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Higher-order accurate finite-difference schemes for solving the unsteady Burgers’ equation
which often arises in mathematical modeling used to solve problems in fluid dynamics are
presented. The unsteady Burgers’ equation belongs to a few nonlinear partial differential
equations which has an exact solution, and it allows one to compare the numerical solution
with the exact one, and the properties of different numerical methods. We propose an
explicit finite-difference scheme for a numerical solution of the heat equation with Robin
boundary conditions. It has a sixth-order approximation in the space variable, and a
third-order approximation in the time variable. As an application, we developed numerical
schemes for solving a numerical solution of Burgers’ equation using the relationship
between the heat and Burgers’ equations. This scheme has up to sixth-order approximation
in the space variables. The main advantage of our approach is transition to one-
dimensional equation which essentially reduces the computation costs compared to other
direct methods for solving the unsteady Burgers’ equation. The numerical results of test
examples are found in good agreement with exact solutions for a wide range of Reynolds
number and confirm the approximation orders of the schemes proposed.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

One version of two-dimensional Burgers’ equation is the unsteady Burgers’ equation given by
@u
@t
þ u

@u
@x
þ @u
@y

� �
¼ m

@2u
@x2 þ

@2u
@y2

 !
; ðx; yÞ 2 D ¼ ½a; b� � ½c;d�; t > 0: ð1Þ
Here m ¼ 1=R > 0 is an arbitrary number and R is the Reynold’s number.
It is well known, that Burgers’ equation is suited to modeling fluid flows because it incorporates directly the interaction

between the non-linear convection processes and the diffusive viscous processes [1,2]. Consequently, it is one of the prin-
ciple model equations used to test the accuracy of new numerical methods. During the past decade, use of high-order numer-
ical algorithms in the context of finite-difference methods has become relatively popular in computational fluid dynamics.
However, in some cases the high-order truncation error of typical methods may become very large and thus may not be
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neglected. This implies that attempting to employ high-order methods for solving equations exhibiting erratic, turbulent-lire
solutions may fail to produce expected results. It must be keeping in mind.

There are different numerical methods for solving Eq. (1) with a corresponding initial condition and boundary conditions
[3–8]. In Jiwari [3] an efficient numerical scheme based on Haar wavelets and the quasilinearization process is developed for
solving a nonlinear 1D Burgers’ equation with Dirichlet boundary conditions. The distributed approximating functional
method is applied for solving the 1D Burgers’ equation and the unsteady Burgers’ equation [4]. In Duan and Liu [5] unsteady
Burgers’ equation with the Dirichlet boundary conditions is solved by the lattice Boltzmann method. The higher-order accu-
rate two-point compact alternating direction implicit algorithm was introduced to solve the unsteady Burgers’ equation. A
comparison of the proposed scheme with the fourth-order DuFort–Frankel [6] scheme was constructed in terms of accuracy
and computational efficiency. Kutluay and Yagmurlu [7] proposed the modified Bi-quintic B-spline basis functions and
applied to the unsteady Burgers’ equation using the Galerkin method to obtain its numerical solution. In our previous paper
[8] the higher-order finite-different schemes for solving 1D Burgers’ equation with the homogeneous Dirichlet boundary
conditions are presented.

The aim of the present paper is to construct stable and higher-order accurate finite-difference schemes to solve a
unsteady Burgers’ equation with inhomogeneous Dirichlet boundary conditions. It is realized by the following four steps.

1. The reduction of the unsteady Burgers’ equation to the 1D Burgers’ equation using the properties of the required solution
of the original equation.

2. To solve the obtained heat equation with Robin boundary conditions on the uniform grids of the spatial and time intervals
by means of an explicit finite-difference scheme. This scheme has a sixth-order approximation in the space variable, and a
third-order approximation in the time variable, except boundary points of the spatial variable. We additionally used the
fourth/sixth-order finite-difference approximations for the Robin boundary conditions.

3. To find a numerical solution of the 1D Burgers’ equation by means of the numerical solution calculated in previous step of
the heat equation. The obtained numerical solution has the same orders approximations in the space and time variables
as numerical solution of the heat equation.

4. To find a numerical solution of the unsteady Burgers’ equation by means of the numerical solution calculated in previous
step of the 1D Burgers’ equation.

