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Abstract
The three-body scattering problem is formulated in the adiabatic representation
as a multi-channel spectral problem for a set of coupled one-dimensional
integral equations. New stable variational-iteration schemes are developed
to calculate the Hamiltonian eigenfunctions and energy eigenvalues, as well
as the reaction matrix in the eigenphase shift representation, with prescribed
accuracy. The convergence and efficiency of the method are demonstrated in
the vicinity of the three-body threshold in the exactly solvable model of three
identical particles fixed on a line and coupled with pair-repulsive or attractive
zero-range potentials.

PACS numbers: 45.50.Jf, 11.80.Jy, 11.80.Gw

1. Introduction

Three-particle models with zero-range potentials have found wide applications in atomic
physics [1–3]. In particular, such a model was used to describe the weakly bound states and
elastic scattering in the system of three helium atoms considered as point particles [2, 3]. In
this context it is of great importance to develop approximate methods providing prescribed
accuracy, like the conventional variational-iteration approaches [4–6], as well as to test them
using appropriate exactly solvable models [7].

In the present letter we consider new stable variational-iteration schemes and apply them
to the simplified model of three identical particles on a line with the attractive or repulsive
pair delta-function interactions. For this model exact solutions for the three-body S matrix
and bound state energy are well known [8–12]. We demonstrate explicitly that this low-
dimensional model preserves the most important characteristic features of the three-body
problem to be an interesting benchmark for approximate multichannel calculations. Earlier
this model was studied in the adiabatic representation mainly analytically to investigate the
applicability and capacity of the multichannel adiabatic approach in the scattering problem
both below and above the three-body threshold 3 → 3 [13–17]. Hence, the direct multichannel
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analysis of the problem under study is a principal question from the viewpoint of both the
theoretical and approximate calculations [13, 18].

This letter is organized as follows. In section 2 we give a brief review of the scattering
problem for the exact solvable model of three identical particles fixed on a line with attractive
or repulsive delta-function interactions using the one-parametric adiabatic basis that yields a
multichannel spectral problem for the set of coupled one-dimensional differential equations.
In sections 3–5 we consider the variational-iteration schemes for solving the spectral problem
for the corresponding set of coupled one-dimensional integral equations below and above the
three-body scattering threshold 3 → 3 and examine the efficiency and convergence of our
approach. In conclusion we point out briefly the further application of the proposed approach
and the model under consideration.

2. The problem of three identical particles in the adiabatic representation

We consider three identical particles in the centre-of-mass reference frame (CMRF), described
by the Jacobi coordinates, η = 2−1/2(x1 − x2), ξ = 6−1/2(x1 + x2 − 2x3), in the plane R

2,
where {{x1, x2, x3} ∈ R

3|x1 + x2 + x3 = 0} are the Cartesian coordinates of the particles on a
line. In polar coordinates η = ρ cos θ, ξ = ρ sin θ,−π < θ � π, the Schrödinger equation
for the partial wavefunction �i = �i(ρ, θ) takes the form

− h̄2

2m

[
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2

]
�i(ρ, θ) + V (ρ, θ)�i(ρ, θ) = E�i(ρ, θ). (1)

Here E is the relative energy in the CMRF, m is the mass of each particle, the potential function
V (ρ, θ) is defined as a sum of identical pair potentials V (ρ, θ) = ∑1

l=−1 V (
√

2ρ|cos(θ −
2lπ/3)|). We choose the pair potentials in the form of delta functions V (

√
2η) = gδ(|η|)/√2

of the finite strength g = cκ̄
√

2(h̄2/m), and consider the case of κ̄ = π/6 [13]. In the case of
attraction between the particles c = −1 there is a pair bound state φ0(η) = √

κ̄ exp(−κ̄ |η|)
with the binding energy −ε

(0)

0 = 2E
(0)

0 = κ̄2. Here and below we use the units h̄ = m = 1. In
the case of repulsion c = 1 there are no pair bound states, i.e. ε

(0)
0 = 0. Let us decompose the

CMRF wavefunction �̂ into the complete orthogonal set of one-parametric adiabatic functions
Bj ≡ Bj (ρ, θ) and Bas

i (θ ′) = Bi(ρ → ∞, θ ′) [18]

�̂ =
∑
i=0

|�i〉
〈
Bas

i

∣∣ , |�i〉 =
∑
j=0

|Bj 〉〈Bj |�i〉 =
∑
j=0

Bj (ρ, θ)χji (ρ) (2)

where 〈Bj |Bi〉 = ∫


dθB̄j (ρ, θ)Bi(ρ, θ) = δji is the inner product in the fibres Hρ ∼ L2()

at any fixed ρ ∈ R1
+.

