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Abstract
The symmetric implicit operator-difference multi-layer schemes for solving the
time-dependent Schrödinger equation based on decomposition of the evolution
operator via the explicit Magnus expansion up to the sixth order of accuracy with
respect to the time step are presented. Reduced schemes for solving the set of
coupled time-dependent Schrödinger equations with respect to the hyper-radial
variable are devised by using the Kantorovich expansion of the wave packet over
a set of appropriate parametric basis angular functions. Further discretization
of the resulting problem with symmetric operators is implemented by means
of the finite-element method. The convergence and efficiency of the numerical
schemes are demonstrated in benchmark calculations of the exactly solvable
models of a one-dimensional time-dependent oscillator, a two-dimensional
oscillator in time-dependent electric field by using the conventual angular basis,
and the inexactly solvable model of a three-dimensional kicked hydrogen atom
in a magnetic field by using a parametric basis of the angular oblate spheroidal
functions developed in our previous paper (Chuluunbaatar O et al 2007 J. Phys.
A: Math. Theor. 40 11485–524).

PACS numbers: 02.30.Jr, 02.60.Lj, 02.70.Dh, 03.65.−w, 31.15.Ja, 31.15.Pf

1. Introduction

Modern laser physics experiments have stimulated computer simulations [1–3] related to the
time-dependent dynamics of few-body Coulomb systems in a train of laser pulses [4–6] and
the time-dependent Schrödinger equation (TSDE) involved in the control problems of finite-

5 It is painful to think Professor M S Kaschiev is no longer among us, and this paper is his last contribution to TDSE
solving on the base of the finite-element method which owes remarkable results to him. His intuition, insight and
support were invaluable for other authors during our long-standing collaboration. We are deeply grateful to him.
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dimensional quantum systems [7] and magnetic traps [8–12]. For any numerical method
two requirements are of principal importance: one is stability, and the other is accuracy.
From the viewpoint of these requirements, the unitary splitting methods have a big advantage:
the unitarity of the evolution operators applied preserves the norm of the wavefunctions, so
that the conservation of probability density and the robustness of the numerical schemes are
guaranteed.

Solving the TDSE with prescribed accuracy is necessary for control problems in finite-
dimensional quantum systems [7], decay problem in nuclear physics [13], de-excitation of
antihydrogen atoms [12], ionization problems in atoms and molecules excited by pulsed fields
[6] or impact collisions beyond the dipole approximation [14, 15]. For solving the TDSE in
a finite spatial region [16, 17] one usually seeks for a wave-packet solution in the form of
expansion over the appropriate angular basis functions, and then performs proper discretization
of hyper-radial equations, e.g., using the finite-difference [14, 18, 19], finite-element [5, 20],
spline [16, 21] methods, etc.

In the present paper a new computational method is proposed to solve the TDSE, in which
the unitary explicit splitting algorithms for decomposition of the evolution operator via the
Magnus expansion [22] on uniform time grids [3, 23–25] is combined with the Kantorovich
or Galerkin reduction to a set of hyper-radial TDSEs [20], the finite-element method (FEM)
[26, 27] and the interpolation on nonuniform spatial grids [20, 28, 29]. The efficiency and
accuracy of the developed reductions and numerical schemes are demonstrated for several
integrable atomic models in external fields.

Usually the rate convergence with respect to the number of angular basis functions is
controlled by solving the corresponding stationary Schrödinger equation [30]. However,
some special cases of long-range effective potentials acting in asymptotic regions, such as
confinement potentials, require additional analysis [18], which is the key problem. Numerical
solution of TDSEs describing exactly solvable models can provide useful information for such
analysis.

The organization of this paper is outlined as follows. In section 2, the general formulation
and the operator-difference multi-layer (ODML) calculation scheme for solving the time-
dependent operator differential equation in a finite time interval are given. In section 3, the
application of the considered scheme for the TDSE with the Kantorovich approach up to the
sixth order with respect to the time step is presented. The basic structure of the numerical
calculation for the generation of the matrix problem in the framework of FEM is described in
section 4. In section 5, the stability and efficiency of the developed schemes and algorithms are
confirmed in exactly solvable models, namely, a one-dimensional time-dependent oscillator
and a two-dimensional oscillator in a time-dependent electric field, as well as an inexactly
solvable model, namely, a three-dimensional kicked hydrogen atom in a magnetic field.
Section 6 is devoted to concluding remarks and perspectives of further studies.

2. General formulation and ODML calculation scheme

Consider the Cauchy problem for the time-dependent operator equation in the time interval
t ∈ [t0, T ]

i
∂�(t)

∂t
= H(t)�(t), �(t0) = �0, (1)

where H(t) is a linear self-adjoint operator. We rewrite equation (1) in terms of a unitary
evolution operator U(t, t0, λ) with the complementary formal parameter λ 6 transforming the

6 The complementary formal parameter λ will be later given a definite value λ = 1.

2



J. Phys. A: Math. Theor. 41 (2008) 295203 O Chuluunbaatar et al

initial state �0 into the solution �(t)

i
∂U(t, t0, λ)

∂t
= λH(t)U(t, t0, λ), U(t, t, λ) = 1. (2)

Introduce a uniform grid �τ [t0, T ] = {t0, tk+1 = tk + τ, tK = T } with the time step τ ,
covering the time interval [t0, T ]. For each step we express the unitary operator U(tk+1, tk, λ)

transforming �(tk) at t = tk(k = 0, . . . , K − 1) into �(tk+1) at t = tk+1 in the form [23, 24]

�(tk+1) = U(tk+1, tk, λ)�(tk),

U(tk+1, tk, λ) = exp
(−iτA

(M)
k (tk+1, λ)

)
+ O(τ 2M+1).

(3)

2.1. Implicit decomposition of the evolution operator

We start with the expansion of A
(M)
k (t) ≡ A

(M)
k (t, λ) in powers of the formal parameter λ,

A
(M)
k (t, λ) = i

τ

2M∑
j=1

λjA(j)k(t), A
(M)
k (tk, λ) = 0, (4)

where the coefficients A(j)(t) ≡ A(j)k(t) are determined by the operator identity [31]

−iλH(t) =
n+�

q

i=1li�2M∑
n=1;q=0;l1,...,lq=1

λn+�
q

i=1li

(q + 1)!
(adA(l1)(t)) . . . (adA(lq )(t))Ȧ(n)(t). (5)

Here the linear operator (adA) : L(X) → L(X) (L(X) is the space of linear operators) is
defined for operators A,B ∈ L(X) in the form (adA)B = [A,B] ≡ AB − BA, and has
the following properties: (adA)0B = B, (adA)jB = (adA)j−1(adA)B. Note that the dot
over the operator A(n)(t) means the partial derivative, Ȧ(n)(t) = ∂tA(n)(t), in t. Equating the
coefficients at the same powers of λ on both sides of equation (5), we obtain a set of first-order
differential equations [2]. For example, the first three equations are

Ȧ(1)(t) = −iH(t),

Ȧ(2)(t) = − 1
2 (adA(1)(t))Ȧ(1)(t), (6)

Ȧ(3)(t) = − 1
2 (adA(2)(t))Ȧ(1)(t) − 1

6 (adA(1)(t))
2Ȧ(1)(t) − 1

2 (adA(1)(t))Ȧ(2)(t).

Therefore, we obtain

A(1)(t) = −iϒ1
1 (t), A(2)(t) = 1

2
ϒ2

21(t), A(3)(t) = i

6

(
ϒ3

123(t) + ϒ3
321(t)

)
. (7)

The fourth-order term is calculated in the same way. We find

A(4)(t) = 1
12

(
ϒ4

1432(t) + ϒ4
1234(t) + ϒ4

4312(t) + ϒ4
2341(t)

)
. (8)

Here

ϒn
l1,...,ln

(t) =
∫ t

tk

dt1

∫ t1

tk

dt2 . . .

