциальной переменной, т.е.

$$\frac{\partial^{\kappa'}Q_{s'}(z)}{\partial n^{\kappa'}}, \frac{\partial^{\kappa'+1}Q_{s'}(z)}{\partial n^{\kappa'}\partial t}, \frac{\partial^{\kappa'+2}Q_{s'}(z)}{\partial n^{\kappa'}\partial t^2}, \dots, \frac{\partial^{\kappa_{\max}-1}Q_{s'}(z)}{\partial n^{\kappa'}\partial t^{\kappa_{\max}-\kappa'-1}}.$$

Схематическое изображение реализации условий (6)–(9), из которых строятся базисные ИПЭ, показано при d=2 на Рис 2. Характеристики полиномиального базиса из ИПЭ на элементе Δ при d=2 приведены в Таблице.

5. Кусочно-полиномиальные функции $P_l(z)$ с непрерывными производными до порядка к', формирующие базис $\{P_l(z)\}_{l=1}^N$, строятся путем сшивки полиномов $\varphi_l(z) = \{\hat{\varphi}_r^{\kappa}(z), Q_s(z)\}$ на конечных элементах Δ_q :

$$P_{l}(z) = \{\pm \varphi_{l}(z), A_{l} \in \Delta_{q}; 0, A_{l} \notin \Delta_{q}\}, \ z \in \Omega_{h} = \bigcup_{q=1}^{Q} \Delta_{q},$$

где знак '-' может появиться только для ВП2, когда нужно сшить нормальные производные нечетного порядка.

Разложение искомого решения $\Phi_m(z)$ задачи (1)–(3) по базису кусочно-полиномиальных функций $P_l(z)$, $\Phi_m^h(z) = \sum_{l=1}^N P_l(z) \Phi_{lm}^h$, и подстановка его в вариационный функционал (4) приводит к обобщенной алгебраической задаче на собственные значения, $(A - BE_m^h)\Phi_m^h = 0$, которая решается стандартным методом (см., например, [7]). Элементы матриц жесткости A и матрицы масс B содержат интегралы типа (4), которые вычисляются в исходных координатах zна элементах Δ_q в области $\Omega_h = \bigcup_{q=1}^Q \Delta_q$, пересчитанные в локальные координаты z' на элементе Δ .

Результаты и обсуждение

В качестве примера приведем результаты решения задачи дискретного спектра (1)–(3) при $d = 2, g_0(z) = 1, g_{ii}(z) = 1$ и V(z) = 0 в области $\Omega_h = \bigcup_{q=1}^Q \Delta_q$ в виде равностороннего треугольника со стороной $4\pi/3$ с граничными условиями второго типа (II), который разбит на $Q = n^2$ равносторонних треугольников Δ_q со стороной $h = 4\pi/3n$. Собственные значения этой задачи с вырожденным спектром – целые числа $E_m = m_1^2 + m_2^2 + m_1m_2 = 0,1,1,3,4,4,7,7, ... [9].$

На Рис. 3 представлены профиль четвертой собственной функции Φ^h_{Λ} и погрешности $\Delta E_4 = E_4^h - E_4$ собственного значения E_4^h в зависимости от числа элементов *n* и от длины вектора *N* для схем с ИПЛ от пятого до девятого порядка точности, отмеченные метками [*p*, к_{max}, к'] =[510], ..., [910], для схем с ИПЭ, *p*' = 5, 7 и 8 порядка точности, сохраняющие первую производную приближенного решения и отмеченные метками [131], [141] и [231], и схемы девятого порядка точности [152], сохраняющей вторую производную приближенного решения. Описание характеристик представленных схем с ИПЭ дано в Таблице. Как видно из Рис. 3, погрешности собственного значения E_{4}^{h} схем МКЭ одного порядка $p' = \kappa_{max}(p+1) - 1$ примерно одинаковые. Однако для достижения заданной точности приближенного решения в схемах МКЭ с ИПЭ, обеспечивающих непрерывность первой и второй производных приближённого решения, используются матрицы меньшей размерности, соответствующие длине вектора N в 1.5-2 раза меньшей, чем для схем с ИПЛ, обеспечивающих только непрерывность приближенного решения.

Рис. 3.

Профиль четвертой собственной функции Φ_4^h и зависимости погрешности $\Delta E_4 = E_4^h - E_4$ собственного значения E_4^h . Пояснение в тексте.

Заключение

Предложена вычислительная схема МКЭ высокого порядка точности решения задачи на собственные значения для эллиптического уравнения в частных производных в двумерной области, обеспечивающая непрерывность не только приближенного решения, но и его производных до заданного порядка. На примере точно-решаемой краевой задач для треугольной мембраны показано, что для достижения заданной точности приближенного решения, для схем с МКЭ с ИПЭ, обеспечивающих непрерывность первой и второй производных приближённого решения используются матрицы меньшей размерности, соответствующие длине вектора N в 1.5–2 раза меньшей, чем для схем с ИПЛ, сохраняющих на границах конечных элементов только непрерывность приближенного решения.

Вычислительные схемы МКЭ ориентированы на расчеты спектральных и оптических характеристик квантовых точек и других квантовомеханических систем. Реализация МКЭ с ИПЭ в конфигурационном пространстве $d \ge 2$ будет дана в последующих работах.

Работа поддержана РФФИ (грант 16-01-00080) и программой Боголюбов-Инфельд (ОИЯИ-Польша).

ЛИТЕРАТУРА

- Gusev A.A., Chuluunbaatar O., Vinitsky S.I., Derbov V.L., Gozdz A., Hai L.L., Rostovtsev V.A. Lect. Notes Comp. Sci. 8660 (2014), 138.
- 2. *Gusev A.A., Hai L.L., Chuluunbaatar O., Vinitsky S.I.* KANTBP 4M: Program for Solving Boundary Problems of the System of Ordinary Second Order Differential Equations.

http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m/indexe.html

- 3. *Сьярле* Ф. Метод конечных элементов для эллиптических задач. М.: Мир, 1980.
- 4. *Ramdas Ram-Mohan L.* Finite Element and Boundary Element Aplications in Quantum Mechanics, New York, Oxford Univ. Press, 2002.
- 5. *Ладыженская О.А.* Краевые задачи математической физики, М.: Наука, 1973.
- 6. Шайдуров В.В. Многосеточные методы конечных элементов. М.: Наука, 1989.
- 7. Бате К., Вилсон Е. Численные методы анализа и метод конечных элементов. М.: Стройиздат, 1982.
- Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Наука, 1987.
- 9. *Mc Cartin B.J.* Laplacian Eigenstructure of the Equilateral Triangle. Ruse, Bulgary: Hikari Ltd, 2011.

FINITE ELEMENT METHOD FOR SOLVING BOUNDARY-VALUE PROBLEMS OF QUANTUM MECHANICAL SYSTEMS

A.A. Gusev, O. Chuluunbaatar, S.I. Vinitsky, A. Góźdź*

Joint Institute for Nuclear Research, Dubna, Russia *Institute of Physics, University of M. Curie-Sklodowska, Lublin, Poland.

ABSTRACT

The computational scheme of Finite Element Method of high order accuracy for solving the boundary value problem for elliptic partial differential equation, conversing a continuity of derivatives of approximate solution is presented.

The efficiency of algorithm and program is demonstrated on an example of exact-solvable boundary-value problem for triangular membrane.

Keywords: elliptic partial differential equations, boundary-value problem, finite element method, interpolation polynomials.