Following [14], we consider briefly the necessary definitions of the adiabatic functions
that satisfy the following differential equation and boundary conditions:
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We also require continuity of the eigenfunctions Bj ∈ W 1
2 () [19]. Such a set, totally

symmetric with respect to permutations of particles, and valid for six sectors nπ/3 − π/6 �
θ < nπ/3 + π/6, n = 0, 5 of the cycle  : −π < θ � π is given by

Bj =




B
(C)

0 (ρ, θ) =
√

y2
0 − x2

π
(
y2

0 − x2
)− x

cosh[6y0θn]

B
(C)
j (ρ, θ) =

√
y2

j + x2

π
(
y2

j + x2
)

+ x
cos[6yjθn] j � 1

at c = −1

Bj =




B
(C)
j (ρ, θ) =

√
y2

j + x2

π
(
y2

j + x2
)

+ x
cos[6yjθn] j � 0

B
(S)
j (ρ, θ) =

√
y2

j + x2

π
(
y2

j + x2
)

+ x
sin[6yjθn] j � 1

at c = 1

(4)

where x = c π
36ρ and θn = θ − nπ/3. The eigenvalues ε0(ρ) and εj (ρ), j � 1, are obtained

from the reduced eigenvalues y0(ρ) and yj (ρ)

ε0(ρ) = c

(
6y0(ρ)

ρ

)2

εj (ρ) =
(

6yj (ρ)

ρ

)2

(5)

which, in turn, are the roots and solutions of the transcendental equations which follow from
the boundary conditions (3)

{
y

(C)
0 (ρ) tanh

(
πy

(C)
0 (ρ)

) = −x 0 � y
(C)
0 (ρ) > ∞ at c = −1

y
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(
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2 j � 0 at c = 1.
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(S)
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2 j � 1

The eigenvalues and eigenfunctions εj (ρ), Bj (ρ, θ) allow the following expansions for small
and large ρ:

ε
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ε
(C)
0 (ρ)|ρ→∞ →




−π2

36
(1 + 4 exp(−π2ρ/18)) at c = −1

9

ρ2
at c = 1

Bas
0 (θ) = B

(C)

0 (ρ, θ)|ρ→∞ →




√
πρ

6
exp(−ρπ/6 |π/6 − |θn||) at c = −1√

1

π
cos[3θn] at c = 1

ε
(C)
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ρ

)2

ε
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j (ρ)|ρ→∞ →
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ρ
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Bas
j (θ) =




B
(C)
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√
1

π
cos[(6j + 3c)θn]

B
(S)
j (ρ, θ)|ρ→∞ →

√
1

π
sin[6jθn]

(8)

Taking the inner product of the elements of the basis Bj (ρ, θ) with equation (1) and extracting
the terms εj (ρ) at small ρ by equation (7), we obtain the set of coupled adiabatic equations(

1

ρ

d

dρ
ρ

d

dρ
−
(

6j

ρ

)2

+ 2E − ε
(0)

0 δ0j

)
χji(ρ) = Vji(ρ)χi(ρ). (9)

Here the action of the effective potentials Vji(ρ) on the eigenvector χi(ρ) is defined by the
relations at fixed number N of equations using in approximate calculations

Vji(ρ)χi(ρ) =
N−1∑
n=0

(
−Ajn(ρ)

d

dρ
− 1

ρ

d

dρ
ρAjn(ρ) + Hjn(ρ)

)
χni(ρ)

+

(
εj (ρ) −

(
6j

ρ

)2

− ε
(0)

0 δ0j

)
χji(ρ). (10)

Here A = {A}ij is an anti-Hermitian matrix and H = {H }ij is a Hermitian matrix

Aij(ρ) =
〈
Bi(ρ, θ)

∣∣∣∣ ∂

∂ρ
Bj (ρ, θ)

〉
Hij(ρ) =

〈
∂

∂ρ
Bi(ρ, θ)

∣∣∣∣ ∂

∂ρ
Bj (ρ, θ)

〉
. (11)

In the case of c = 1 we will use only the set functions B(C). Note, we are interested here in
the bounded solutions χji(ρ), including a vicinity ρ → 0. For example, components χj0 have
behaviour

χj0(ρ) = δj0 +
6∑

l=1

χj0,lρ
l + O(ρ7) χ10,6 ≡ 0 (12)

where coefficients χj0,l are solutions of an infinite system of the linear algebraic equations
that are generated by substitution of (12) in equation (9). Note, for the truncated system χj0,l

are constants except χ10,6 ∼ ln ρ [17]. For the bound state (c = −1) the asymptotic form of
the solutions at large ρ is

χ as
00(ρ) → C0

e−q̄ρ

√
ρ

χ as
j0(ρ) → Cj

e−kρ

√
ρ

(13)
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where −ε = q̄2 = −q2 = −2E + ε
(0)
0 � 0 is the binding energy of the three-body systems,

−2E = k2 > 0 and Cj are unknown constants.
For the one-opened-channel scattering problem (c = −1), we investigated the asymptotic

behaviour of the states both in Jacobi [17] and polar coordinates [13]. In the representation of
standing waves of the open channel ε

