Applied Mathematics and Computation 236 (2014) 239-246

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Two-sided approximation for some Newton’s type methods @CmssMark

T. Zhanlav?, O. Chuluunbaatar *°, V. Ulziibayar *

2School of Mathematics and Computer Science, National University of Mongolia, Mongolia
b Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia
€School of Mathematics, Mongolian University of Science and Technology, Mongolia

ARTICLE INFO ABSTRACT

Keywords: We suggest and analyze a combination of a damped Newton’s method and a simplified ver-
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Two-sided approximations examples illustrate the efficiency and performance of the method proposed.
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1. Introduction

In the last decade, new iterative methods containing parameters for a numerical solving of nonlinear equations have been
developed by many authors. The role of these parameters play, for example, a damped parameter in Newton type methods
[1-6], interpolation nodes in inverse polynomial interpolation methods [7,8]. They can be controlled not only by the conver-
gence order, but also by the convergence behavior. One of the advantages of such methods is that they give two-sided
approximations of the solutions which allow one to control the error at each iteration step [8,3,6]. In this paper we will con-
sider a combination of the damped Newton’s method and the simplified Newton method.

The paper is organized as follows. In Section 2 we formulate new iteration schemes for solving nonlinear equations. In
Section 3 we show that the proposed iterations give two-sided approximation of the solution. In Section 4 we prove that
the convergence order of these iterations is at least 2. Depending on the suitable choices of parameters, the convergence or-
der may be increased from 2 to 4. Some numerical examples illustrating the theoretical results are given in Section 5.

2. Statement of the problem

Leta,be R, a<b, f:[a,b] — R and consider the following nonlinear equation
fx)=0. (1)

Assume that f(x) € C*[a, b], f'(x) # 0, x € [a,b] and Eq. (1) has a unique root x* € [a, b]. For a numerical solution of Eq. (1)
we propose the following iterations

_ f(x2n) _
Xont+1 = Xon _Tnf,(xzn)a n= 0717--~7 (2&)
Xon+2 = Xont1 — wnf(XZnH ) (Zb)
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Here 7, > 0 and w, are the iteration parameters to be determined properly. It should be mentioned that the first iteration

(2a) is a continuous analogy of Newton’s method (or damped Newton’s method), while the second one (2b) is a simple iter-
ation. In [6] it is shown that the iterations (2a) and (2b) with

1

Wy =5—— 3

" f/(XZnH) ( )

have a two-sided approximation behavior, and it proved the convergence rate of these iterations is 4 when 7, — 1asn — oc.

On the other hand, the iterations (2a) and (2b) can be considered as simple iterations

Xon1 = p(X2”)7 Xon2 = q(X2n+1 )7 n= Oa 17 sy (4)
for two equations
x—p(X):O, X—q(x):O, (5)
which are equivalent to the above Eq. (1) and with functions
f&x)
X)=X—T7—, X) =x— of(x). 6
p(x) ) q(x) f (x) (6)

3. The convergence of the proposed iterations

Suppose that [6]

"(x X 4
f/()zf(x) <M, {()2 \a(x)<§, X € [a, b, (7)
(f'(x)) (fx))
where M, = maXye(q|f”(X)|- Then it is easy to show that the function p(x) satisfies
0<p(Xm) <1, n=0,1,..., (8)
under condition
1 X
ne (04 2g ) an =Ml L0 )
— G (f'(%2n))

A sufficient condition for g(x) to be decreasing is
onf' (Xoni1) >1, n=0,1,... (10)

It should be noted that the conditions (8) and (10) were used first in [7,8] for bilateral approximations of Aitken-Steffen-
sen-Hermite type methods.
Using Taylor expansion of f(x,,.2) at point X,,,1, and (2b), we obtain

?Eii:i; =1— ouf (X2n11) +@f(x2n+l)wgv (11)

where éZn = 0x2n+2 + (] - 0)X2n+17 0¢e (O 1)