∫ tn−1

tk

dtn(adH(tl1)) . . . (adH(tln−1))H(tln ). (9)

Note that the fourth-order formula (8) agrees with [31, 32], but does not agree with [33, 34]
because of misprints in these papers.
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Solving sequentially the set of equations thus obtained, we arrive at effective Hamiltonians
A

(M)
k (t) connected with the original one H(t) via the Magnus expansion [22] written in terms

of repeated integrals [31]. We would like to express the truncation A
(M)
k (t) in terms of H(t)

and its time partial derivatives. Substituting the Taylor expansion of H(t) in the vicinity of
tc = tk + τ/2,

H(t) =
2M−1∑
j=0

(t − tc)
j

j !
∂

j
t H(tc) + O(τ 2M), (10)

into the integrals, one can derive an analytical expression of the operators A
(1)
k (t), A

(2)
k (t),

. . . , A
(M)
k (t) by means of the symbolic algorithm GATEO (generation of approximations of

the time-evolution operator) [2]. Indeed, for A
(1)
k (t) one should only calculate the coefficient

of λ1, and then obtain

A
(1)
k (tk+1) =

∫ 1

0
dξH(tk + ξτ) = H(tc) + O(τ 2), (11)

without any difficulties. However, in the case of A
(M)
k (t) with large M, rather cumbersome

calculations are required to find all the coefficients ‘by hand’.

2.2. Explicit decomposition of the evolution operator

For the expansion of the Hamiltonian H(t) in the vicinity of t = tc we can also find the
operators A

(M)
k (tk+1) in the form of a series at λ = 1,

A
(M)
k (tk+1) =

2M−1∑
j=0

τ j Ǎ(j)(tc), (12)

with unknown coefficients Ǎ(j)(tc). Recalling that the evolution operator U(tk, tk+1, λ) is
inverse to the operator U(tk+1, tk, λ), we get A

(M)
k+1 (tk) = A

(M)
k (tk+1). It means that the series of

A
(M)
k (tk+1) written above contains only even powers of τ because the expression of A

(M)
k+1 (tk)

is obtained from A
(M)
k (tk+1) by a formal substitution τ → −τ . Then the unknown coefficients

Ǎ(j)(tc) are calculated explicitly from a set of recurrence equations (see the appendix A)

(j + 1)Ǎ(j)(tc) = 1 + (−1)j

2j+1j !
∂

j
t H(tc) +

j∑
q=1

j−q∑
n=0

n+q+�
q

i=1li=j∑
l1,...,lq=0

(−i)qBn
l1,...,lq

(tc)

q!
,

Bn
l1,...,lq

(tc) = (adǍ(l1)(tc)) . . . (adǍ(lq )(tc))Qqn(tc), (13)

Qqn(tc) = (−1)n

2n+1n!
∂n
t H(tc) − n + 1

q + 1
Ǎ(n)(tc).

To show the complexity of calculations, we present the first three approximations of
the exponential (3) for the final effective Hamiltonians A

(M)
k ≡ A

(M)
k (tk+1) in the form

A
(M)
k = Â

(M)
k + iĂ(M)

k ,

Â
(1)
k = H,

Ă
(1)
k = 0,

Â
(2)
k = Â

(1)
k +

τ 2

24
Ḧ ,

Ă
(2)
k = Ă

(1)
k +

τ 2

12
(adH)Ḣ ,

4
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Table 1. Real and imaginary parts of the coefficients α
(M)
ζ ,M = 1, 2, 3, ζ = 1, . . . ,M .

M ζ �α
(M)
ζ �α

(M)
ζ

1 1 +0.0 −1.0
2 1 −0.577 350 269 189 625 764 509 148 780 50 −1.0
2 2 +0.577 350 269 189 625 764 509 148 780 50 −1.0
3 1 −0.814 799 554 248 922 818 414 736 231 56 −0.854 056 730 651 663 465 265 799 408 86
3 2 +0.0 −1.291 886 538 696 673 069 468 401 182 28
3 3 +0.814 799 554 248 922 818 414 736 231 56 −0.854 056 730 651 663 465 265 799 408 86

Â
(3)
k = Â

(2)
k +

τ 4

1920

....
H − τ 4

720
(adH)2Ḧ − τ 4

240
(adḢ )2H,

Ă
(3)
k = Ă

(2)
k − τ 4

480
(ad

...
H )H +

τ 4

480
(adḦ )Ḣ +

τ 4

720
(adH)3Ḣ , (14)

where H ≡ H(tc), Ḣ ≡ ∂tH(t)|t=tc
, . . .

2.3. Implicit ODML schemes

We wish to make further approximation of the unitary scheme [23, 24] of equation (3). The
application of the generalized [M/M] Padé approximation to the exponential operator yields

exp
(−iτA

(M)
k

) =
1∏

ζ=M

Tζk + O(τ 2M+1),

Tζk =
(

I +
τα

(M)
ζ A

(M)
k

2M

)−1 (
I +

τα
(M)
ζ A

(M)
k

2M

)
,

(15)

where I is the unit operator and the overline indicates the complex conjugate. The
coefficients, α

(M)
ζ (ζ = 1, . . . , M,M � 1), stand for the roots of the polynomial equation,

1F1(−M,−2M, 2Mi/α) = 0, where 1F1 is the confluent hypergeometric function. The
properties of the zeros of this polynomial have been well studied [35–37]. Table 1 lists
the values of the coefficients, α

(M)
ζ for M = 1, 2, 3, in GATEO. The coefficients α

(M)
ζ have

the following properties: �α
(M)
ζ < 0 and 0.6 <

∣∣α(M)
ζ

∣∣ < µ−1, where µ ≈ 0.28 is the root of
the equation µ exp(µ + 1) = 1 [23]. Note that the condition

τ < 2Mµ
∥∥A

(M)
k (t)

∥∥−1
, (16)

guarantees the validity of the approximation (15) for any bounded operator A
(M)
k (t).

We are now in a position to obtain the transition from �(tk) to �(tk+1) using the
approximation (15) of the evolution operator in (3). For this purpose we rewrite the transition
in terms of the auxiliary functions defined by

ψ0
k = �(tk),(
I +

τα
(M)
ζ A

(M)
k

2M

)
ψ

ζ/M

k =
(

I +
τα

(M)
ζ A

(M)
k

2M

)
ψ

(ζ−1)/M

k , ζ = 1, . . . , M,

�(tk+1) = ψ1
k .

(17)

Note that this approach preserves the unitarity of the approximate evolution operator, since the
truncated A

(M)
k is always self-adjoint. Im α

(M)
ζ �= 0 yields the operators Tζk to be isometric,

so that all the functions ψ
ζ/M

k have an equal norm,
∥∥ψ0

k

∥∥ = ∥∥ψ
1/M

k

∥∥ = · · · = ∥∥ψ1
k

∥∥.