(0)
0 < 2E(q) � 0 and q2 = 2E − ε

(0)
0 , i.e. at 0 < q � κ̄

the asymptotic behaviour at large ρ is given by

χ as
00(ρ) → (J1/2(qρ) − tan δY1/2(qρ)) =

√
2

πqρ
(sin(qρ) + tan δ cos(qρ))

χ as
j0(ρ) → (εj (ρ) − ε0(ρ))−1

(
Aj0(ρ)

d

dρ
+

1

ρ

d

dρ
ρAj0(ρ) − Hj0(ρ)

)
χ as

00(ρ)

(14)

where δ = δ(q) is the phase shift, Jn(ρ) and Yn(ρ) are Bessel and Neumann functions [20].
The order of these functions is a consequence of the factor 1/(4ρ2) which appears in

H00(ρ) at large ρ [17]. In this representation the asymptotic wavefunction �̂as
0,c=−1 describing

the processes below the three-body threshold is defined by the relation [18]

�as
0,c=−1 = �as

2→2 = Bas
0 χ as

00 +
∑
j=1

Bas
j χ as

j0 (15)

where �as
2→2 accounts for the conventional 2 → 2 processes with closed channels.

As follows from the asymptotic expressions for effective potentials (11) from [16], for
the multi-channel scattering problem the asymptotic behaviour of the solutions χji(ρ) of
equations (9) is compatible with the asymptotic boundary conditions above the three-body
threshold 2E = k2 > 0{

χ as
0i (ρ) → (−Y1/2(qρ)δ0i + J1/2(qρ)W0i )

χ as
ji (ρ) → (J6j−3(kρ)δji + Y6j−3(kρ)Wji)

at c = −1

χ as
ji (ρ) → (J6j+3(kρ)δji + Y6j+3(kρ)Wji) at c = 1

(16)

where q � κ̄ . In this case the eigenphase shifts δi are calculated via the eigenvalues � of the
reaction matrix (R = {R}ji), which is related to the S-matrix (S = {S}ji )

RC = C� � = diag(tan δ0, tan δ1, . . .) R = i(I − S)(I + S)−1. (17)

Here C = {C}ji is the matrix of eigenvectors, and R is the matrix expressed as R = {W }−1
ji

via the inverse matrix W from (16).
The asymptotic wavefunctions �̂as describing the processes above the three-body

threshold in cases of attraction c = −1 and repulsion c = 1 are defined by [18]


�̂as
c=−1 = �̂as

− + �̂as
+ ,

�̂as
− = �̂as

2→2 + �̂as
2→3 = Bas

0 χ as
00B̄

as
0 +

∑
j=1

Bas
j χ as

j0B̄
as
0 ,

�̂as
+ = �̂as

3→2 + �̂as
3→3 = ∑

i=1
Bas

0 χ as
0i B̄

as
i +

∑
i=1

∑
j=1

Bas
j χ as

ji B̄
as
i ,

�̂as
c=1 = �̂as

3→3 = ∑
i=0

∑
j=0

Bas
j χ as

ji B̄
as
i ,

(18)

where �as
2→2 = 〈

�̂as
2→2

∣∣Bas
0

〉
,�as

2→3 = 〈
�̂as

2→3

∣∣Bas
0

〉
, �̂as

3→2 and �̂as
3→3 account for the

conventional 2 → 2, breakup 2 → 3, recombination 3 → 2 and to 3 → 3 processes,
respectively.

Conventionally the elements of the S-matrix for transitions 3 → 3 are determined by

Sji(k) = −6
∫ π/6

−π/6
dθ

∫ π/6

−π/6
dθ ′B̄as

j (θ)Ŝ33(−θ, θ ′, k)Bas
i (θ ′). (19)
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Here Ŝ33(θ, θ ′, k) = −6
∑

i,j Bas
j (−θ)Sji(k)B̄as

i (θ ′) is the kernel of the operator Ŝ33, which

turns the amplitude of the incoming spherical wave in R
2 into that of the outgoing spherical

wave, and the subscripts i, j run 0, 1, . . . at c = 1 and 1, 2, . . . at c = −1. Then the exact
matrix elements Sexact

ji (k), needed for comparison with the numerical results Sji (k) from (17),
can be calculated via (19) using the known analytical expression [15]

Ŝexact
33 (θ, θ ′, k) = P(π/3 − θ, k)P (θ, k)P (π/3 + θ, k)δ(θ − θ ′) (20)

where P(θ, k) = (ik cos(θ) + cκ̄)/(ik cos(θ) − cκ̄).
In the case of c = −1 under consideration the processes 2 → 3 and 3 → 2 are forbidden,

i.e. the matrix elements Sexact
j0 = Sexact

0j ≡ 0, while the matrix element Sexact
00 of the S-matrix for

the 2 → 2 process is determined by the relations [15, 17]

Sexact
00 (q) = −P

(π

3
− γ (

√
2E),

√
2E
)

P(γ (
√

2E),
√

2E) = eiπ q + iq1

q − iq1

q + iq0

q − iq0
. (21)

Here γ (
√

2E) satisfies the equation i
√

2E cos(π/3 + γ (
√

2E)) = −κ̄, q0 = π/(2
√

3) and
q1 = π/(6

√
3). Then the values of the exact phase shift δexact = δexact(q), needed for the

comparison with the numerical ones δ from (14), read as δexact(q) = π + (2ı)−1 ln Sexact
00 (q).

