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Abstract

An uncoupled correlated variational method for the calculation of helium
isoelectronic bound states is proposed. New projective coordinates s =
ro+ v = e ”r;” are introduced instead of the conventional
ones s = r; +ry,t = r; —rp,u = rpp. All matrix elements of the total
Hamiltonian and the weight function are expressed as simple products of
three one-dimensional integrals. The variational basis is formed by a set of
Laguerre polynomials with a single nonlinear parameter and two sets of Jacobi
polynomials for the projective coordinates s, v, w, respectively. It provides a
reasonable rate of convergence of the energy, E = E(N), with respect to a
number N of the basis components of the eigenvector. The proposed method
yields the best available energies for the isoelectronic ground states of the helium
atom. New estimations of the isotope helium ground states are also presented.

12

1. Introduction

In atomic physics uncoupled correlation calculations with a high degree of accuracy have
recently been discussed [1]. A variational basis in the special projective coordinates which
yield a suitable representation of the overall matrix of the Hamiltonian by simple products
of three one-dimensional integrals has been introduced. High accuracy calculations for the
ground state of a helium atom with infinite nuclear mass have been carried out. However, this
method leads to the Hamiltonian containing §-function terms and possesses a rather low rate
of convergence of the energy E = E(N) versus the number N of terms in the expansion
of the eigenvector over the variational basis (so-called ‘length N of eigenvector’) with a
single nonlinear parameter. In particular, the value £ = —2.903 724 377 034 119593 8(50) au
has been reported for N = 8066 without optimization of the nonlinear parameter [1]. It
is interesting to investigate a simpler set of the projective coordinates which provides an
uncoupling representation of the matrix elements of the total Hamiltonian and higher rate of
convergence of the variational energy.

In this letter such a set of the projective coordinates is introduced and the corresponding
variational basis with a single nonlinear parameter is constructed. The rate of convergence of
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the energy of helium isoelectronic ground states is studied and the comparison with known
calculations is carried out. As a result, new estimations of the isotope helium ground states
are presented.

2. New uncoupled correlated representation

We consider solutions of the Schrodinger equation with the two-electron nonrelativistic
Hamiltonian H with the nuclear mass being infinite or finite. This Hamiltonian can be rewritten
as:

— 1 ( ) , 1, ) 1 zZ Z

H=—|V:+V:+—V +— - — — — D

2 n 2 M 2 r12 r ry

where M is the nuclear mass, Z is the nuclear charge, r; is the distance between the nucleus
and the ith electron and r; is the distance between the electrons. In spherical coordinates for
two-electron S states the Hamiltonian takes the form
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The aim of this letter is to present an alternative approach in order to simplify the variational
calculations and provide sufficiently higher stability and accuracy. The radial part of the
integration volume element can be rewritten in the following way:

2?‘17‘2

ritry

J=/V1d”1'/72d”2 / riodripg(ry, r2, r12). 4
0 0

[ri=ra|
The three limits of integration are uncoupled by changing the perimetric variables for the new
projective coordinates
r2 r—nr

, w= . ©)
ry+nr r2

s =ry+r, V=

For the new variables (5) the integral (4) is rewritten as

00 1 1
I =/ ssds/ vzdv/ (1 —v?w? dw f(s, v, w). (6)
0 0 0
If the function f in the integrand has the form
fGs,v,w) =UE)V@)W(w) (N

then the integral (6) is fully uncoupled into products of three one-dimensional integrals:

00 1 1 1 1
1:/ U(s)s5ds{/ V(v)vzdv/ W(w)dw—/ V(v)v4/ W(w)wzdw}. 8)
0 0 0 0 0

The full advantage of this decoupling is achieved by choosing the new uncoupled correlated
representation for the variational basis set

Vi j2k = Ui(s) Vj(v) Wo (w) 9
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where Wy, (w) are even functions of w for the 1S state of the helium atom. With this basis
set all matrix elements of the overlap for the Hamiltonian presented in explicit form [2] can
be written as products of one-dimensional integrals (8). The simplest basis functions can be
Slater functions for U; and simple powers for V; and Wy.. Notice that, unlike the case of
perimetric coordinates, there is no limitation on the number of the nonlinear parameters which
can be introduced for any of the one-dimensional basis functions.