Lemma 1. Suppose that
f"(&an)f (Xani1) <0, n=0,1 (12)
and the inequality (10) holds. Then

fXans2) B
Tom <0 m=01... )

Proof. If to take (12) and (10) into account, then from formula (11) we get

f&ﬁ3<1—wquﬂ<o. (14)

The Lemma is proved. O

Analogously, using Taylor expansion of f(x,,,1) at point x,,, and (2a) we obtain

f(x2ﬂ+1):1 - T, +f”(’12n) f(in) 2 n=0,1,..., (15)

F(Xan) 2 (frxpm))? "
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where #,, = 0Xon1 + (1 — ®)X2n, 00 € (0,1).

Lemma 2. Suppose that the inequality (7) holds. Then

f(x2n+1)
<0, n=0,1,..., 16
f(*an) (16)
under condition
Ty € Iy = 1_\/1_2a2",_]+\/]+4a2”)g[l,Z). (17)
Qan Qan
Proof. From (15) we obtain
f(x2n+1) Aon 2
<l-1t,+=1,<0. 18
f(X20) nTTy = (18)

From this it follows the condition (16) holds if
T e {1 -1 —2a2n7 1++/1 —2(12,1}

Qon Qan

(19)
On the other hand, as shown in [5], the iteration parameter 7, must be taken from the t-region of convergence of iteration
(2a)
-1++v1+4a
T € (0/ M

Qan

)2 (20)

Hence, the inequality (16) is valid for 7, € I5;, and I, is not an empty interval because of (7). The Lemma is proved. O
We obtained the following results when f(x) is increasing and convex on the interval x € [a, b].

Theorem 1. Let xo € (x*,b], and f(x) satisfies the following conditions:

(i1) f'(x) >0, x € [a,b)],
(ii1) f”(x) > 0, x € [a, b],
(iiiy) the inequality (7) holds.

If the parameters t, and w, are chosen such that
1
Tn6<07m>ﬂ12n7 n:0717... (2])
and
wnf'(a) 1, n=0,1,..., (22)
then the following relations hold:

(jl)xl < X3 <o < Xopg1 <X < Xop < 0+ < X < Xo,
(.Ul) limnﬂooXZrHl = limy_~Xon = X*.

Proof. By (i;) it follows that x* € (a, b) is the unique solution of Eq. (1). From (8)-(10) the functions p(x) and q(x) have no
extremum on the own domain of definition, and p(a) > a, p(b) < b, q(a) > a, q(b) < b because of f(a) <0 and f(b) > 0.
Therefore, all the approximations generated by (2a) and (2b) belong to [a, b], i.e. Xan,1,X2n12 € (a,b), n=0,1,... By assump-
tion of theorem f(xo) > 0. Then, according to Lemma 2, from (16) it follows that f(x,) < 0. By (iiy), f'(x) is increasing on the
interval [a, b, i.e.

0<f'(a) <f'(x)<f(b), xe€(ab). (23)
Therefore,
f,(l—a) >f’gx) >f’gb)’ x € (a,b). (24)
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According to (22), we have

1 1
——>=—— X€(ab), 25
Fa e @ 22
which holds, for instance, for x;, i.e. the condition (10) is fulfilled for n = 0. By virtue of (ii;) and f(x;) < 0, the assumption
(12) is valid for n = 0. Then, according to Lemma 1, from (13) we obtain f(x,) > 0. By induction on n from (13) and (16) one
can show that

fx2n) >0, f(xzn1) <O (26)

and also can prove (8) and (10) foralln=0,1,...
Thus, the sequence {x,,,1} generated by (2a) (or (4)) is increasing and the sequence {x,,,,} generated by (2b) (or (4)) is
decreasing. Consequently we have

o =

X1 < X3 <0< Xopyq <X <Xop < --- < Xz < Xo, (27)

i.e. (j;) is proved. The (jj;) follows from (j;) passing to the limit n — co. Since f(x) is increasing function on the interval [a, b],
then we have

fx1) <f(x3) < < f(Xans1) <f(x*) <fx2m) < - < f(x2) < f(X0) (28)
and
limf (1) = limf (xor) = (x') = 0. (29)