Note that −εexact = q2
0 = −π2/36 + π2/9 = π2/12 is the exact binding energy of the

three-body ground state counted off the pair threshold to compare with the numerical one ε

from (13).

3. The bound state problem in the multichannel approximation

Let us consider the problem of calculating the bound states of the three-body system at c = −1.
In this case the solutions of equations (9) can be represented by the integral equations

(I − D(ρ, ρ ′))χ(ρ ′) = 0. (22)

Here I is a unit operator and D(ρ, ρ ′) is the matrix integral operator defined by the following
relations

D(ρ, ρ ′)χ(ρ ′) = −
∫ ∞

0
K6j (tρ>)I6j (tρ<)Vj0(ρ

′)χ0(ρ
′)ρ ′ dρ ′ j = 0, N − 1 (23)

where t = q̄ at j = 0, t = k at j �= 0, ρ> = max{ρ, ρ ′}, ρ< = min{ρ, ρ ′} and Ij (ρ),

Kj(ρ) are the modified cylindrical Bessel functions of the first and second kinds [20]. The
eigenfunctions of equation (22) satisfy the condition of orthogonality of the Schwinger type

F(k, χ) = (V (ρ)χ(ρ), (I − D(ρ, ρ ′))χ(ρ ′)) = 0 (24)

where V (ρ)χ(ρ) = (V00(ρ)χ0(ρ), V10(ρ)χ0(ρ), . . .)T . Making use of the finite-difference
approximation of the derivatives on a properly chosen grid with nodes h, we come to the
algebraic eigenvalue problem

(I − D)χ̃ = 0 F(k̃, χ̃ ) = (V χ̃, (I − D)χ̃) = 0 (25)

where I is the unit matrix; I and D are square matrices having the dimensions (M × N) ×
(M × N) and χ̃ is a vector having the dimension M × N . Here M is the number of nodes of
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Table 1. A comparison of the convergence rate of expansion (2) with parametric functions B(ρ, θ)

and free functions B(ρ, θ)|ρ→0 for the differences �E = −2Eh + 2Eexact of the calculated energy
values 2Eh and an exact energy 2Eexact = −π2/9 of the three-body ground state versus the
number N of equations (9). The first column shows the number of equations N, the second one
displays the accuracy of calculations with the parametric functions (4) and the last column shows
the convergence with the free functions (7). Here factor x in brackets means (x) ≡ 10x .

N �E �E

1 1.801 (−04) 9.662 (−2)
2 2.762 (−06) 4.116 (−2)
3 2.697 (−07) 2.573 (−2)
4 5.413 (−08) 1.866 (−2)
5 1.594 (−08) 1.462 (−2)
6 5.950 (−09) 1.201 (−2)

the grid h and N is the number of equations. Numerical solution of equation (25) was carried
out using the Newtonian iteration scheme with respect to vn, un, µn, considered as unknowns:



vn = −χ̃ (n)

(I − D)un = D
′
kχ̃

(n)

µn = (V χ̃ (n), (I − D)χ̃(n))

(V χ̃ (n),D
′
kχ̃

(n))

χ̃ (n+1) = χ̃ (n) + τn(vn + unµn)

k̃n+1 = k̃n + τnµn

(26)

where n = 0, 1, 2, . . . ; {k̃0, χ̃
(0)} is the initial approximation of the required solution. Here

the uniform grid is used h = {ζ0 = 10−10, ζi+1 = ζi + h, ζM = 0.98, h = (ζM − ζ0)/M}
that approximates the finite interval 0 � ζ = ρ/(1 + ρ) � 1 at the value M = 200 and
h ≈ 0.005. The iterative step τn is chosen to be expressed as τn = �n(0)/(�n(0) + �n(1))

to provide the minimization of the residual �n = ||(I − D)un|| ∈ C2 of equations (26)
following [6]. The iterations are stopped when the residual equals the prescribed accuracy
10−12. The results of our calculations of the energy 2Eh of the three-body ground state (b)
are presented in table 1, as a difference �E = −2Eh + 2Eexact with respect to the exact value
2Eexact = −π2/9. For comparison we also display in the last column the results of calculations
using expansion (2) with the free functions B(ρ, θ)|ρ→0 defined by (7). One can see that in the
attractive case c = −1 a convergence takes place only for expansion (2) with the parametric
functions (4).