3. Reduction to the algebraic eigenvalue problem

In this work the basis sets used are based on the orthogonal polynomials suited to the domain
of integration of each integral. We use

Ui(s) = Nie ™ L} Qais),  Vi(w) =N; PP Qu—1), Wyw) = NyPy'(w)  (10)

where
B i1Qe;)6 — . & (k+1)(4k +3)
N,-—‘/m, N;=+2j+3, Nzk—‘/w (11)

are the normalization constants, L? are the generalized Laguerre polynomials, Pj(q”) are the
Jacobi polynomials and «; are the variational parameters. By choosing a set with a single
parameter o the basis set U; is orthonormal. With these definitions we have

oo 1
/ SSUn(S)Um(S)dS = (Sn,ma / Uzvn(v)vm(v)dv = an,ma
0 0

1
/ (1 — w?) Wy () Way (w)dw = 83 2 (12)
0

Here the overall overlap matrix consists of a set of block-diagonal arrays, one for each order
of the Laguerre polynomials. Using the following additional conditions

t=i+a-j+2b-k < Nsvw, d=j+2k < Nvw (13)

where Nsvw is the largest term in the sum of the orders of U;, V; and Wy, Nvw is the largest
term in the sum of the orders of V; and Wy, and a > b > 1. Now we can find the variational
wavefunction in the form
t<Nsvw, d<Nvw
Uis,v,w)= Y Ciiaudijuls v, w) (14)
i, j k=0
where C; j 2 is the vector of the unknown constants.
After substitution of the expansion (14) into the Rayleigh—Ritz variational functional
. (V|H|W)
E(¢) =min ———— (15)
c (VW)
and subsequent minimization of the functional at a fixed value of the nonlinear parameter o,
we arrive at an algebraic eigenvalue problem

Ala, Z, M)C = E(a)BC. (16)

Here A(a, Z, M) = a®A; (M) +aA,(Z) is the stiffness matrix, B is the mass matrix, E («) is
the eigenvalue and C is the corresponding eigenvector.

We apply the method of inverse iteration with Rayleigh shift to solve the eigenvalue
problem (16). Then we use the condition d E(«)/da = 0 to minimize the energy E = E(«)
with respect to the nonlinear parameter «. Table 1 presents different sets of the sizes of
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Table 1. Ns, Nv and Nw are the numbers of the one-dimensional basis functions of each type
used. N is the total number of components of the eigenvector (14) in the basis set (9)—(10).

Ns Nv Nw Nsvw Novw a b N

50 14 18 60 18 40 25 2204
60 14 19 70 19 45 25 2937
65 14 19 75 19 45 25 3424

75 15 20 80 20 45 25 4077
80 15 22 90 22 50 3.0 4683
90 15 22 100 22 58 30 5272
100 15 22 110 22 63 35 5669

Table 2. Variational parameter values « = «(Z, N) in (10)

z

N 10 9 8 7 6 5 4 3 2

2204 220 199 176 154 131 108 86 63 39
2937 248 222 197 172 146 121 96 7.1 45
3424 281 252 224 195 166 137 109 81 5.0
4077 292 269 238 212 182 150 119 87 52
4683 305 274 243 212 182 150 119 87 52
5272 305 274 243 212 182 150 119 87 52
5669 305 274 243 212 182 150 119 87 52

partial bases, in accordance with the resampling down procedure (13), which are finally
used to form the N-dimensional ground state vector (14). These sets provide an appropriate
condition number of the matrix A(x, Z, M) of the order 10°, that is three orders better than
that for @ = b = 1 in equation (13). The achieved stability allows one to accelerate the
stiffness matrix diagonalization when more than a 13-digit accuracy is required and quadruple-
precision calculations are necessary. Note thatin real computing we should add a regularization
parameter ¢ = 1072, Table 2 displays the variational parameter values @ = «(Z, N) in
au for the set of N values actually used in our calculations. Table 3 shows the variational
energy £ = E(N) in au and the extrapolation values E® calculated in the present work. The
comparison with the other published data is also presented in this table.

4. Comparison of two uncoupled correlation calculations

Below we briefly describe the method of paper [1] to compare it with our approach. In this

method the special projective coordinates have been used
r rip—r
Uu=r-, v= —, w=—= a7
rs r<

where r. = max(ry, r2), r- = min(ry, r»). The Hamiltonian (2) can be rewritten without
trouble in terms of such coordinates

r=u(®+v0), r=u(® +v0), ri2 = u(l +vw) (18)
where © is the Heaviside step function

1 if r12r2

0 if ri <nr (19)

®=®(i’1—r2)={
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Table 3. Variational energy values E(N) in au, calculated by means of the N-dimensional
eigenvector (14) for isoelectronic (Z = 2, ..., 10) and isotopic (*He and 3He) ground states of
helium atoms, in comparison with the data published by other authors. Asymptotic values of energy
E® were calculated using the formula (23). The energy values for *He and “He are new results for
the helium isotopes having nuclear masses M2+ = 5495.8852 m, and May 2+ = 7294.2996 m,
presented in [5].