It should be pointed out that the intersection of two intervals in (21) is not an empty set because of (7). The Theorem is
proved. O

If f(x) is decreasing and concave on the interval x € [a, b], instead of Eq. (1), we consider the equation
—f(x) =0. (30)

The function —f(x) satisfies the conditions of Theorem 1. From here we have:
Corollary 1. Let xo € (x*,b], and f(x) satisfies the following conditions:

(i2) f'(x) <0, x € [a, ],

(ii;) f"(x) < 0, x € [a, b],

(iiip) the inequality (7) holds.

If the parameter 7, is taken from the interval (21) and parameter w, is chosen such that (22), then the relations (j,) and (jj,) hold
too.

When
f"x)f'(x) <0, xe¢€la,b], (31)
we consider instead of iterations (2a) and (2b) the following iterations
Xoni1 = Xon — Wpf (X2n), n=0,1,..., (32a)

X
Xon+2 = Xony1 — Tn}-,((xzznﬂl)) . (32b)
n+

As above, the iterations (32a) and (32b) can be considered as
Xont1 = q(Xan), Xony2 = P(Xant1), (33)

with functions g(x) and p(x) given by (6).
Using Taylor expansion of f(x2,,2) at point x,,,1, and (32b), we obtain

f(X2n+2)_ B f”(fznﬂ) f(xan41) 2
foo) T2 P oY

where &, = 0 Xap2 + (1 — 07201, 07 €(0,1).

Lemma 3. Suppose that
f”(éz:—H,Z)f(foH»l) < 07 n:0717"' (35)
Then the inequality

f(Xans2) B
Fom ) <0 m=01... )
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holds for any t, > 1.

Proof. The inequality (36) immediately follows from (34), if we take into account (35) and 7, > 1. The Lemma is proved. [

Analogously, using Taylor expansion of f(x,,1) at point x,, and (32a), we obtain
f(Xan41) (150 2
J\T2nil) 4 ’ J \lan) 7
f(XZn) wnf (in) + 2 f(in)(Un, (3 )
where 5, = " Xan41 + (1 — &)Xz, o € (0,1).

Lemma 4. Suppose that the inequality (7) holds and

f”(”;n)f(xzn) > Os n= 0717“' (38)
Then
f(x2n+1)
<0, n=0,1,..., 39
f(x2n) (39)
under condition
Onf'(X2n) €y, n=0,1,... (40)

Proof. The proof of Lemma 4 is the same as the proof of Lemma 2. O
Now we are ready to prove the following theorem when f(x) is increasing and concave on the interval x € [a, b].
Theorem 2. Let x, € [a,x*), and f(x) satisfies the following conditions

(is) f'(x) > 0, x € [a, b],
(ii3) f"(x) < 0, x € [a,b],
(iiis) the inequality (7) holds.

If the parameters t, and w, are chosen such that

f(xans1)
Le |1 oy = My [ 22 g 01, 41
K e{ ) fani1 2(f’(xzn+1))2‘ " “n

,m
and

Onf'(X2n) € Ly, n=0,1,..., (42)
then the following relations hold:

() Xo < Xp <+ < Xon <X < Xoni1 <+ < X3 <X,
(J3)limp_ oo Xan = liMy_ooXons1 = X",

Proof. By (i3) it follows that x* € (a, b) is the unique solution of Eq. (1) and f(xo) < 0. By (ii3) and f(xo) < 0 the assumption of
Lemma 4 is fulfilled for n = 0. Then from (39) it follows that f(x;) > 0 under condition (42). The assumption (35) is valid for
n = 1. Then by Lemma 3 the inequality (36) is valid for n = 1, i.e., f(x2) < 0 under condition (41). By induction on n from (36)
and (39) one can prove that

flxan) <0, f(X2n41) >0 (43)
and

q (Xan) =1 — wpf'(X2n) <0, 0<p'(X2m1) < 1. (44)
Therefore, we have

Xo <Xp <o <Xop <X <Xopy1 <-or < X3 <X (45)