From the approximation using only one equation and only the eigenpotential (without
H00), we conclude that there is an additional three-body bound state [17]. This is a very
weakly bound state, and in this approximation it provides an estimate of the lower bound of
the energy. Adding H00 yields the upper bound and eliminates this state. Hence, using
the first equation (N = 1) of the set (22) with the potential V BO

0 (ρ) = ε0(ρ) − ε
(0)

0 ,
we reproduce the old lower bound (Born–Oppenheimer or extreme adiabatic) estimate
2EBO ≈ −0.275 113 = −π2/36 − 0.000 96, that corresponds to the phase shift δBO = 2π

at q = 0 [17]. Solving the set (22) of six coupled equations (N = 6) in the grid of
nodes h at ρmax = 60 by means of (26), we obtained the new upper bound estimate
2EN=6

hb = −0.2739 for the energy of this state. This is to be compared to −π2/36 which
equals −0.274 155. Thus, we have a value very slightly above the exact value −π2/36 that
corresponds to zero binding and is associated with the correct phase shift behaviour of 3π/2
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as q tends to zero. We call the state ‘half-bound’ (hb) and display the calculated solution in the
conclusion.

4. The elastic scattering problem with closed channels

Let us consider the problem of elastic scattering of the third particle on the pair of other
particles below the three-body threshold at c = −1. Using the Green function corresponding
to the left-hand side of equations (9), it can be presented in the integral form

χj0(ρ) = J0(qρ)δ0j −
∫ ∞

0
Gj(t, ρ, ρ ′)Vj0(ρ

′)χ0(ρ
′)ρ ′ dρ ′ (27)

where G0(t, ρ, ρ ′) = −π
2 J0(qρ<)Y0(qρ>) and Gj(t, ρ, ρ ′) = K6j (kρ>)I6j (kρ<), j �1. The

integrand Vj0(ρ)χ0(ρ)ρ has no singularity at the point ρ = 0, and the asymptotic form of
the solution χ00(ρ), as ρ → ∞, is χ00(ρ)|ρ→∞ → J0(qρ) − tan δ′Y0(qρ), where tan δ′ is
determined by the relation

λ = −π

2
cot δ′ λ−1 =

∫ ∞

0
J0(qρ)V00(ρ)χ0(ρ)ρ dρ. (28)

The phase shift δ = δ(q) at the fixed value of the momentum 0 < q � π/6, according
to the definition (14), can then be expressed in terms of δ′ = δ′(q) as δ = π

4 + δ′ + π .
Thus, in the V00 mentioned above we have a long-range centrifugal force, which does not
follow from the interaction that yields equation (14). The relationship between J1/2 and J0

yields asymptotically the difference in the phase shift equal to π/4. Using expression (28)
and equations (27), we arrive at the generalized eigenvalue problem for the set of integral
equations with respect to a pair of unknown variables, namely, the vector function χ0(ρ

′) and
the spectral parameter λ:

(C(ρ, ρ ′) − λD(ρ, ρ ′))χ(ρ ′) = 0. (29)

Here the matrix integrals C(ρ, ρ ′) and D(ρ, ρ ′) are operators defined by the relations

C(ρ, ρ ′)χ(ρ ′) = χj0(ρ) +
∫ ∞

0
Gj(t, ρ, ρ ′)Vj0(ρ

′)χ0(ρ
′)ρ ′dρ ′

D(ρ, ρ ′)χ(ρ ′) = δ0jJ0(qρ)

∫ ∞

0
J0(qρ)V00(ρ)χ0(ρ)ρ

j = 0, N − 1. (30)

Let us add the Schwinger-type condition of orthogonality to equation (29)

F(λ, χ) = (V (ρ)χ(ρ), (C(ρ, ρ ′) − λD(ρ, ρ ′))χ(ρ ′)) = 0 (31)

where V (ρ)χ(ρ) = (V00(ρ)χ0(ρ), V10(ρ)χ0(ρ), . . .)T . In this case if k = 0, or in the
threshold case q = π/6, instead of (27) it is necessary to use the following equation

χj0(ρ) = − 1

12j

∫ ∞

0
ρ6j

< ρ−6j
> Vj0(ρ

′)χ0(ρ
′)ρ ′ dρ ′ at j � 1. (32)

After discretization on the grid with the nodes  the solution of equations (29) and (31) is
reduced to the generalized algebraic eigenvalue problem

(C − λ̃D)χ̃ = 0 F(λ̃, χ̃) = (V χ̃, (C − λ̃D)χ̃) = 0 (33)

where C and D are square matrices with the dimensions (M × N) × (M × N), and χ̃ is a
vector with the dimension M × N . Here M is the number of nodes of the grid h,N is the
number of equations forming the set (29).
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Table 2. Values of the phase shift δ depending on the momentum q and the number of equations N.
For comparison, the values of the phase shift δBO = δ − π/4 calculated from the first equation of
the set (27) at N = 1 with the potential V BO

0 (ρ) = ε0(ρ) − ε
(0)
0 are given in the second column,

and the values of the exact phase shift δexact obtained by means of equation (21) are listed to four
significant digits in the ninth column.

