LETTER TO THE EDITOR

Uncoupled correlated calculations of helium isoelectronic bound states

O Chuluunbaatar ${ }^{1}$, I V Puzynin ${ }^{1}$ and S I Vinitsky ${ }^{2}$
${ }^{1}$ Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia
${ }^{2}$ Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region 141980, Russia

Received 16 March 2001, in final form 8 June 2001

Abstract

An uncoupled correlated variational method for the calculation of helium isoelectronic bound states is proposed. New projective coordinates $s=$ $r_{1}+r_{2}, v=\frac{r_{12}}{r_{1}+r_{2}}, w=\frac{r_{1}-r_{2}}{r_{12}}$ are introduced instead of the conventional ones $s=r_{1}+r_{2}, t=r_{1}-r_{2}, u=r_{12}$. All matrix elements of the total Hamiltonian and the weight function are expressed as simple products of three one-dimensional integrals. The variational basis is formed by a set of Laguerre polynomials with a single nonlinear parameter and two sets of Jacobi polynomials for the projective coordinates s, v, w, respectively. It provides a reasonable rate of convergence of the energy, $E=E(N)$, with respect to a number N of the basis components of the eigenvector. The proposed method yields the best available energies for the isoelectronic ground states of the helium atom. New estimations of the isotope helium ground states are also presented.

1. Introduction

In atomic physics uncoupled correlation calculations with a high degree of accuracy have recently been discussed [1]. A variational basis in the special projective coordinates which yield a suitable representation of the overall matrix of the Hamiltonian by simple products of three one-dimensional integrals has been introduced. High accuracy calculations for the ground state of a helium atom with infinite nuclear mass have been carried out. However, this method leads to the Hamiltonian containing δ-function terms and possesses a rather low rate of convergence of the energy $E=E(N)$ versus the number N of terms in the expansion of the eigenvector over the variational basis (so-called 'length N of eigenvector') with a single nonlinear parameter. In particular, the value $E=-2.9037243770341195938$ (50) au has been reported for $N=8066$ without optimization of the nonlinear parameter [1]. It is interesting to investigate a simpler set of the projective coordinates which provides an uncoupling representation of the matrix elements of the total Hamiltonian and higher rate of convergence of the variational energy.

In this letter such a set of the projective coordinates is introduced and the corresponding variational basis with a single nonlinear parameter is constructed. The rate of convergence of
the energy of helium isoelectronic ground states is studied and the comparison with known calculations is carried out. As a result, new estimations of the isotope helium ground states are presented.

2. New uncoupled correlated representation

We consider solutions of the Schrödinger equation with the two-electron nonrelativistic Hamiltonian \bar{H} with the nuclear mass being infinite or finite. This Hamiltonian can be rewritten as:

$$
\begin{equation*}
\bar{H}=-\frac{1}{2}\left(\nabla_{r_{1}}^{2}+\nabla_{r_{2}}^{2}+\frac{1}{M} \nabla_{r_{12}}^{2}\right)+\frac{1}{r_{12}}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}} \tag{1}
\end{equation*}
$$

where M is the nuclear mass, Z is the nuclear charge, r_{i} is the distance between the nucleus and the i th electron and r_{12} is the distance between the electrons. In spherical coordinates for two-electron S states the Hamiltonian takes the form

$$
\begin{align*}
H\left(r_{1}, r_{2}, r_{12}\right)= & -\frac{1}{2}\left(1+\frac{1}{M}\right)\left(\frac{\partial^{2}}{\partial r_{1}^{2}}+\frac{2}{r_{1}} \frac{\partial}{\partial r_{1}}\right)-\frac{1}{2}\left(1+\frac{1}{M}\right)\left(\frac{\partial^{2}}{\partial r_{2}^{2}}+\frac{2}{r_{2}} \frac{\partial}{\partial r_{2}}\right) \\
& -\left(\frac{\partial^{2}}{\partial r_{12}^{2}}+\frac{2}{r_{12}} \frac{\partial}{\partial r_{12}}\right)-\frac{1}{M} \cos \theta \frac{\partial^{2}}{\partial r_{1} \partial r_{2}}+\frac{r_{2} \cos \theta-r_{1}}{r_{12}} \frac{\partial^{2}}{\partial r_{1} \partial r_{12}} \\
& +\frac{r_{1} \cos \theta-r_{2}}{r_{12}} \frac{\partial^{2}}{\partial r_{2} \partial r_{12}}-\frac{Z}{r_{1}}-\frac{Z}{r_{2}}+\frac{1}{r_{12}} \tag{2}\\
\cos \theta=\hat{\mathbf{r}}_{1} \cdot \hat{\mathbf{r}}_{2}= & \frac{r_{1}^{2}+r_{2}^{2}-r_{12}^{2}}{2 r_{1} r_{2}} . \tag{3}
\end{align*}
$$

The aim of this letter is to present an alternative approach in order to simplify the variational calculations and provide sufficiently higher stability and accuracy. The radial part of the integration volume element can be rewritten in the following way:

$$
\begin{equation*}
J=\int_{0}^{\infty} r_{1} \mathrm{~d} r_{1} \int_{0}^{\infty} r_{2} \mathrm{~d} r_{2} \int_{\left|r_{1}-r_{2}\right|}^{r_{1}+r_{2}} r_{12} \mathrm{~d} r_{12} g\left(r_{1}, r_{2}, r_{12}\right) \tag{4}
\end{equation*}
$$

The three limits of integration are uncoupled by changing the perimetric variables for the new projective coordinates

$$
\begin{equation*}
s=r_{1}+r_{2}, \quad v=\frac{r_{12}}{r_{1}+r_{2}}, \quad w=\frac{r_{1}-r_{2}}{r_{12}} . \tag{5}
\end{equation*}
$$