N Z=10 z=9 z=3 z=1
2204 —93.906 806 515 037 549 362 —75.531712363 959491 046 —59.156 595 122757925 500 —44.781 445 148 772704 587
2937 —93.906 806 515037 5494152 —75.531712363 959491 098 7 —50.156 595 122757925 5524 —44.781445 148772704639 |
3424 —93.906806 5150375494193 —75.531712363959491 1028 —50.156 595 122757925 5564 —44.781 445 148 772704 643 |
4077 —93.906806 515037549421 1 —75.531712363959491 1045 —50.156 595 122757925558 1 —44.781445 148 772704644 8
4683 —93.906806 515037 549421 372 —75.531712363959491 104782 —59.156 595 122757925 558 454 —44.781 445 148 772704 645 091
5072 —93.906806 515037 549421 424 —75.531712363959491 104833 —59.156 595 122757 925 558 506 —44.781445 148 772704 645 142
5669 —93.906 806 515 037 549 421 438 —75.531 712363959491 104847 —59.156 595 122757925558 519 —44.781445 148 772704 645 156
£ —93.906 806 515 037 549 421 453 —75.531712363959491 104855 —59.156 595 122757925 558 528 —44.781 445 148 772704 645 162

161 —93.906 806 515 037 541

[l —93.906 806 5150375455 —75.531712363 9594872 —50.156 595 1227579217 —44.781445 1487727008

8] —93.906806 5150374 —75.5317123639594 —50.156 595 1227578 —44781445 1487726
N Z=6 z=5 Z=4 z=3
2204 —32.406 246 601 898 530254 —22.030971 580242781 486 —13.655 566 238 423 586 648 ~7.279913412669 305914
2937 —32.406 246 601 898 5303046 —22.030971 5802427815358 —13.655 566 238 423 586 696 4 —7.279913412669 3059595
3424 —32.406 246 601 898 530308 4 —22.030971 5802427815396 —13.655 566 238 423 586 7000 ~7.279913412669 3059629
4077 —32.406 246 601 8985303102 —22.030971 5802427815413 —13.655 566 238 423 586 701 7 —7.279913 412669305964 5
4683 —32.406 246 601 898 530310464 —22.030971 580242781 541 564 —13.655 566 238 423 586 701 993 —7.279913 412669 305 964 836
5272 —32.406 246 601 898530310515 —22.030971 580242781541 615 —13.655 566 238 423 586702 043 ~7.279913 412669 305 964 884
5669 —32.406 246 601 898530310528 ~22.030971 580242781 541 627 —13.655 566 238 423 586 702 054 ~7.279913 412669 305964 893
E3 —32.406 246 601 898530310535 —22.030971 580242781541 635 —13.655 566 238 423586 702061 ~7.279913 412669 305 964 899

] —13.655 566 238 423 582

[l —32.406 246 601 898526 5 —22.030971 5802427777 —13.655 566238423 5829 ~7.279913412669 3020

8] —32.406 246 601 898 4 ~22.030971 5802427 —13.655 5662384235 ~7.2799134126692
N zZ=2 4He 3He
2204 —2.903724377034 119549 —2.903 304 557733234 348 —2.903 167210703 584071
2937 —2.9037243770341195933 —2.903304557733234392 6 ~2.903167210703584 1155
3424 —2.903724377034 1195963 —2.903304557733234395 5 ~2.903 167210703584 1185
4077 —2.903724377034 1195979 —2.903304 5577332343972 ~2.903 167210703584 1201
4683 —2.903724377034 119598231 —2.903304557733 234397493 ~2.903 167210703 584 120433
5272 —2.903724377034 119598 280 —2.903304557733 234397 542 ~2.903 167210703 584 120481
5669 —2.903724377034 119598288 —2.903304557733 234397550 ~2.903 167210703 584 120489
E3 —2.903724377034 119598297 —2.903304557733 234397556 ~2.903 167210703 584 120495