The (j;) is proved. The (jj;) follows from (j;) passing to the limit n — oc. Since f(x) is increasing on [a, b], then from (j;) it
follows that
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fxo) <flx2) <+ <flxan) <f(X) <flXani1) <o <flX3) <flx1) (46)
and
’li_flolof(xzn) = r%ijlo}f(xznﬂ) =f(x)=0. (47)

The Theorem is proved. O

If f(x) is decreasing and convex on the interval x € [a, b], the function —f(x) satisfies the conditions of Theorem 2. From
here we have:

Corollary 2. Let xq € [a,x*), and f(x) satisfies the following conditions
(14) fl(x) < 07 X e [avb]'
(iia) f"(x) > 0, x € [a,b],
(iiis) the inequality (7) holds.

If the parameter 1, is taken from the interval (41) and parameter w, is chosen such that (42), then the relations (j;) and (jj;) hold,
too.

4. The convergence order of proposed iterations
The convergence order of proposed iterations (2a), (2b) and (32a), (32b) is given in the following results.
Theorem 3. Assume that f(x) € C*[a,b], f'(x) # 0, x € [a,b], and there exists a unique solution x* € [a, b] of Eq. (1). Then the g-

convergence (or p-convergence) order of the sequence {x, } generated by iterations (2a) and (2b) (or (32a) and (32b)) is at least 2,
when 1, — 1 as n — oo.

Proof. First we consider the convergence order of iterations (2a) and (2b). Let e, = x, — x*. From (2a) and (2b) it follows that

fXan) = f(x7)

€1 =€ — Ty NI (48a)
€2 = €1 — On(f (Xons1) — f(X7)). (48b)
Using the Taylor expansions for f(x*) at points x,, and x,,,1 in (48a) and (48b), respectively, we obtain
J" (Xan) " (X2n) o 4
= 1- - 4

eZnH eZn{ Tn + Tn zf/(XZn) €2n Tn 6f’(X2n) 62,1 + O(eZn)7 ( 9a)
, " x " x

€2n12 = €241 {1 - CUnf (X2n+l) + wn@ €1 — (fonf(%ﬂ)e%nﬂ } + O(egnﬂ)' (49b)

Substituting e,,,; from (49a) into (49b), we have

exna=(1-5)(1 = 0nf Gan e + { (1 =T et) o, S 0)

(1 *wnf/(XZnH))}e%n

Lo (1 f ) + (1 - erer I (1 i P g
+0(€5,) +0(€3,.1)- (50)
When 1, — 1 as n — oo, from (50) we conclude that
eami2 = 0(e3,), if w, = const,
ez = 0(€3,), if n — (f(x2n1))”" = Olean), (51)
4

eZn+2 = O(ezn)7 lf Wy = (f/(x2n+1))7]~

Using similar calculations for iterations (32a) and (32b), we obtain

e = (1= T)(1 = 0nf (e + {1 - oG240, ZEBI (1 g7
FUa01) 1 o e 1 oo PO ) £t
#{ o L 1 o)+t ) (1) - (1 - o, G e

+0(€3,) + 0(€3,.1)- (52)
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When 7, — 1 as n — oo, from (52) we have
ema = 0(e2,), if w, = const,
eani2 = 0(€3,), if Wn — (f'(xan)) ™" = O(e2n), (53)
ez = 0(€3,), if wn = (f'(Xan)) -

Thus, the g-convergence (or p-convergence) order of iterations (2a) and (2b) (or (32a) and (32b)) is at least 2, which com-

pletes the proof of theorem. O

From Theorems 1-3 and Corollaries 1, 2 it is clear that the best choice of parameters are

1-vV1-2ay, 1
Tg=———— 2 1 o=, 54
n aZn o n f/(X2n+1) ( )
for iterations (2a) and (2b) and
1-V1-2a, 1
Tn=1 Wpy=—-F—"= — . 55
! " Gonf' (X2n) |y f'(X2n) (53)

for iterations (32a) and (32b), respectively.