As a test desk, the higher-order finite-difference schemes proposed are applied to the calculation of the several exact solv-
able examples. The numerical results are found in good agreement with exact solutions for a wide rang of the Reynolds num-
ber and confirm the approximation orders of the schemes proposed.

The structure of the paper is as follows. In Section 2, we present reductions of the unsteady Burgers’ equation to the 1D
Burgers’ equation, and the obtained one to the heat equation. The higher-order accurate finite-difference schemes for solving
the heat equation is presented in Section 3. The construction of the higher-order accurate finite-difference schemes for solu-
tion of the 1D Burgers’ equation is given in Section 4. Numerical results are discussed in Section 5.

2. Reduction of the unsteady Burgers’ equation to the 1D Burgers’ equation

It is easy to show that by linear transformation of independent variables
z ¼ xþ y; s ¼ x� y; t ¼ 2t; ð2Þ

the Eq. (1) is reduced to the following equation:
@u
@t
þ u
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@2u
@s2

 !
: ð3Þ
Note that the rectangular region D by the transformation (2) leads to interval A ¼ aþ c 6 z 6 bþ d ¼ B.
If the solution uðz; s; tÞ depends only on variables s and t, the Eq. (3) leads to the heat equation
@u
@t
¼ m

@2u
@s2 : ð4Þ
Also, if the solution uðz; s; tÞ depends only on variables z and t, i.e, uðz; s; tÞ � uðz; tÞ, the Eq. (3) is reduced to the 1D Burgers’
equation
@u
@t
þ u

@u
@z
¼ m

@2u
@z2 ; ð5Þ
with an initial condition
uðz;0Þ ¼ gðz;0Þ; z 2 ðA; BÞ: ð6Þ
The boundary conditions for Eq. (5) are defined by
uðA; tÞ ¼ gðA; tÞ; uðB; tÞ ¼ gðB; tÞ: ð7Þ



Table 1
The maximum absolute error kek1;h and the Runge coefficient rh . The factor x in the brackets denotes 10x .

Example I N Fourth-order Sixth-order
finite-difference scheme finite-difference scheme

kek1;h rh kek1;h rh

m ¼ 1 20 6.81630(-07) 1.09301(-09)

T ¼ 1=
ffiffiffiffiffiffi
15
p

40 4.60638(-08) 14.80 1.89602(-11) 57.65

80 2.99137(-09) 15.40 3.11914(-13) 60.79
160 1.90541(-10) 15.70 4.99992(-15) 62.38
320 1.20218(-11) 15.85 7.91258(-17) 63.19
640 7.54910(-13) 15.92 1.24423(-18) 63.59
1280 4.72930(-14) 15.96 1.95030(-20) 63.79

m ¼ 0:1 20 4.09922(-03) 4.22744(-04)

T ¼ 1=
ffiffiffiffiffiffi
15
p

40 4.03057(-04) 10.17 1.33297(-05) 31.71

80 3.15596(-05) 12.77 2.94802(-07) 45.21
160 2.20669(-06) 14.30 5.47935(-09) 53.80
320 1.45857(-07) 15.13 9.33799(-11) 58.67
640 9.37449(-09) 15.56 1.52382(-12) 61.28
1280 5.94147(-10) 15.78 2.43325(-14) 62.62

m ¼ 0:01 160 1.92093(-01) 2.93743(-02)

T ¼ 10=
ffiffiffiffiffiffi
15
p

320 1.85362(-02) 10.36 9.64375(-04) 30.45

640 1.48557(-03) 12.48 2.23559(-05) 43.13
1280 1.05437(-04) 14.09 4.27027(-07) 52.35
2560 7.03016(-06) 14.99 7.38644(-09) 57.81
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There are many solutions of Eq. (1) that depend only on z and t [5–7,14,15]. As examples, we present here some of these
solutions:
Example I: uðx; y; tÞ ¼ 1þ exp
xþ y� t

2m

� �� ��1

;

Example II: uðx; y; tÞ ¼ 1
2
� tanh

xþ y� t
2m

� �
;

Example III: uðx; y; tÞ ¼ 1
2
� coth

xþ yþ 1� t
2m

� �
:

The main advantage of our approach is to reduce the two-dimensional unsteady Burgers’ equation to one-dimensional one.
This allows us to use known higher accurate numerical schemes and to save computing time and memory of computers as
compared to other direct methods [5–7] for solving two-dimensional unsteady Burgers’ Eq. (1).