5
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2.4. Symmetric implicit ODML schemes

To generate the schemes with extraction of the symmetric part Ã(M)
k (t) of the operator A

(M)
k (t),

we apply a gauge transformation ψ̃ = exp
(
iS(M)

k (t)
)
ψ that yields a new operator

Ã
(M)
k (t) = exp

(
iS(M)

k (t)
)
A

(M)
k (t) exp

(−iS(M)
k (t)

)
, (18)

in accordance with the well-known formula

exp(A)B exp(−A) =
∑
j=0

1

j !
(adA)jB. (19)

We seek for S
(M)
k (t) in the form of a power series with respect to τ

S
(M)
k (t) =

2M−1∑
j=0

τ jS(j)(t), (20)

where the unknown coefficients S(j)(t) are found from the additional condition

�
A

(M)

k = exp
(
iS(M)

k (tk+1)
)
Ă

(M)
k exp

(−iS(M)
k (tk+1)

) = O(τ 2M). (21)

Substituting the expansion of S
(M)
k ≡ S

(M)
k (tk+1) into this condition and equating the terms

with the same powers of τ , we obtain a set of algebraic (or operator) recurrence relations for
evaluating the unknown coefficients S(j) ≡ S(j)(tk+1) with the initial condition S(0) = 0. The
first three approximations of the operators (20) and (18) have the form

S
(1)
k = 0,

S
(2)
k = S

(1)
k +

τ 2

12
Ḣ , (22)

S
(3)
k = S

(2)
k +

τ 4

480

...
H +

τ 4

720
(adH)2Ḣ , if (adḦ )Ḣ ≡ 0,

and

Ã
(1)
k = Â

(1)
k = H,

Ã
(2)
k = Â

(2)
k = Ã

(1)
k +

τ 2

24
Ḧ , (23)

Ã
(3)
k = Â

(3)
k +

τ 4

288
(adḢ )2H = Ã

(2)
k +

τ 4

1920

....
H − τ 4

720
(adH)2Ḧ − τ 4

1440
(adḢ )2H.

Performing the above procedures at each kth time step of the grid �τ [t0, T ] (k = 0,

1, . . . , K−1), we arrive at the operator-difference scheme with partial splitting of the evolution
operator

ψ̃0
k = exp

(
iS(M)

k

)
�(tk),(

I +
τα

(M)
ζ Ã

(M)
k

2M

)
ψ̃

ζ/M

k =
(

I +
τα

(M)
ζ Ã

(M)
k

2M

)
ψ̃

(ζ−1)/M

k , ζ = 1, . . . , M, (24)

�(tk+1) = exp
(−iS(M)

k

)
ψ̃1

k .

Hence, the auxiliary functions ψ̃
ζ/M

k in equation (24) can be treated as a kind of approximate
solutions on a set of fractional time steps tk+ζ/M = tk + τζ/M, ζ = 1, . . . , M − 1 in the time
interval [tk, tk+1]. The scheme (24) is an implicit scheme of the order 2M , preserving the
norm of the difference solution, and hence, is stable. Furthermore, the scheme (24) provides
an approximation of the order O(τ 2M) in the sense of [38], while any individual equation in

6
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(24) provides only an approximation of the order not higher than O(τ 2). Note that in the case
M = 1, i.e., [1/1] Padé approximation of exponential operator (15), the scheme (24) appears
to be reduced to the well-known Crank–Nicolson scheme [39].

We wish to construct the generalized [L/L] Padé approximation for exp
(
iS(M)

k

)
in analogy

with (15). This approximation has the order O(τ 4L+2), while 4L + 2 � 2M , so that we can
choose L = [

M
2

]
, where [x] is the integer part of x. In this case we obtain the following

modification of the numerical scheme (24):

ψ0
k = �(tk),(
I − α(L)

η S
(M)
k

2L

)
ψ

η/L

k =
(

I − α(L)
η S

(M)
k

2L

)
ψ

(η−1)/L

k , η = 1, . . . , L,

ψ̃0
k = ψ1

k ,(
I +

τα
(M)
ζ Ã

(M)
k

2M

)
ψ̃

ζ/M

k =
(

I +
τα

(M)
ζ Ã

(M)
k

2M

)
ψ̃

(ζ−1)/M

k , ζ = 1, . . . , M,

ψ0
k = ψ̃1

k ,(
I +

α(L)
η S

(M)
k

2L

)
ψ

η/L

k =
(

I +
α(L)

η S
(M)
k

2L

)
ψ

(η−1)/L

k , η = 1, . . . , L,

�(tk+1) = ψ1
k .

(25)

Theorem. Let the operator A
(M)
k (t) satisfy the bounding condition (16) for the given time step

τ , then the error of the numerical schemes (17) and (25) is bounded by

εM = ‖�ext(tk+1) − �(tk+1)‖ � Cτ 2M(tk+1 − t0) max
t0�t�tk+1

‖H 2M+1(t)�ext(t)‖, (26)

where �ext(tk+1) is the exact solution of the evolution equation (1) at the time moment
t = tk+1, �(tk+1) is its approximate solution, and C is a constant.

The proof is similar to given in that [40].

3. Application of the scheme to TDSE

Let us consider a d-dimensional TDSE with the Hamiltonian H(t) ≡ H(r, t)

i
∂�(r, t)

∂t
= H(r, t)�(r, t), �(r, t0) = �0(r), (27)

where the Hamiltonian with a governing function f (r, t) in the time interval t ∈ [t0, T ] has
the form

H(r, t) = H0(r) + f (r, t), H0(r) = − 1
2∇2

r + U(r). (28)

We require the solutions �(r, t) to be continuous and to have general first derivatives
integrable with square, and to belong to the Sobolev space W1

2(R
d ⊗ [t0, T ]), i.e. �(r, t) ∈

W1
2(R

d ⊗ [t0, T ]). We suppose that these solutions describe an atomic model in the external
field f (r, t) with f (r, t0) ≡ 0, and the function f (r, t) has partial derivatives till the order
of 2M − 2 to be continuous. The atomic units are applied throughout this paper. The
normalization condition reads

‖�‖2 =
∫

|�(r, t)|2 dr = 1, t ∈ [t0, T ]. (29)

7
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We rewrite the operators Ã
(M)
k and S

(M)
k in the form

Ã
(1)
k = H, S

(1)
k = 0,

Ã
(2)
k = Ã

(1)
k + G(2), S

(2)
k = S

(1)
k + Z(2),

Ã
(3)
k = Ã

(2)
k + G(3) − τ 4

720
∇r

(∇2
r f̈

) ∇r, S
(3)
k = S

(2)
k + Z(3) +

τ 4

720
∇r

(∇2
r ḟ

) ∇r,

(30)

where the functions G(l) and Z(l) for l = 2, 3 read as

G(2) = τ 2

24
f̈ ,

Z(2) = τ 2

12
ḟ,

G(3) = τ 4

1920

....
f +

τ 4

1440
(∇r ḟ)2 − τ 4

720
(∇rf̈ )(∇r(U + f )) − τ 4

2880

(∇4
r f̈

)
,

Z(3) = τ 4

480

...
f +

τ 4

720
(∇r ḟ)(∇r(U + f )) +

τ 4

2880

(∇4
r ḟ

)
,

(31)

and f ≡ f (r, tc), ḟ ≡ ∂tf (r, t)|t=tc
, . . . , U ≡ U(r). Below we put M � 3, since the

considered schemes contain operator nabla with third order for implementation at M � 4.

3.1. The Kantorovich approach

In the close-coupling approximation, known in mathematics as the Kantorovich method
[20, 41], the partial wavefunction �(r, t) is expanded over the single-parameter basis functions
{Bj(�; r)}Nj=1

�(r, t) =
N∑

j=1

Bj(�; r)χj (r, t). (32)

In equation (32) the vector function χ(r, t) = (χ1(r, t), . . . , χN(r, t))T is unknown, and the
components of the surface vector function B(�; r) = (B1(�; r), . . . , BN(�; r))T form an
orthonormal basis with respect to the set of angular coordinates � for each value of hyper-
radius r, which is treated here as a given parameter. In the Kantorovich approach [20, 41],
the functions Bj(�; r) ∈ Fr ∼ L2(S

d−1(�)) are determined as solutions of the following
parametric eigenvalue problem:(

− 1

2r2
Λ̂

2
� + U(r)

)
Bj(�; r) = Ej(r)Bj (�; r), (33)

where Λ̂
2
� is the generalized self-adjoint angular momentum operator, corresponding to the

d-dimensional Laplace operator ∇2
r . The eigenfunctions of this problem satisfy the same

boundary conditions in angular variable � for �(r, t) and are normalized as

〈Bi(�; r) | Bj(�; r)〉� =
∫

Bi(�; r)Bj (�; r) d� = δij , (34)

where δij is the Kronecker symbol.
After minimizing the Rayleigh–Ritz variational functional (see [20, 29]), and using the

expansion (32) equation (27) is reduced to a set of N ordinary second-order differential
equations

iI
∂χ(r, t)

∂t
= H(r, t)χ(r, t), χ(r, t0) = χ0(r), (35)

8
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with

H(r, t) = − 1

2rd−1
I

∂

∂r
rd−1 ∂

∂r
+ V(r, t) + Q(r)

∂

∂r
+

1

rd−1

∂rd−1Q(r)

∂r
. (36)

Here I, V(r, t) and Q(r) are matrices of dimension N × N , whose elements are given by the
relation

Vij (r, t) = Vji(r, t) = Ei(r) + Ej(r)

2
δij +

1

2

〈
∂Bi(�; r)

∂r

∣∣∣∣∂Bj (�; r)

∂r

〉
�

+ 〈Bi(�; r)|f (r, t)|Bj(�; r)〉�, Iij = δij , (37)

Qij (r) = −Qji(r) = −1

2

〈
Bi(�; r)

∣∣∣∣∂Bj (�; r)

∂r

〉
�

.