Remark 1. Note that in general cases, it is difficult to find My = max,qp |f” (x)|. Therefore, instead of (54), (55) we can use
the following parameters

T, = 177 m 1, wn= 1 7 (56)
Aaon e f/(XZnH )
=1, = V120 L (57)
Qonf" (X2n) f'(x2n)
respectively. Here
_ " (Xon)f (X2n
ayp = M S (€523 (58)
(f"(x2n))

and as shown in [6], holds the inclusion

o Cly = F‘ ”‘2"2",‘”“*4“2"> c1,2) (59)

Qon aZn

5. Numerical results
We consider two examples [8].
Example 1. f(x) = exp(x) — 4x%> = 0. It is easy to show that

@) f'(x) <0, f'(x)<0 atxe[j,1],andx € (3,1),
(b) f'(x) >0, f"(x)<0 atxe[-1,0],andx" € (-1,0).

Example 2. f(x) = x2 — 2 cos(x) = 0. It is also easy to show that

(@) f(x)>0, f'(x)>0 atxe[ZZ,andx" € (%,5),
(b) fi(x) <0, f'(x)>0 atxe[-%,—Z,andx € (-%,—%).

One can see that Theorem 1 and Corollary 1 are applicable in case of (a) of two examples, while Theorem 2 and Corollary 2
are in case of (b). The iteration was terminated by stopping criteria
Xani2 — Xona| < €=107". (60)

The numerical results presented in Tables 1-3 confirm the theoretical behavior of convergence.
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Table 1
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Numerical results for Example 1(a).

n

Tn = (17m)/02n~

on =1/f'(Xon41)

= (1-V1-20) fam. o0 =1/f(1/2)

X2n Xon+1 Xon X2n+1
0 1.000000000000000 0.705008413252650 1.000000000000000 0.705008413252650
1 0.714885141753139 0.714805912025241 0.720198556664536 0.714804319037903
2 0.714805912362778 0.714805912362778 0.714806809136289 0.714805912362735
3 0.714805912362778 0.714805912362802 0.714805912362778
4 0.714805912362778
Table 2

Numerical results for Example 2(a).

n

= (1-vT=2a) /@,

On = 1/f'(Xon+1)

= (1= V1= 2az) /a2, o0 =1/f(/6)

Xon X2n+1 X2n X2n+1
0 1.570796326794897 0.951886943598052 1.570796326794897 0.951886943598052
1 1.023842847967236 1.021689527032909 1.076059433807942 1.021390754913898
2 1.021689954092259 1.021689954092185 1.021938659981420 1.021689948412844
3 1.021689954092185 1.021689958814336 1.021689954092185
4 1.021689954092185
Table 3

Numerical results for Example 1(b) and Example 2(b).

n

=1, on=(1-yT-20)/(@nf X))

Example 1(b)

Example 2(b)

Xon X2n+1 Xon X2n+1
0 —0.500000000000000 —0.407756031328745 -1.570796326794897 —0.951886943598052
1 —0.407776709803781 —0.407776709404480 -1.023842847967236 —1.021689527032909
2 —0.407776709404480 -1.021689954092259 —1.021689954092185
3 -1.021689954092185

6. Conclusions

One of the advantages of our iterations is that they give two-sided approximations of the solutions which allow one to
control the error at each iteration step. It has been shown that the suitable iteration parameter allows us to control not only
the convergence order, but also the convergence behavior. Numerical examples are given to illustrate the theoretical results.
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