Here and below we consider only Eqs. (5)–(7). It is well known that, by the Hopf-Cole transformation
uðz; tÞ ¼ �2m
1

hðz; tÞ
@hðz; tÞ
@z

; ð8Þ
Burgers’ Eq. (5) is reduced to the heat equation
@hðz; tÞ
@t

¼ m
@2hðz; tÞ
@z2 : ð9Þ
By (8) the initial condition (6) and boundary conditions (7) lead to
hðz;0Þ ¼ exp � 1
2m

Z z

A
gðn; 0Þdn

� �
; ð10Þ
and
@hðz; tÞ
@z

þ 1
2m

gðz; tÞhðz; tÞ ¼ 0 at z ¼ A; B; ð11Þ
respectively. Thus, the Eqs. (5)–(7) are fully converted to problem (9)–(11).

3. Numerical solution of the heat equation

We suppose that the solution of the heat problem defined by Eqs. (9)–(11) is a sufficiently smooth function with respect
to z and t. The heat problem can be solved by a well-known Crank–Nicolson scheme [9] and more accurate explicit schemes
proposed by Zhanlav in [10]:



Table 2
The sam

Exam

m ¼ 1

T ¼

m ¼ 0

T ¼
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hn
i ¼

b� c
bþ c

hn�2
i þ bc

bþ c
hn�1

i�1 � 2hn�1
i þ hn�1

iþ1

� �
þ 2c

bþ c
hn�1

i ; ð12Þ

c ¼ 2sm
h2 ; h ¼ B� A

N
; i ¼ 1; . . . ;N � 1; n ¼ 2;3; . . .
Here and throughout the work, hn
i is the approximate solution at the mesh points ðzi ¼ ih; tn ¼ nsÞ, where h is a spatial step, s

is a time step, and N is the number of partition of the interval ½A;B�. In [10] it is shown that the scheme (12) is stable and its

truncation error is of the order of Oðs3 þ h6Þ provided that
b ¼ 0:2;
sm
h2 ¼

1ffiffiffiffiffiffi
60
p or c ¼ 1ffiffiffiffiffiffi

15
p

� �
: ð13Þ
When b ¼ 1 the scheme (12) leads to the well-known DuFort–Frankel’s one [9].
Note that the scheme (12) is used for the heat equation with Dirichlet boundary condition [10]. It is needed to adopt this

scheme for Eq. (9) with Robin boundary conditions (11).
It should be mentioned that the scheme (12) is a three-level one in time. Hence, in order to find hn

i at level two, it requires
values hn

i at level n ¼ 0;1, i.e., h0
i and h1

i . Using the Taylor expansion of hðz; sÞ at point ðz;0Þ and Eq. (9), we obtain
hðz; sÞ ¼ hðz;0Þ þ m
@2hðz;0Þ
@z2 sþ m2

2
@4hðz;0Þ
@z4 s2 þ � � � ð14Þ
From the initial condition (10) and Taylor expansion (14), we find h1
i with the accuracy Oðs3Þ
h1
i ¼ 1þ msF1ðziÞ þ

m2s2

2
F2ðziÞ

� �
exp � 1

2m

Z zi

A
gðn;0Þdn

� �
; i ¼ 0; . . . ;N; ð15Þ
where
F1ðzÞ ¼ �
g0zðz;0Þ

2m
þ g2ðz; 0Þ

4m2 ; ð16Þ

F2ðzÞ ¼ �
g000z ðz;0Þ

2m
þ 4gðz; 0Þg00z ðz;0Þ þ 3ðg0zðz;0ÞÞ

2

4m2 � 3g2ðz;0Þg0zðz;0Þ
4m3 þ g4ðz;0Þ

16m4 :
From the Robin boundary conditions (11) using the asymmetric fourth-order and sixth-order finite-difference approxima-
tions of the first spatial derivative [13]:
@hðz; tÞ
@z

jz¼A ¼
�25hn

0 þ 48hn
1 � 36hn

2 þ 16hn
3 � 3hn

4

12h
þ Oðh4Þ;