N

q δBO 1 2 3 4 5 6 δexact

0.002 5.750 4.086 4.674 4.698 4.702 4.703 4.703 4.704
0.10 3.760 4.253 4.277 4.280 4.281 4.282 4.282 4.283
0.20 3.220 3.871 3.900 3.905 3.907 3.908 3.908 3.911
0.30 2.863 3.558 3.596 3.602 3.605 3.607 3.607 3.611
0.40 2.589 3.305 3.353 3.362 3.365 3.367 3.368 3.373
0.50 2.358 3.096 3.156 3.167 3.171 3.174 3.175 3.182
π/6 2.322 3.052 3.114 3.126 3.130 3.133 3.134 3.141

For the numerical solution of equation (33) the Newtonian iteration scheme elaborated in
[6] has been implemented with respect to the unknowns vn, un, µn



vn = −χ̃ (n)

(C − λ̃nD)un = Dχ̃(n)

µn = (V χ(n), Cχ(n))

(V χ̃ (n),Dχ̃(n))
− λ̃n

χ̃ (n+1) = χ̃ (n) + τn(vn + unµn)

λ̃n+1 = λ̃n + τnµn

(34)

where n = 0, 1, 2, . . . ; {λ̃0, χ̃
(0)} is the initial approximation taken in the neighbourhood of

the required solution. Here a uniform grid of nodes is used h = {ζ0 = 10−5, ζi+1 = ζi + h,

ζM = 0.99, h = (ζM − ζ0)/M}, that approximates the finite interval 0 � ζ = ρ/(1 + ρ) � 1
at the values of M = 840 and h ≈ 0.001 25. At each step of the iteration scheme (34)
the value of λ̃n in the interval [0, ζM ] is improved by adding the asymptotic correction
λ̃as

n , calculated according to (28) in the interval [ζM, 1], using the asymptotic solution of
equation (27). Note that we use the same rule to choose the iterative step τn as in the
previous section. The iterations were stopped if the residual equaled the predetermined
accuracy of 10−6. It means that the stationary point of the Schwinger functional in the form
of µn defined by (34) is achieved. The numerical results for the phase shift are presented
in table 2, and with the number of equations increasing up to N = 6, they converge to the
known analytic values of the exact phase shift (21) [15, 17] with the accuracy of 1 × 10−3

to 6 × 10−3. From table 2 one can see that for the fixed number of equations the values
of the phase shift obtained are closer to the exact ones at small momenta. To reach higher
accuracy in the calculations of the phase shifts δ it is necessary to extend the value qρmax to
values greater than 100, or to use asymptotic expansions of the solutions for χj0(ρ), up to
O(ρ−3/2) [13], taking into account the known asymptotic behaviour of the matrix elements
Hjj(ρ). For comparison, the values of the phase shift δBO = δ − π/4 found from the first of
equations (27) with the potential V BO

0 (ρ) = ε0(ρ) − ε
(0)

0 at N = 1 are given in the second
column.
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5. The elastic scattering problem with open channels

Let us consider the elastic scattering problem of a third particle on a pair of particles above
the three-body threshold. By means of the Green function corresponding to the left-hand side
of equations (9) it can be represented in the integral form

χji(ρ) = J6j (tρ)δji +
π

2

∫ ∞

0
J6j (tρ<)Y6j (tρ>)Vji(ρ

′)χi(ρ
′)ρ ′ dρ ′. (35)

Here t = k at j � 0 for c = 1 and t = q at j = 0, t = k at j � 1 for c = −1. The asymptotic
form of the solution χji(ρ) at ρ → ∞ is χji(ρ)|ρ→∞ → J6j (tρ)δji − Y6j (tρ)Rji , where the
mixed parameter Rji is determined by the relation

Rji = π

2

∫ ∞

0
J6j (tρ)Vji(ρ)χi(ρ)ρ dρ. (36)

Using the expression (36) and equations (35), we arrive at the generalized eigenvalue problem
for the system of integral equations with respect to a pair of unknown variables, namely the
vector function χji(ρ

′) and the spectral parameter λi = −π
2 R−1

ii :

(Ci(ρ, ρ ′) − λiDi(ρ, ρ ′))χi(ρ
′) = 0. (37)

Here the matrix integrals Ci(ρ, ρ ′) and Di(ρ, ρ ′) are operators defined by the relations