The boundary conditions have the form

χ(0, t) = 0, if min
1�j�N

lim
r→0

rd−1|Vjj (r, t)| = ∞,

lim
r→0

rd−1

(
I

∂

∂r
− Q(r)

)
χ(r, t) = 0, if min

1�j�N
lim
r→0

rd−1|Vjj (r, t)| < ∞, (38)

lim
r→∞ χ(r, t) = 0.

The normalization condition reads∫ ∞

0
(χ̄(r, t))T χ(r, t)rd−1 dr = 1. (39)

In this case we obtain a finite N × N matrix operator-difference scheme for the unknown
vector functions χ(r, t), similar to (25)

χ̃0
k = χ(r, tk),(
I − α(L)

η S̃(M)
k

2L

)
χ̃

η/L

k =
(

I − α(L)
η S̃(M)

k

2L

)
χ̃

(η−1)/L

k , η = 1, . . . , L,

χ̂0
k = χ̃1

k,(
I +

τα
(M)
ζ Ã(M)

k

2M

)
χ̂

ζ/M

k =
(

I +
τα

(M)
ζ Ã(M)

k

2M

)
χ̂

(ζ−1)/M

k , ζ = 1, . . . , M, (40)

χ̃0
k = χ̂1

k,(
I +

α(L)
η S̃(M)

k

2L

)
χ̃

η/L

k =
(

I +
α(L)

η S̃(M)
k

2L

)
χ̃

(η−1)/L

k , η = 1, . . . , L,

χ(r, tk+1) = χ̃1
k.

Here the operators Ã(M)
k and S̃(M)

k for M = 1, 2, 3 have the form

Ã(1)
k = H(r, tc), S̃(1)

k = 0,

Ã(2)
k = Ã(1)

k + G̃(2), S̃(2)
k = S̃(1)

k + Z̃(2),

Ã(3)
k = Ã(2)

k + G̃(3) + Ċ(3)
k , S̃(3)

k = S̃(2)
k + Z̃(3) − C(3)

k ,

(41)

where G̃(l) and Z̃(l) are N × N matrices with elements given by the relations

G̃
(l)
ij = G̃

(l)
j i = 〈Bi(�; r)|G(l)|Bj(�; r)〉�,

Z̃
(l)
ij = Z̃

(l)
j i = 〈Bi(�; r)|Z(l)|Bj(�; r)〉�.

(42)

9
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The operator C(3)
k is equal to zero for

(∇2
r f

) = 0, otherwise it has the form

C(3)
k = τ 4

720

(
− 1

rd−1

∂

∂r
rd−1D̃(r)

∂

∂r
+ Ṽ(r) − Q̃T (r)

∂

∂r
+

1

rd−1

∂rd−1Q̃(r)

∂r

)
, (43)

where D̃(r), Ṽ(r) and Q̃(r) are N × N matrices with elements given by the relations

D̃ij (r) = D̃ji(r) = 〈Bi(�; r)| (∇2
r ḟ

) |Bj(�; r)〉�,

Ṽij (r) = Ṽji(r) =
〈
∂Bi(�; r)

∂r

∣∣∣∣(∇2
r ḟ

)∣∣∣∣∂Bj (�; r)

∂r

〉
�

+
X̃ij (r)

r2
, (44)

Q̃ij (r) = −〈Bi(�; r)| (∇2
r ḟ

)∣∣∣∣∂Bj (�; r)

∂r

〉
�

,

X̃ij (r) = X̃ji(r) = 〈Λ̂�Bi(�; r)| (∇2
r ḟ

) |Λ̂�Bj (�; r)〉�.

Using equation (33), we obtain the simple form of X̃ij (r)

X̃ij (r) = 〈Bi(�; r)|g(r)|Bj(�; r)〉�,

g(r) = r2[Ei(r) + Ej(r) − 2U(r)]
(∇2

r ḟ
)

+ 1
2

(
Λ̂

2
�

(∇2
r ḟ

))
.

(45)

4. High-order approximation schemes of FEM

To solve the problem (35) on the time grid �τ [t0, T ], the boundary conditions (38) and
normalization condition (39) with respect to the space variable r in an infinite interval are
replaced with the appropriate conditions in a finite interval �̂r [rmin, rmax]. Then at each step k
of the time grid �τ [t0, T ] we consider a discrete representation of the solution χ(r, tk) of the
problem (35).

Now we cover the interval � = [rmin, rmax] by a set of n subintervals �j = [rj−1, rj ] in
such a way that � = ⋃n

j=1 �j . In each subinterval �j the nodes

r
p

j,i = rj−1 +
hj

p
i, hj = rj − rj−1, i = 0, . . . , p, (46)

and the Lagrange elements

φ
p

j,i(r) =
p∏

l=0,l �=i

(
r − r

p

j,l

)
(
r

p

j,i − r
p

j,l

) (47)

are determined. By means of the Lagrange elements φ
p

j,i(r), we define a set of local functions
Nl(ρ) as follows:

N
p

l (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
φ

p

1,0(r), r ∈ �1,

0, r �∈ �1,
l = 0,{

φ
p

j,i(r), r ∈ �j,

0, r �∈ �j,
l = i + p(j − 1), i = 1, . . . , p − 1,⎧⎨

⎩
φ

p

j,p(r), r ∈ �j,

φ
p

j+1,0(r), r ∈ �j+1,

0, r �∈ �j

⋃
�j+1,

l = jp, j = 1, . . . , n − 1,

{
φ

p
n,p(r), r ∈ �n,

0, r �∈ �n,
l = np.

(48)

10
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The functions
{
N

p

l (r)
}L

l=0, L = np form a basis in the space of polynomials of the order p.
We approximate each function χµ(r, tk) by a finite sum of local functions N

p

l (r)

χµ(r, tk) =
np∑
l=0

χl
µ(tk)N

p

l (r), µ = 1, . . . , N, (49)

where χl
µ(tk) ≡ χl

µ

(
r

p

j,i , tk
)
, l = i + p(j − 1) are the node values of the unknown function

χµ(r, tk), with respect to which the initial problem is numerically solved.
Substituting (49) into the operator-difference scheme (40), multiplying it from the left by

N
p

l (r) and integrating over the interval �̂r [rmin, rmax], the scheme (40) is reduced to a set of

algebraic equations for χk = {{
χl

µ

(
r

p

j,i , tk
)}np

l=0

}N

µ=1 at given M

χ̃0
k = χk,(
Bp − α(L)

η

2L
Sp

k

)
χ̃

η/L

k =
(

Bp − α(L)
η

2L
Sp

k

)
χ̃

(η−1)/L

k , η = 1, . . . , L,

χ̂0
k = χ̃1

k,(
Bp +

τα
(M)
ζ

2M
Ap

k

)
χ̂

ζ/M

k =
(

Bp +
τα

(M)
ζ

2M
Ap

k

)
χ̂

(ζ−1)/M

k , ζ = 1, . . . , M, (50)

χ̃0
k = χ̂1

k,(
Bp +

α(L)
η

2L
Sp

k

)
χ̃

η/L

k =
(

Bp +
α(L)

η

2L
Sp

k

)
χ̃

(η−1)/L

k , η = 1, . . . , L,

χk+1 = χ̃1
k.