@hðz; tÞ
@z

jz¼B ¼
25hn

N � 48hn
N�1 þ 36hn

N�2 � 16hn
N�3 þ 3hn

N�4

12h
þ Oðh4Þ;

@hðz; tÞ
@z

jz¼A ¼
�147hn

0 þ 360hn
1 � 450hn

2 þ 400hn
3 � 225hn

4 þ 72hn
5 � 10hn

6

60h
þ Oðh6Þ; ð17Þ

@hðz; tÞ
@z

jz¼B ¼
147hn

N � 360hn
N�1 þ 450hn

N�2 � 400hn
N�3 þ 225hn

N�4 � 72hn
N�5 þ 10hn

N�6

60h
þ Oðh6Þ;
e as in Table 1, but for Example II.

ple II N Fourth-order Sixth-order
finite-difference scheme finite-difference scheme

kek1;h rh kek1;h rh

320 1.30462(-06) 1.85387(-09)

1=
ffiffiffiffiffiffi
15
p

640 8.44299(-08) 15.45 3.06840(-11) 60.41

1280 5.36962(-09) 15.72 4.93466(-13) 62.18
2560 3.38538(-10) 15.86 7.82248(-15) 63.08
5120 2.12510(-11) 15.93 1.23111(-16) 63.53
10240 1.33108(-12) 15.96 1.93057(-18) 63.76

:01 640 3.63989(-03) 1.14887(-04)

1=
ffiffiffiffiffiffi
15
p

1280 2.74537(-04) 13.25 2.41846(-06) 47.50

2560 1.89142(-05) 14.51 4.40048(-08) 54.95
5120 1.24096(-06) 15.24 7.42060(-10) 59.30
10240 7.94748(-08) 15.61 1.20472(-11) 61.59
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we find the fourth-order and sixth-order approximations of hn
0 and hn

N

Table 3
The sam

Exam

m ¼ 1

T ¼ 1

m ¼ 0

T ¼ 1
hn
0 ¼

48hn
1 � 36hn

2 þ 16hn
3 � 3hn

4

25� 6h
m gðA; tnÞ

; ð18Þ

hn
N ¼

48hn
N�1 � 36hn

N�2 þ 16hn
N�3 � 3hn

N�4

25þ 6h
m gðB; tnÞ

;

and
hn
0 ¼

360hn
1 � 450hn

2 þ 400hn
3 � 225hn

4 þ 72hn
5 � 10hn

6

147� 30h
m gðA; tnÞ

; ð19Þ

hn
N ¼

360hn
N�1 � 450hn

N�2 þ 400hn
N�3 � 225hn

N�4 þ 72hn
N�5 � 10hn

N�6

147þ 30h
m gðB; tnÞ

;

respectively. Thus, we find hn
i for i ¼ 0; . . . ;N by the formulas (12), (18) or (12), (19).

4. Higher-order accurate finite-difference schemes for solution of 1D Burgers’ equation

The higher-order finite-difference schemes, which presented in our previous paper [8], are applied for solving the Eqs.
(5)–(7). For convenience, we recall them shortly. First, we consider the fourth-order finite-difference scheme:
vn
i�1 þ 4vn

i þ vn
iþ1 ¼ �

6m
h

hn
iþ1 � hn

i�1

� �
ð20Þ
with boundary conditions
vn
0 ¼ hn

0 gðA; tnÞ; vn
N ¼ hn

N gðB; tnÞ: ð21Þ
Here vn
i ¼ hn

i wn
i and wn

i � wðzi; tnÞ is an approximate solution of uðzi; tnÞ. The last system has a unique solution set
vn

0;vn
1; . . . ;vn

N

� �
since its coefficient matrix is diagonally dominant [11]. It means that the tridiagonal system (20) and (21)

has a unique solution set ðwn
0;w

n
1; . . . ;wn

NÞ for each n ¼ 1;2; . . ., and it can be solved by efficient elimination method [5].
The sixth-order finite-difference scheme [8] has the form
vn
i�2 � 16vn

i�1 � 60vn
i � 16vn

iþ1 þ vn
iþ2 ¼ cn

i ; ð22Þ

cn
i ¼ �

3m
h
�hn

i�2 þ 32hn
i�1 � 32hn

iþ1 þ hn
iþ2

� �
; i ¼ 2; . . . ;N � 2:
Of course, besides of (21), we need additionally two end conditions vn
1 and vn