Ci(ρ, ρ ′)χi(ρ
′) = χji(ρ) − π

2

∫ ∞

0
J6j (tρ<)Y6j (tρ>)Vji(ρ

′)χi(ρ
′)ρ ′ dρ ′

j = 0, N − 1

Di(ρ, ρ ′)χi(ρ
′) = J6j (tρ)δji

∫ ∞

0
J6j (tρ)Vji(ρ)χi(ρ)ρ dρ (38)

and χi(ρ) = (χ0i(ρ), χ1i (ρ), . . .)T is a vector function. Let us add the condition of
orthogonality to equation (37)

F(λi, χi) = (Vi(ρ)χi(ρ), (Ci(ρ, ρ ′) − λiDi(ρ, ρ ′))χi(ρ
′)) = 0 (39)

where Vi(ρ)χi(ρ) = (V0i(ρ)χi(ρ), V1i (ρ)χi(ρ), . . .)T .
Then we use the iteration schemes (34). The uniform grid with the nodes h = {ζ0 =

10−5, ζi+1 = ζi + h, ζM = 0.999, h = (ζM − ζ0)/M} is used to approximate the finite interval
0 � ζ = ρ/(1 + ρ) � 1 at M = 1500 and h ≈ 0.001. The eigenfunctions χji and the
reaction matrix Rij were calculated numerically for elastic scattering above the three-body
threshold 3 → 3. In the case of attraction c = −1 we took the values of k =

√
q2 − π2/36

corresponding to q = 0.6, 1.5. The repulsion case c = 1 was considered at k = 0.1, 1.0.
The approximation of problems (37) and (39) with six equations N = 6 was used. The
non-diagonal elements were calculated by means of equation (36). Examples of calculated R
matrices are demonstrated by (40) and (41) in the cases of c = −1 at q = 0.6 and c = 1 at
k = 0.1, respectively. Below, the factor x in brackets means (x) ≡ 10x

{R(c = −1, q = 0.6)}N=6
j,i=1

=




1.29 2.97(−8) 3.88(−7) 6.59(−9) −1.08(−7) −1.61(−7)

6.89(−8) 0.59 −3.28(−2) −6.40(−3) −2.27(−3) −1.03(−3)

3.70(−8) −3.29(−2) −0.63 −4.14(−2) −9.67(−3) −3.81(−3)

7.13(−8) −6.43(−3) −4.16(−2) −0.63 −4.28(−2) −1.04(−2)

1.10(−7) −2.29(−3) −9.78(−3) −4.32(−2) −0.63 −4.27(−2)

1.51(−7) −1.06(−3) −3.90(−3) −1.06(−2) −4.35(−2) −0.62




(40)

vinitsky


vinitsky
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Table 3. The convergence of the values arctan Rii of the R matrix, calculated by the iteration
scheme (34), versus the number N of equations (35), are shown in the columns 2–7, at the values
of momentum k given in the first column. The eigenphase shifts δ

R66
eig (36) of the matrix R, which

are calculated by means of the iteration scheme (34) for six equations (35), are shown in the ninth
column. For comparison, the values arctan Rexact

ii and the eigenphase shifts δ
R66
exact of the Rexact

matrix defined by equation (17) via the matrix Sexact, calculated using equation (19) in the six-state
approximation, are shown in columns 8 and 10, respectively. The asterisk is used to mark that
the value π/4 has been added to arctan R00, as follows from the compatibility relation of the
asymptotic boundary conditions (16) and the asymptotic behaviour of (35).

N

k 1 2 3 4 5 6 arctan Rexact
ii δ

R66
eig δ

R66
exact

c = −1
0.293 2.920∗ 2.992∗ 3.006∗ 3.011∗ 3.014∗ 3.016∗ 3.023∗ 3.016∗ 3.023∗

3.673 3.676 3.676 3.676 3.676 3.677 3.759 3.765
3.698 3.703 3.703 3.703 3.706 3.717 3.723

3.699 3.703 3.704 3.708 3.685 3.690
3.698 3.702 3.709 3.663 3.669

3.697 3.709 3.654 3.657
1.406 2.047∗ 2.230∗ 2.268∗ 2.282∗ 2.289∗ 2.294∗ 2.313∗ 2.294∗ 2.313∗

1.711 1.686 1.684 1.684 1.684 1.684 2.145 2.162
1.760 1.732 1.731 1.730 1.731 1.931 1.948

1.769 1.741 1.740 1.741 1.780 1.791
1.769 1.742 1.742 1.685 1.691

1.769 1.742 1.642 1.643

c = 1
0.10 −4.340 −4.340 −4.340 −4.340 −4.340 −4.339 −4.339 −4.331 −4.333

−4.349 −4.348 −4.348 −4.348 −4.348 −4.349 −4.333 −4.336
−4.348 −4.348 −4.348 −4.348 −4.350 −4.338 −4.341