[ —2.903724377034 119504

3] —2.903724377034 119598 296

[4] ~2.903724377034 119596

6] —2.903724377034 118

17 —2.903724377034 114

and ® = 1 — ©. However, the corresponding Hamiltonian contains the Dirac delta function
1
8(ri —ry) =—-6(1—v) (20)
u

as has been shown explicitly in [2]. Note that the variables u, v and w have been introduced
in the basis set to improve the cusp condition for the probe wavefunction at r; = r, in two
ways: (a) by using ri, explicitly; (b) by using the variables . and r_ [1]. In this case any
radial basis function cannot be written as a product of two radial hydrogen-like functions in
the coordinates (17)

¥ = p®(n+r) _ qa(ratro) _ qou(l+v) @1

i.e.it cannot be reduced to the form f(u)g(v) which immediately follows from (10) in
accordance with (5). So, if one omits the term uv in the exponent of the right-hand side
of equation (21), then the basis set is defined in the form

U;(u) = Nie L3 Qau), V() =N;P"?2v-1), Wi(w) = N PP (w)(22)
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Table 4. Comparison of the variational energies E(N) in au used with basis vectors (22) and (10)
at given values of the charge Z and the variational parameter o.

A o? E (au)! E (au)?

—
(=]

20.0 28.1 —93.906 806515037534 —93.906806515037549419
18.0 252 —75.531712363959479 —75.531712363959491 102
16.0 224 —59.156595122757914 —59.156595 122757925556
139  19.5 —44.781445148772693 —44.781445 148772704643
119 16.6 —32.406246601898519 —32.406246601 898530308
9.9 13.7 —22.030971580242771 —22.030971580242781539
79 10.8 —13.655566238423577 —13.655566238423 586700
59 8.1 —7.279913412669298 —7.279913 412669 305 962
35 5.0 —2.903724377034118 —2.903724 377034119596

N W Ak L N3 0O

! Our results used in the basis vectors (22) for N = 3795.
2 Qur results used in the basis vectors (10) for N = 3424.

Table 5. The set of parameters of extrapolation formula (25) at given Z: 8 is the power of the
convergence rate; Dig is the constant used for reducing the scale of the energy. “He and 3He denote
the sets for the helium atom isotopes, G is the set for the results of [1].

z

=

D3

—_
(=]
—

93.906 806515037 549421
75.531712363959491 104
59.156 595 122757925 558
44.781445 148 772704 644
32.406 246 601 898 530310
22.030971580242781 541
13.655 566 238 423 586 701
7.279913 412669 305 964
2.903724 377034 119 598
2.903304 557733234397
2903167210703 584 120

N WA LN 0O
—_ = =

IS
jan)
9

R RRRXRRAR R
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—

w
jan)
@
-

Q
%
©

2.903724377034 119

where N; and N j are given by (11), and

- k+1

K=y T
Table 4 shows the corresponding results of our calculation for the variational energy
E(N) with the basis vectors (22) and (10) for similar N to compare the convergence rate of
the two methods mentioned above. We also studied the extrapolation of such eigenvalues by
the formula

E¥ =E(N)+CN~~. (23)

We have calculated the values of E*, C, 8 by minimizing the functional

2
n (E® — En;) — Cn;”

O(E®,C,B) = ! 24

( B) ; 5 (24)

where §; are the calculation errors. The asymptotic values of energy E* are given in table 3
and the corresponding values of the parameter § that show the convergence rate are presented
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Figure 1. Extrapolation function DE versus N (25) for the ground state energy points DE(N) =
—E(N) — Dj3 calculated in this work by means of the N-dimensional eigenvector (14) for the
isoelectronic (Z = 2, ..., 10) and isotopic (*He and 3He) sets with infinite and finite masses from
table 3, respectively. The plot G of the extrapolation function DE is restored using the results of
the ground state energy [1] for Z = 2.
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Figure 2. Sum= }_ Cj j2x{(W)y, . Dotted curve: radial part of the wavefunction for the basis
vectors (10). Full curve: radial part of the wavefunction for the basis vectors (22).

in table 5. It is difficult to display the extrapolation graphically without scaling, so we draw
the corresponding plots in figure 1 using the expression

DE(N) = (—E® — D;g+ CN~#)10% (25)

with the values of Djg given in table 5. Finally, we take the basis vectors (22) and (10) to
plot the radial parts of the wavefunctions versus s in figure 2 using the above relation (21).
One can see that the area under the plots of the radial functions (10) shown by dotted curves
is greater than that under the plots of the functions (22) shown by full curves. Table 4 shows
that at optimal parameter @ found from the condition d E (o) /doc = 0 the convergence rate of
the decomposition (10) is better than that given by (22). Evidently, this fact is a consequence
of the explicit account for the cusp condition for the coordinate 7}, in the form (20).
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