The matrices Ap

k , Bp and Sp

k are symmetric and possess the band structure. The matrix Bp is
positive definite. They have the following form:

Ap

k =
n∑

j=1

ap

j,k, Bp =
n∑

j=1

bp

j , Sp

k =
n∑

j=1

sp

j,k, (51)

where the local matrices ap

j,k, bp

j and sp

j,k are calculated similar to [20]. As is known [26], the
theoretical estimate in the norm ‖·‖ on the finite-element grid for the difference between the
exact solution χ(r, tk) and the approximate one χk has the order ‖χ(r, tk) − χk‖ = O(hp+1),
where h is the maximal step of the finite-element grid.

To analyze the convergence on a sequence of three double-crowding time grids, we define
the auxiliary time-dependent discrepancy functions

Er2(t, j) =
N∑

ν=1

∫ rmax

0

∣∣χν(r, t) − χ
τj

ν (r, t)
∣∣2

rd−1 dr, j = 1, 2, 3, (52)

and the Runge coefficient

β(t) = log2

∣∣∣∣Er(t, 1) − Er(t, 2)

Er(t, 2) − Er(t, 3)

∣∣∣∣ , (53)

where χ
τj

ν (r, t) are the numerical solutions obtained with the time step τj = τ/2j−1. For the
function χν(r, t) one can use the numerical solution obtained with the time step τ4 = τ/8.
Hence, we will obtain the numerical estimates for the convergence order of the numerical
scheme (50), which strongly correspond to theoretical ones β(t) ≡ βM(t) ≈ 2M .

11
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From the estimation (26) of the above theorem it follows that the estimation for steps
τ = τM < 1 of the numerical scheme (50) with M = 1, 2, 3 has the same bound for εM with
M = 1, 2 as at fixed error ε3 under the conditions

τ1 = τ 3
3 , τ2 =

√
τ 3

3 . (54)

In each transformation of �(tk) into �(tk+1) we obtained one-, four- and five-layer schemes
for M = 1, 2 and 3, respectively, hence, for M = 2, 3 the computer time consumption was
approximately four and five times greater than for M = 1. However, for the time steps
(54) and M = 1, 2 the required total computational time will be approximately 1

/(
5τ 2

3

)
and

4/(5
√

τ3) times greater than that for M = 3, respectively.

5. Benchmark calculations

5.1. The exactly solvable one-dimensional model

The TDSE for a one-dimensional harmonic oscillator with explicitly time-dependent frequency
in the finite time interval t ∈ [0, T ] has the form

i
∂ψ(x, t)

∂t
=

(
−1

2

∂2

∂x2
+

ω2(t)x2

2

)
ψ(x, t), ψ0(x) = 4

√
1

π
exp

(
−1

2
(x −

√
2)2

)
,

(55)

with ω2(t) = 4 − 3 exp(−t) [23]. The exact solution of Cauchy problem (55) reads as

ψext(x, t) = 4

√
1

π
exp(−X(t)x2 + 2Y (t)x − Z(t)), (56)

where the functions X(t), Y (t) and Z(t) satisfy the Cauchy problem

i
d

dt
X(t) = 2X2(t) − ω2(t)

2
, X(0) = 1

2
,

i
d

dt
Y (t) = 2X(t)Y (t), Y (0) =

√
2

2
,

i
d

dt
Z(t) = −X(t) + 2Y 2(t), Z(0) = 1.

(57)

To approximate the solution ψ(x, t) in the variable x, we make use of the finite-element
grid �̂x[xmin, xmax] = {xmin = −10, (100), xmax = 10} and the time step τ = 0.009 765 625,
where the number in the brackets denotes the number of finite element in the intervals. Between
each two nodes we apply the Lagrange interpolation polynomials up to the order p = 8.
Figure 1 displays the behavior of discrepancy functions Er(t; j), j = 1, 2, 3 (dash-dotted,
dashed and solid curves) and convergence rate βM(t) for the approximations of the order
2M = 2, 4, 6 that strongly correspond to theoretical ones.

5.2. The exactly solvable two-dimensional model

The TDSE for a two-dimensional oscillator (or a charged particle in the time-independent
uniform magnetic field) subject to the external governing electric field with the components
E1 (t) and E2 (t) nonzero in the finite time interval t ∈ [0, T ] has the form [7]

i
∂

∂t
φ(x1, y1, t) =

(
−1

2

(
∂2

∂x2
1

+
∂2

∂y2
1

)
+

iω

2

(
x1

∂

∂y1
− y1

∂

∂x1

)

+
ω2

8

(
x2

1 + y2
1

) − x1E1(t) − y1E2(t)

)
φ(x1, y1, t). (58)

12
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Figure 1. The test results of the discrepancy functions Er(t, j), j = 1, 2, 3 (dash-dotted,
dashed and solid curves) for the approximations of the order 2M = 2, 4, 6 with the time step
τ = 0.009 765 625.

Here we suppose the dipole approximation to be valid and use the atomic units. The
transformation to a coordinate system rotating with the frequency ω/2

x1 = x cos

(
ωt

2

)
+ y sin

(
ωt

2

)
, y1 = y cos

(
ωt

2

)
− x sin

(
ωt

2

)
(59)

leads to the following equation:

i
∂

∂t
φ(x, y, t) =

(
−1

2

(
∂2

∂x2
+

∂2

∂y2

)
+

ω2

8
(x2 + y2) + f1(t)x + f2(t)y

)
φ(x, y, t), (60)

where

f1(t) = −E1(t) cos

(
ωt

2

)
+ E2(t) sin

(
ωt

2

)
,

f2(t) = −E1(t) sin

(
ωt

2

)
− E2(t) cos

(
ωt

2

)
.

(61)

In the polar coordinates (r, θ) this equation has the form

i
∂

∂t
φ(r, θ, t) =

(
−1

2

(
1

r

∂

∂r
r

∂

∂r
+

1

r2

∂2

∂θ2

)

+
ω2r2

8
+ r(f1(t) cos(θ) + f2(t) sin(θ))

)
φ(r, θ, t). (62)

Using the Galerkin projection of the solutions onto the basis of angular functions Bj(θ)

φ(r, θ, t) =
N∑

j=1

Bj(θ)χj (r, t), (63)

where

B1(θ) = 1√
2π

, B2j (θ) = sin(jθ)√
π

, B2j+1(θ) = cos(jθ)√
π

, j � 1, (64)

13
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we arrive at the matrix equation (35) for the unknown coefficients {χj (r, t)}Nj=1 in the interval
t ∈ [0, T ]. The initial functions χj (r, t) at t = 0 (in the case f1(0) = f2(0) = 0) are chosen
in the form

χj (r, 0) = √
ω exp

(− 1
4ωr2) δj1, (65)

that corresponds to the ground state wave packet of the free oscillator

φ0(x, y) =
√

ω

2π
exp

(
−ω

4
(x2 + y2)

)
. (66)

The exact solution of equation (60) reads with the initial condition (66) as

φext(x, y, t) = 4

√
ω

2π
exp(−X1(t)x

2 + 2Y1(t)x − Z1(t))

× 4

√
ω

2π
exp(−X2(t)y

2 + 2Y2(t)y − Z2(t)), (67)

where the functions Xj(t), Yj (t), Zj (t), j = 1, 2 satisfy the Cauchy problem

i
d

dt
Xj (t) = 2X2

j (t) − ω2

8
, Xj (0) = ω

4
,

i
d

dt
Yj (t) = 2Xj(t)Yj (t) +

fj (t)

2
, Yj (0) = 0,

i
d

dt
Zj (t) = −Xj(t) + 2Y 2

j (t), Zj (0) = 0.