−4.348 −4.347 −4.347 −4.350 −4.346 −4.348
−4.347 −4.347 −4.351 −4.356 −4.359

−4.346 −4.351 −4.368 −4.371
1.00 −2.194 −2.167 −2.165 −2.165 −2.165 −2.165 −2.165 −2.101 −2.102

−2.294 −2.257 −2.254 −2.254 −2.254 −2.255 −2.131 −2.131
−2.298 −2.260 −2.257 −2.257 −2.259 −2.192 −2.189

−2.299 −2.260 −2.257 −2.260 −2.280 −2.275
−2.298 −2.259 −2.260 −2.394 −2.388

−2.297 −2.260 −2.526 −2.524

{R(c = 1, k = 0.1)}N=6
j,i=1

=




2.56 6.13(−2) 1.27(−2) 4.56(−3) 2.13(−3) 1.15(−3)

6.13(−2) 2.63 7.82(−2) 1.93(−2) 7.84(−3) 3.94(−3)

1.27(−2) 7.82(−2) 2.63 8.12(−2) 2.11(−2) 8.88(−3)

4.55(−3) 1.93(−2) 8.10(−2) 2.62 8.21(−2) 2.16(−2)

2.18(−3) 7.76(−3) 2.09(−2) 8.15(−2) 2.61 8.20(−2)

1.13(−3) 3.86(−3) 8.69(−3) 2.12(−2) 8.09(−2) 2.60




. (41)

One can see that the matrices are symmetrical to three significant digits,which corresponds
to the calculation accuracy of the order of 10−3. At c = −1 the element R00 describes 2 → 2
scattering. The non-diagonal elements Rj0 = R0j , corresponding to the transitions 2 → 3
and 3 → 2, are zero to the above accuracy, i.e. there are no non-elastic scattering transitions
in the case under consideration (21). For 3 → 3 scattering the non-diagonal elements Rji
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Figure 1. The bound state and half-bound state wavefunctions �b at 2Eb ≈ −π2/9 and �hb at
2Ehb ≈ −π2/36 (q ≈ 0) (upper figures). The scattering wavefunctions �s

0 at q = π/6 (i.e. at the
three-body threshold energy 2E = k2 = 0) for the attractive pair potentials c = −1, and �s

0 at
k = 0.6 for the repulsive ones c = 1 (lower figures).

are small at k < 1 in accordance with the asymptotic expansion of the elements Sji of the
exact S matrix (19). Correct consideration of the problem at k > 1 requires a large number
of equations, which is beyond the scope of the present paper, while at k � 1 the diagonal
approximation holds. In table 3 the convergence of arctan Rii calculated by means of the
iteration scheme (34) with respect to the number N of equations (35) is shown in columns
2–7 at the values of the momentum k from the first column. The eigenphase shifts δR66

eig (36)
of the matrix R calculated by means of the iteration scheme (34) for six equations (35) are
shown in the ninth column. For comparison the values arctan Rexact

ii and the eigenphase shifts
δ

R66
exact of Rexact matrix expressed by equation (17) via the matrix Sexact, calculated by means of

equation (19) in the six-state approximation, are shown in columns 8 and 10, respectively.
In the case of c = −1 the asterisk means that the value π/4 was added to arctan R00,
as follows from the compatibility of the asymptotic boundary conditions (16) and the
asymptotic behaviour of (35). With the number of equations growing up to N = 6 the
results converge to the analytical ones to the accuracy of three significant digits.

6. Conclusion

We formulated the two-dimensional scattering problem in terms of the Schwinger variational
functional, with the trial functions forming an adiabatic basis, as a spectral problem for a set of
coupled one-dimensional integral equations. We elaborated stable iteration schemes to solve
with prescribed accuracy the multi-channel spectral problem for a set of one-dimensional
integral equations in the case of both discrete and continuous spectra. The efficiency of
the proposed iteration schemes and their convergence with respect to the number of basis
functions are studied in the exactly solvable model of three identical particles on a line with
pair attraction and repulsion zero-range potentials both below and slightly above the three-
body threshold. Figure 1 (the first two plots) shows the wavefunctions �b(ρ, θ) and �hb(ρ, θ)
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for the bound state problem calculated by means of scheme (26). Note that the necessity to
account for states of the half-bound type arises, e.g., in calculations of loosely bound states
of trimers of helium atoms [2, 3]. Figure 1 (the second two plots) shows the wavefunctions
�s

0(ρ, θ) calculated using scheme (34) above the three-body threshold for the scattering
problems at q = π/6 for c = −1 and at k = 0.6 for c = 1. The maxima and minima of these
functions lie on pair collision lines, respectively. As one can see, the model under consideration
preserves the most important characteristic features of the three-body problem as an interesting
benchmark for the analysis of multichannel calculations. The approach developed allows
a straightforward generalization over the multidimensional and multi-channel scattering
problems by means of the appropriate choice of the representation of basis functions,
boundary conditions, and approximate solutions of the set of coupled one-dimensional integral
equations.
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