N�1 in order to solve the system (22). The solu-
tion procedure of system (22), (21) is essentially simplified by using a Z-folding algorithm [12]. Namely, if we use notation
Zn
i ¼ vn

i�1 þ avn
i þ vn

iþ1; ð23Þ
then it is easy to show that the Eq. (22) can be re written as
Zn
i�1 þ bZn

i þ Zn
iþ1 ¼ cn

i ; i ¼ 2; . . . ;N � 2 ð24Þ
under conditions
a ¼ �8� 3
ffiffiffiffiffiffi
14
p

; b ¼ �8� 3
ffiffiffiffiffiffi
14
p

: ð25Þ
e as in Table 1, but for Example III.

ple III N Fourth-order Sixth-order
finite-difference scheme finite-difference scheme

kek1;h rh kek1;h rh

320 7.53462(-09) 1.58377(-12)

=
ffiffiffiffiffiffi
15
p

640 4.74283(-10) 15.88 2.52478(-14) 62.72

1280 2.97497(-11) 15.94 3.98712(-16) 63.32
2560 1.86273(-12) 15.97 6.26406(-18) 63.65
5120 1.16526(-13) 15.98 9.81480(-20) 63.82
10240 7.28624(-15) 15.99 1.53570(-21) 63.91

:01 320 7.24049(-05) 1.37914(-06)

=
ffiffiffiffiffiffi
15
p

640 4.55170(-06) 15.90 2.01708(-08) 68.37

1280 2.85640(-07) 15.93 3.05365(-10) 66.05
2560 1.78938(-08) 15.96 4.69822(-12) 64.99
5120 1.11973(-09) 15.98 7.28515(-14) 64.49
10240 7.00275(-11) 15.98 1.13399(-15) 64.24
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It means that the solution of penta-diagonal system (22) leads to two three-diagonal systems (24) and (23), consequently
both systems have a diagonally dominance [11]. Now, the required additionally two end conditions Zn

1 and Zn
N�1, are obtained

from (23) and (8) as
Zn
1 ¼ �2m h0zðA; tnÞ þ ah0zðz1; tnÞ þ h0zðz2; tnÞ

� �
; ð26Þ

Zn
N�1 ¼ �2m h0zðzN�2; tnÞ þ ah0zðzN�1; tnÞ þ h0zðB; tnÞ

� �
:

Using the Robin boundary conditions (11) and the asymmetric sixth-order finite-difference approximations of the first
spatial derivative [13], we can find the needed terms h0zðA; tnÞ; h0zðz1; tnÞ; h0zðz2; tnÞ; h0zðzN�2; tnÞ; h0zðzN�1; tnÞ and h0zðB; tnÞ:
h0zðA; tnÞ ¼ �
1

2m
gðA; tnÞhn

0;

h0zðz1; tnÞ ¼
�10hn

0 � 77hn
1 þ 150hn

2 � 100hn
3 þ 50hn

4 � 15hn
5 þ 2hn

6

60h
;

h0zðz2; tnÞ ¼
2hn

0 � 24hn
1 � 35hn

2 þ 80hn
3 � 30hn

4 þ 8hn
5 � hn

6

60h
; ð27Þ

h0zðzN�2; tnÞ ¼
hn

N�6 � 8hn
N�5 þ 30hn

N�4 � 80hn
N�3 þ 35hn

N�2 þ 24hn
N�1 � 2hn

N

60h
;

h0zðzN�1; tnÞ ¼
�2hn

N�6 þ 15hn
N�5 � 50hn

N�4 þ 100hn
N�3 � 150hn

N�2 þ 77hn
N�1 þ 10hn

N

60h
;

h0zðB; tnÞ ¼ �
1

2m
gðB; tnÞhn

N :
Substituting (27) into (26), we find Zn
1 and Zn

N�1 with order Oðh6Þ. Hence, the system of Eqs. (24) and (26) is solved by the
efficient elimination method [11]. After them, one can solve
vn
i�1 þ avn

i þ vn
iþ1 ¼ Zn

i ; i ¼ 1; . . . ;N � 1; ð28Þ
vn

0 ¼ �2m h0zðA; tnÞ; vn
N ¼ �2m h0zðB; tnÞ:
Thus, we obtain the numerical solution wn
i ¼ vn

i =h
n
i of Burgers’ Eqs. (5)–(7) with a higher accuracy provided that the solution

hn
i of heat Eqs. (9)–(11) is found with a higher accuracy. The approximate values of solution of Eq. (1) with initial condition