(68)

Here the exact solution of the first differential equation reads Xj(t) ≡ ω/4 in the whole time
interval t ∈ [0, T ].

Note that this problem has an analytical solution for the particular choice of the field
Ej (t) = aj sin(ωj t) which provides a good test example to examine the efficiency of numerical
algorithms and the rate of convergence of the projection with respect to the number N of radial
equations and time T. The necessary projections of the exact solution have the form

χ ext
j (r, t) =

∫ 2π

0
Bj(θ)φext(r, θ, t) dθ. (69)

We choose ω = 4π,ω1 = 3π,ω2 = 5π, a1 = 24 and a2 = 9. For these parameters the
absolute value of the solution φ(r, θ, t) should be periodical with the period T = 2.

To approximate the solution χj (r, t) in the variable r, we use the finite-element grid
�̂r [rmin, rmax] = {rmin = 0, (120), 1.5, (60), rmax = 4} and the time step τ = 0.0125, where
the number in the brackets denotes the number of finite elements in the intervals. Between
each two nodes we apply the Lagrange interpolation polynomials up to the order p = 8.

Figure 2 displays the behavior of the discrepancy functions Er(t; j), j = 1, 2, 3 (dash-
dotted, dashed and solid curves) and convergence rate βM(t) for the approximations of
the order 2M = 2, 4, 6 at N = 20 (a) and N = 30 (b) that strongly correspond to
theoretical ones. In figure 3, the absolute values of the numerical solution φ(x, y, t)

and the difference φext(x, y, t) − φ(x, y, t) are shown at t = 1.2 and t = 2. Here
N = 20, τ4 = τ/8 = 0.001 5625 and M = 3. In figure 4 only the differences are shown at
N = 30.

The key result that follows from the above analysis is that the required number N of angular
basis functions can be controlled by solving not only the stationary Schrödinger equation [30],
but also the exact solvable TDSE. Such benchmark calculations open the opportunity to
control the moving spatial region covered by the time-dependent wave packet, expanded over
the angular basis.
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Figure 2. The test results of the discrepancy functions Er(t, j), j = 1, 2, 3 (dash-dotted,
dashed and solid curves) for the approximations of the order 2M = 2, 4, 6 with the time step
τ4 = τ/8 = 0.001 5625 at N = 20 (a) and N = 30 (b).

If the initial state of a free harmonic oscillator is taken to be a Gaussian wave packet,
differing in width from the ground eigenstate, then the evolution consists in periodic
oscillations of the packet width, i.e. repeated focusing and defocusing in the coordinate
and momentum space. Similar behavior is observed in Gaussian light beams in parabolic
gradient waveguides (see, e.g., [42] and references therein). Recently this oscillator property
was discussed in relation to the problem of channeling and super-focusing of light nuclear
beams in thin doped films [43].

We calculated the time dependence of the wave packet shape in the model of a two-
dimensional oscillator driven by an external field. Figure 5 shows the temporal dynamics of the
closed loop in the x, y plane, within which the probability density |φ(x, y, t)|2 is not less than
one half of its maximal value at given t. For calculations we took the frequencies to be the same
as above and considered two cases: a1 = a2 = 0 (a), and a1 = 24, a2 = 9 (b). In both cases the
wavefunction at the initial moment of time was φ0(x, y) = √

ω/(20π) exp(−ω(x2 + y2)/40).
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Figure 3. The absolute values of the numerical solution φ(x, y, t) and differences φext(x, y, t) −
φ(x, y, t) at t = 1.2 and t = 2. Here N = 20, τ4 = τ/8 = 0.001 5625 and M = 3.
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Figure 4. The differences φext(x, y, t) − φ(x, y, t) at the same conditions as in figure 3 except
N = 30.

Periodical restoration of the initial wave packet shape (66) is seen to occur, wherever the
packet center is at rest (a) or rotating (b).

5.3. The inexactly solvable three-dimensional model

The δ-kicks is a widely used approximation for the electric-field pulses that are much shorter
than the classical orbital period [4, 5, 44–49]. The Hamiltonian of a kicked hydrogen atom in
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Figure 5. Temporal dynamics of the loop in the x, y plane within which the probability
density |φ(x, y, t)|2 is greater than one half of its maximal value, i.e. |φ(x, y, t)|2 �
maxx,y |φ(x, y, t)|2/2.

the presence of a constant magnetic field parallel to the z-axis is given by

H(r, t) = H0(r) + Vext(t), H0(r) = −1

2
�r − 1

r
+ VZ(r),

Vext(t) =
S∑

s=1

rFsδ(t − sT ),

(70)

where S is the number of kicks, T is the period of kicks and Fs is the amplitude of the sth kick.
The term VZ(r) accounts for the interaction of an atom with magnetic field [50]

VZ(r) = 1
8γ 2r2 sin2(θ), (71)

where γ is the strength of the magnetic field.
We consider the model of unidirectional kicks (which is true, e.g., in the case of half-cycle

pulses [44]) and assume the electric field to be directed along the z-axis, so that rFs = zFs .
Therefore, the z-component of the orbital angular momentum is conserved and m is a good
quantum number. Further, it is convenient to work with parabolic states. If the magnetic field
is absent (γ = 0), we make use of the following orthogonal relation between the parabolic
states and (n, l,m) eigenstates:

�(0)
n1n2m

(r) =
n−1∑
l=|m|

A
n1n2
nlm �

(0)
nlm(r), �

(0)
nlm(r) =

n−|m|∑
n1,n2=0

A
n1n2
nlm �(0)

n1n2m
(r). (72)

Here n = n1 + n2 + |m| + 1 is the principal quantum number, and the matrix elements A
n1n2
nlm are

given in [51, 52]. In the presence of a magnetic field the initial state ψ0(r) is an eigenfunction
of the Hamiltonian H0(r). In weak magnetic fields this state can also be specified by the
principal quantum number n.

In the interval between the (s − 1) th and sth kicks the atom evolves freely according to
the TDSE

i
∂ψ(r, t)

∂t
= H0(r)ψ(r, t), ψ(r, t) ∈ W1

2(R
3 ⊗ ((s − 1)T+, sT−)), (73)

where T± = T ± 0. To illustrate the computational algorithm for periodic δ-kicks, we
consider the Schrödinger equation for a single kick at the moment time t = sT :

i
∂ψ(r, t)

∂t
= (H0 + zFsδ(t − sT ))ψ(r, t), ψ(r, t) ∈ W1

2(R
3 ⊗ (sT−, sT+)). (74)
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The case of sequential kicks is then treated by repeating the computational steps for a single
kick. Thus, the same method also allows one to handle the cases of non-periodic and non-equal
kicks as well as of alternating kicks.

We calculate the wavefunction ψ(r, sT+) immediately after the kick (t = sT+) using the
following formula:

ψ(r, sT+) = exp

(
−iH0(r)(sT+ − sT−) − izFs

∫ sT+

sT−
δ(t − sT ) dt

)
ψ(r, sT−), (75)

where ψ(r, sT−) is the wavefunction right before the kick (t = sT−). Note that sT+−sT− → 0
and

∫ sT+

sT−
δ(t − sT ) dt ≡ 1. Consequently, equation (75) is equivalent to the formula [53]

ψ(r, sT+) = exp (−izFs) ψ(r, sT−). (76)

Performing the scaling transformations r̃ = r/n, t̃ = t/n2 and T̃ = T/n2 in
equation (27) with the Hamiltonian (70) and making use of the Kantorovich expansion of
the solutions over the orthogonal basis of functions Bj(η = cos(θ); r)

ψ(r̃, t̃ ) = exp(imϕ)√
2π

N∑
j=1

Bj(η; r̃)χj (r̃, t̃ ), (77)

we arrive at the matrix equation (35) for unknown coefficients {χj (r̃, t̃ )}Nj=1 in the interval
t ∈ [0, ST̃ ]. The functions Bj(η; r) are solutions of the following one parametric eigenvalue
problem [11, 30]:(

− ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
− 2nr̃ +

γ 2n4r̃4

4
(1 − η2)

)
Bj(η; r̃) = 2r̃2Ej(r̃)Bj (η; r̃). (78)

Using the scheme (50) in the time interval ((s − 1)T+, sT−), we get a set of equations

χ̂0
k = χk,(
Bp +

τα
(M)
ζ

2M
Ap

k

)
χ̂

ζ/M

k =
(

Bp +
τα

(M)
ζ

2M
Ap

k

)
χ̂

(ζ−1)/M

k , ζ = 1, . . . , M, (79)

χk+1 = χ̂1
k.

In practical calculation of kicks we used the approximate procedure similar to equation (79)

χ̂0
sT = χsT− ,(
Bp +

α
(M)
ζ

2M
Dp

sT

)
χ̂

ζ/M

sT =
(

Bp +
α

(M)
ζ

2M
Dp

sT

)
χ̂

(ζ−1)/M

sT , ζ = 1, . . . ,M, (80)

χsT+
= χ̂1

sT ,

which conserves the unitarity and is correct up to the order O
(‖Fsz‖2M

L2(S2
+⊗[r̃min,r̃max])

)
. Here

the symmetric banded matrix Dp

sT is determined by the longitudinal dipole matrix elements
[11, 30]. Such procedure retains the same order of approximation as in the case of free
evolution (79) and, as shown below, facilitates efficient treatment of the momentum shift
operator exp(izFs).

To calculate the dependence of the solutions {χj (r̃, t̃ )}Nj=1 upon the spatial variable r̃ in

the finite interval [r̃min, r̃max], we introduced the finite-element grid �̂r̃ [r̃min, r̃max] = {r̃min =
0, (50), 10, (100), r̃max = 80}. Between each two nodes of the grid the Lagrange interpolation
polynomials of the order p = 8 have been applied.

Table 3 displays the discrepancy functions Er(t; j), j = 1, 2, 3, and the convergence
rate βM(t) for the approximations of the order 2M = 2 (τ̃ = T̃ /64), 2M = 4 (τ̃ = T̃ /16)
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Figure 6. The dynamics of physical quantities of a kicked hydrogen atom. Comments are given
in the text.

and 2M = 6 (τ̃ = T̃ /8) at the moment time t = sT+ (s = 1, . . . , 6) for the initial Zeeman
vibrational state |n = 5, v = 0,m = 0〉 which corresponds to the minimal energy within the
n = 5 manifold. Here T = 1028, F = 2 × 10−3, γ = 1.472 × 10−5 and N = 10. As evident
from the table 3, though the time steps τ̃ for schemes with M = 2 and M = 3 are bigger
than for scheme with M = 1, these schemes provide considerably best accuracy. However,
the convergence rates βM(t) corresponding to their theoretical estimations are achieved only
for the special choice time steps τ̃ of the time grids, since the wave packet discontinues first
order. Using equation (76) at |rF| < 1, we have the following estimation for the difference of
solutions ‖ψ(r, sT+) − ψ(r, sT−)‖ at T+ − T− → 0:

‖ψ(r, sT+) − ψ(r, sT−)‖2 = 4
∫

dr sin2

(
Fr
2

)
|ψ(r, sT−)|2 ≈ O(F 2). (81)

Therefore already after first kick at the moment time t = T for the decreasing time step τ̃ of
the time grids, the coefficient Runge βM(t) should tend to unity, if the condition

F̃ � (τ̃ /8)2M (82)

fails according to estimation (16). This fact was checked out by the performed additional
numerical experiments. The time steps τ̃ = 0.6425, 2.57, 5.14 at M = 1, 2, 3 that were used
in the above numerical experiments satisfied to the condition (82), which correspondingly
comparable with 8

2M
√

F̃ = 0.8, 2.53, 3.71 at scaled values F̃ = 10−2 and T̃ = 41.12.
Employing the sixth-order implicit scheme for γ = 0, we performed the calculations

for the same situation as in [4, 5], where the evolution of the initial parabolic state
|n1 = 4, n2 = 4,m = 0〉 and spherical state |n = 9, l = 0,m = 0〉 in a train of kicks with
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Table 2. The eigenvalues Ecalc of the Zeeman states |n = 9, v = 0, . . . , n − 1,m = 0〉 of a
hydrogen atom in the uniform magnetic field γ = 1.472×10−5 calculated for a set of l = 0, . . . , 8
spherical functions, δEcalc = 8(Ecalc − E(0))/γ 2 agrees with the first-order correction E

(1)
pt of the

perturbation theory, Ept = E(0) + γ 2E
(1)
pt /8. The notation (−3) means multiplication by 10−3.

v Ecalc E0 δEcalc E
(1)
pt

0 −6.172 798(−3) −6.172 839 (−3) 1529.11 1529.16
1 −6.172 797(−3) −6.172 839 (−3) 1545.01 1545.04
2 −6.172 747(−3) −6.172 839 (−3) 3384.07 3384.10
3 −6.172 728(−3) −6.172 839 (−3) 4080.42 4080.47
4 −6.172 689(−3) −6.172 839 (−3) 5536.15 5536.38
5 −6.172 641(−3) −6.172 839 (−3) 7315.02 7315.33
6 −6.172 582(−3) −6.172 839 (−3) 9476.34 9476.83
7 −6.172 514(−3) −6.172 839 (−3) 12006.50 12007.13
8 −6.172 435(−3) −6.172 839 (−3) 14902.72 14903.51

Table 3. The discrepancy functions Er(sT+, j), j = 1, 2, 3 and the Runge coefficient βM(sT+)

for the approximations of the order 2M = 2, 4, 6. Here N = 10, T = 1028, F = 2 × 10−3 and
γ = 1.472 × 10−5. The notation (-x) means multiplication by 10−x .

s Er(sT+, 1) Er(sT+, 2) Er(sT+, 3) β1(sT+)

M = 1
1 0.1712(−0) 0.4129(−1) 0.8282(−2) 1.977
2 0.3414(−0) 0.8263(−1) 0.1663(−1) 1.971
3 0.5091(−0) 0.1240(−0) 0.2503(−1) 1.960
4 0.6727(−0) 0.1653(−0) 0.3334(−1) 1.943
5 0.8306(−0) 0.2063(−0) 0.4158(−1) 1.922
6 0.9818(−0) 0.2470(−0) 0.4983(−1) 1.898

M = 2

1 0.7031(−1) 0.4731(−2) 0.2835(−3) 3.882
2 0.1408(−0) 0.9708(−2) 0.1439(−2) 3.987
3 0.2117(−0) 0.1482(−1) 0.2771(−2) 4.030
4 0.2820(−0) 0.1970(−1) 0.2972(−2) 3.971
5 0.3509(−0) 0.2434(−1) 0.2258(−2) 3.886
6 0.4187(−0) 0.2890(−1) 0.2162(−2) 3.866

M = 3

1 0.4495(−1) 0.8613(−3) 0.1391(−4) 5.701
2 0.9069(−1) 0.2552(−2) 0.1465(−2) 6.342
3 0.1372(−0) 0.4912(−2) 0.2230(−2) 5.625
4 0.1829(−0) 0.6570(−2) 0.1450(−2) 5.106
5 0.2265(−0) 0.7236(−2) 0.1434(−2) 5.240
6 0.2695(−0) 0.7775(−2) 0.1380(−2) 5.355

the period T = 5357 and the strength F ≡ Fs = 2 × 10−3 was investigated. In accordance
with Tn = 2π/[1/2n2 − 1/2(n + 1)2] the period T = 5357 corresponds to a resonance regime
between the two states with n = 9 and n = 10, respectively. In this case the expectation value
of the Hamiltonian 〈ψ(r, t)|H0(r)|ψ(r, t)〉 at the time interval t ∈ ((s − 1)T+, sT−), has a
lower bound, namely, the eigenvalue En = −1/2n2 of the ground state of the free Hamiltonian
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Figure 7. The dynamics of physical quantities of a kicked hydrogen atom in the uniform magnetic
field. Comments are given in the text.