(6) and boundary condition (7) are found by formula
un
kj ¼ wn

i ; i ¼ 0; . . . ;N; ð29Þ
where un
kj ¼ uðxk; yj; tnÞ, xk þ yj ¼ zi; a 6 xk 6 b; c 6 yj 6 d and tn ¼ tn=2.

5. Numerical results and discussion

In this section we demonstrate the accuracy of the fourth-order and sixth-order finite-difference schemes proposed,
respectively, by solving three exact solvable unsteady Burgers’ Eq. (1) and compare the numerical results wðz; TÞ with the
exact results uðz; TÞ. The maximum absolute error of the solution is defined by
kek1;h ¼ max
06i6N

jwðzi; TÞ � uðzi; TÞj: ð30Þ
Convergence of the proposed schemes is reviewed by computation of the Runge coefficient
rh ¼
kek1;h
kek1;h=2

: ð31Þ
The all computations are performed using a Fortran program with quadruple-precision arithmetics.
We consider the following exact solutions of Eq. (5):
uðz; tÞ ¼

1þ exp z
2m� t

4m

� �� ��1
for Example I;

1
2� tanh z

2m� t
4m

� �
for Example II;

1
2� coth zþ1

2m � t
4m

� �
for Example III:

8>>>>><
>>>>>:

ð32Þ
Note that the second and third solutions called the kink and travelling wave solutions of Burgers’ equation [15], respectively.
In all the examples the initial and boundary conditions are taken from the exact solutions. It is easy to show that the cor-
responding heat problems (9)–(11) are also exact solvable, and normalized exact solutions with condition hð0;0Þ ¼ 1 can
be expressed as
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hðz; tÞ ¼

1
2 1þ exp � z

2mþ t
4m

� �� �
for Example I;

exp � z
4mþ 5t

16m

� �
cosh z

2m� t
4m

� �
for Example II;

exp � z
4mþ 5t

16m

� �
sinh zþ1

2m �
t

4m

� �
sinh 1

2mð Þ
for Example III:

8>>>>><
>>>>>:

ð33Þ
The maximum absolute errors kek1;h and the Runge coefficients rh for the Examples I–III are presented in Tables 1–3. They

are consistent with the theoretical expectations of Oðh4Þ and Oðh6Þ. Also we see that for small number m required large N to
obtain higher accurate numerical solutions. Note that from Tables 1–3 we observed a slow convergence of the Runge coef-
ficients rh to the theoretical expectations (especially at small values of m). This fact is a consequence of the application of the
asymmetric approximations (18), (19) and (27) in a vicinity of the boundary points and due to the presence of large gradient
in the solution. The results of numerical experiments demonstrate the expected accuracy and convergence order of proposed
schemes.

6. Conclusions

The proposed higher-order finite-difference schemes are easy for implementation and can be used for a numerical solu-
tion of unsteady Burgers’ equation with higher accuracy. The main advantage of the our schemes considered is reduced the
two-dimensional unsteady Burgers’ equation to one-dimensional Burgers equation that allows us to used known higher
accurate numerical method. And thereby to save computing time and memory of computer as compared to the numerical
methods for calculation of the two-dimensional Burgers’ equation. The numerical results obtained demonstrated the
accuracy and efficiency of the schemes considered. Also the numerical results show that the variation in the values of the
Reynolds number does not adversely affect the numerical solutions. Since all numerical results obtained by the above meth-
ods show a reasonably good agreement with the exact one for modest values of m, and also exhibit the expected convergence
as the mesh size is decreased, the proposed methods can be considered to be competitive and worth recommendation.
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