H0(r). Hence, we obtain an upper estimate for the time step τ < 4Mµn2 (or τ̃ < 4Mµ) at
M = 3 and µ ≈ 0.28 in accordance with (16).

For the initial parabolic state |n1 = 4, n2 = 4,m = 0〉 at the moment time t = sT+

(or t̃ = sT̃+) figure 6 shows the calculated probabilities Pn=9(t), Pn=10(t) (a) and the
autocorrelation function C(t) (b) versus the number of kicks. For the initial spherical state
|n = 9, l = 0,m = 0〉 at the moment time t = sT+ (or t̃ = sT̃+) the same figure 6 displays
the autocorrelation function C(t) (c) and the expectation value of the angular momentum
〈l〉(t) (d). These results markedly agree with those of [4, 5]. However, as noted in [4],
the observed picture is more complicated than a two-state resonance with damping due to
ionization and Rabi-like oscillations. Recall that the value of magnetic quantum number
(m = 0) is conserved. The probability function Pn(t), the autocorrelation function C(t) and
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the expectation value of the angular momentum 〈l〉(t) are given by the expressions

Pn(t) =
n∑

l=1

∣∣∣∣
∫ rmax

0
χl(r, t)Rnl−1(r)r

2 dr

∣∣∣∣
2

,

C(t) =
∣∣∣∣∣

N∑
l=1

∫ rmax

0
χl(r, t)χl(r, 0)r2 dr

∣∣∣∣∣ , (83)

〈l〉(t) =
∣∣∣∣∣

N∑
l=1

(l − 1)

∫ rmax

0
χl(r, t)χl(r, t)r

2 dr

∣∣∣∣∣ ,
where Rnl(r) is the normalized radial spherical discrete spectrum function of a free hydrogen
atom.

Let us proceed to the situation when the hydrogen atom is kicked in the presence of a
magnetic field parallel to the z-axis. In what follows we consider the magnetic field strength
γ = 1.472×10−5 which is typical for the magnetic traps [8, 9]. Note that such a field strength
is also of interest for the studies of recombination processes involving the excited states with
n = 8, 9, . . . , 19 and the metastable state with n = 2 of an antihydrogen atom, where the
Lamb shift can be observed and thus the CPT invariance can be tested [54]. Table 2 shows
the eigenenergies of the Zeeman states, calculated by the combined codes KANTBP [20] and
POTHMF [30] of the multiplet |n = 9, v = 0, . . . , n − 1,m = 0〉.

We inspected the possibility of realizing the two-state resonance regime for the Zeeman
states. Figure 7 shows the numerical results for the probabilities Pn=9(t), Pn=10(t) (a), the
autocorrelation function C(t) (b) and the expectation value of the angular momentum 〈l〉(t)
(c) at the moment time t = sT for the initial Zeeman vibrational state |n = 9, v = 0,m = 0〉
(left) and rotational state |n = 9, v = 8,m = 0〉 (right) that, according to table 2, have the
minimal and maximal energies within the n = 9 manifold. In contrast to the results presented
in figure 6, a marked signature of two-state resonance regime is observed. A slight decay of
the total probability Pn=9(t) + Pn=10(t) is also observed. The role of initial Zeeman state in
the realization of two-state resonance regime can be seen from figure 7: the picture obtained
for the initial state |n = 9, v = 8,m = 0〉 is more complicated than the two-state resonance
picture obtained for |n = 9, v = 0,m = 0〉.

6. Conclusions

We have presented a new computational approach to solve the TDSE, in which the partial
(unitary) splitting of evolution operator and the FEM are efficiently combined. Particularly, to
realize our approach in an explicit form, we have derived the second-, fourth-, and sixth-order
approximations with respect to time step. Several numerical results have also been given
which turn out to agree with the theoretical ones to a good extent.

Our approach would be worth being applied to the quantum control problem, some
pre-experimental calculations in the atomic dynamics in traps and/or external-pulse fields,
and other quantum calculations [7]. Further applications of the method may be associated
with calculations of laser-induced recombination of antihydrogen in magnetic traps [10, 11],
channeling of light nuclei in thin doped films [43] and potential scattering with confinement
potentials [55]. In particular, the elaborated approach opens the possibility to take into account
the influence of anharmonic perturbations on the dynamics of a wave packet in a driven two-
dimensional oscillator, and to study the role of the anharmonic perturbations in the problem
of transport in a two-dimensional quantum system under the influence of an external magnetic
field and dissipative interaction with the environment [56].
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Appendix. Taylor series of the logarithm evolution operator

Let us consider equation (2) with U(t, s) ≡ U(t, s, λ = 1)

∂U(t, s)

∂t
= −iH(t)U(t, s), (A.1)

where s = tc − τ/2, t = tc + τ/2. Denote U(s, t) = U−1(t, s). Using the operator identity

∂U(s, t)

∂t
= −U(s, t)

∂U(t, s)

∂t
U(s, t), (A.2)

the following relation for the operator U(s, t) is valid:

∂U(s, t)

∂t
= iU(s, t)H(t). (A.3)

Changing t ←→ s in equation (A.3), we find the operator equation for U(t, s) with respect
to the variable s

∂U(t, s)

∂s
= iU(t, s)H(s). (A.4)

From here using equations (A.1), (A.4) and

2
∂U(t, s)

∂τ
= ∂U(t, s)

∂t
− ∂U(t, s)

∂s
, (A.5)

we obtain the derivative of the operator U(t, s) with respect to the parameter τ at fixed tc

2
∂U(t, s)

∂τ
= −iH(t)U(t, s) − iU(t, s)H(s). (A.6)

Using the well-known formula for the derivative of the exponential operator U(t, s) =
exp(F ), F = −iτA

(M)
k (t)

∂U(t, s)

∂τ
=

∫ 1

0
dx exp(xF )

∂F

∂τ
exp(−xF)U(t, s), (A.7)

and equation (19), we rewrite equation (A.6) in the following form:

2
∑
j=0

1

(j + 1)!
(adF )j Ḟ = −iH(t) − i

∑
j=0

1

j !
(adF )j H(s). (A.8)

In the explicit form with equations (10) and (12) taken into account

−
∑
q=0

(−i)qτ q

q!

(
ad

∑
m=0

τmǍ(m)(tc)

)q ∑
n=0

τnQqn(tc) =
∑
i=0

τ i

2i+1i!
∂i
t H(tc), (A.9)

where

Qqn(tc) = (−1)n

2n+1n!
∂n
t H(tc) − n + 1

q + 1
Ǎ(n)(tc). (A.10)
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Then the unknown coefficients Ǎ(j)(tc) are calculated explicitly from a set of recurrence
equations

(j + 1)Ǎ(j)(tc) = 1 + (−1)j

2j+1j !
∂

j
t H(tc) +

j∑
q=1

j−q∑
n=0

n+q+�
q

i=1li=j∑
l1,...,lq=0

(−i)qBn
l1,...,lq

(tc)

q!
,

Bn
l1,...,lq

(tc) = (adǍ(l1)(tc)) . . . (adǍ(lq )(tc))Qqn(tc).

(A.11)
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