For the new variables (5) the integral (4) is rewritten as

$$
\begin{equation*}
I=\int_{0}^{\infty} s^{5} \mathrm{~d} s \int_{0}^{1} v^{2} \mathrm{~d} v \int_{0}^{1}\left(1-v^{2} w^{2}\right) \mathrm{d} w f(s, v, w) \tag{6}
\end{equation*}
$$

If the function f in the integrand has the form

$$
\begin{equation*}
f(s, v, w)=U(s) V(v) W(w) \tag{7}
\end{equation*}
$$

then the integral (6) is fully uncoupled into products of three one-dimensional integrals:
$I=\int_{0}^{\infty} U(s) s^{5} \mathrm{~d} s\left\{\int_{0}^{1} V(v) v^{2} \mathrm{~d} v \int_{0}^{1} W(w) \mathrm{d} w-\int_{0}^{1} V(v) v^{4} \int_{0}^{1} W(w) w^{2} \mathrm{~d} w\right\}$.
The full advantage of this decoupling is achieved by choosing the new uncoupled correlated representation for the variational basis set

$$
\begin{equation*}
\psi_{i, j, 2 k}=U_{i}(s) V_{j}(v) W_{2 k}(w) \tag{9}
\end{equation*}
$$

where $W_{2 k}(w)$ are even functions of w for the 1 S state of the helium atom. With this basis set all matrix elements of the overlap for the Hamiltonian presented in explicit form [2] can be written as products of one-dimensional integrals (8). The simplest basis functions can be Slater functions for U_{i} and simple powers for V_{j} and $W_{2 k}$. Notice that, unlike the case of perimetric coordinates, there is no limitation on the number of the nonlinear parameters which can be introduced for any of the one-dimensional basis functions.

3. Reduction to the algebraic eigenvalue problem

In this work the basis sets used are based on the orthogonal polynomials suited to the domain of integration of each integral. We use
$U_{i}(s)=N_{i} \mathrm{e}^{-\alpha_{i} s} L_{i}^{5}\left(2 \alpha_{i} s\right), \quad V_{j}(v)=\bar{N}_{j} P_{j}^{(0,2)}(2 v-1), \quad W_{2 k}(w)=\hat{N}_{2 k} P_{2 k}^{(1,1)}(w)$
where

$$
\begin{equation*}
N_{i}=\sqrt{\frac{i!\left(2 \alpha_{i}\right)^{6}}{(i+5)!}}, \quad \bar{N}_{j}=\sqrt{2 j+3}, \quad \hat{N}_{2 k}=\sqrt{\frac{(k+1)(4 k+3)}{2(2 k+1)}} \tag{11}
\end{equation*}
$$

are the normalization constants, L_{i}^{5} are the generalized Laguerre polynomials, $P_{j}^{(q, t)}$ are the Jacobi polynomials and α_{i} are the variational parameters. By choosing a set with a single parameter α the basis set U_{i} is orthonormal. With these definitions we have

$$
\begin{gather*}
\int_{0}^{\infty} s^{5} U_{n}(s) U_{m}(s) \mathrm{d} s=\delta_{n, m}, \quad \int_{0}^{1} v^{2} V_{n}(v) V_{m}(v) \mathrm{d} v=\delta_{n, m} \\
\int_{0}^{1}\left(1-w^{2}\right) W_{2 n}(w) W_{2 m}(w) \mathrm{d} w=\delta_{2 n, 2 m} \tag{12}
\end{gather*}
$$

Here the overall overlap matrix consists of a set of block-diagonal arrays, one for each order of the Laguerre polynomials. Using the following additional conditions

$$
\begin{equation*}
t=i+a \cdot j+2 b \cdot k \leqslant N s v w, \quad d=j+2 k \leqslant N v w \tag{13}
\end{equation*}
$$

where $N s v w$ is the largest term in the sum of the orders of U_{i}, V_{j} and $W_{2 k}, N v w$ is the largest term in the sum of the orders of V_{j} and $W_{2 k}$ and $a>b>1$. Now we can find the variational wavefunction in the form

$$
\begin{equation*}
\Psi(s, v, w)=\sum_{i, j, k=0}^{t \leqslant N s v w, d \leqslant N v w} C_{i, j, 2 k} \psi_{i, j, 2 k}(s, v, w) \tag{14}
\end{equation*}
$$

where $C_{i, j, 2 k}$ is the vector of the unknown constants.
After substitution of the expansion (14) into the Rayleigh-Ritz variational functional

$$
\begin{equation*}
E(\alpha)=\min _{C} \frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \tag{15}
\end{equation*}
$$

and subsequent minimization of the functional at a fixed value of the nonlinear parameter α, we arrive at an algebraic eigenvalue problem

$$
\begin{equation*}
A(\alpha, Z, M) C=E(\alpha) B C \tag{16}
\end{equation*}
$$

Here $A(\alpha, Z, M)=\alpha^{2} A_{1}(M)+\alpha A_{2}(Z)$ is the stiffness matrix, B is the mass matrix, $E(\alpha)$ is the eigenvalue and C is the corresponding eigenvector.

We apply the method of inverse iteration with Rayleigh shift to solve the eigenvalue problem (16). Then we use the condition $\partial E(\alpha) / \partial \alpha=0$ to minimize the energy $E \equiv E(\alpha)$ with respect to the nonlinear parameter α. Table 1 presents different sets of the sizes of

Table 1. $N s, N v$ and $N w$ are the numbers of the one-dimensional basis functions of each type used. N is the total number of components of the eigenvector (14) in the basis set (9)-(10).

$N s$	$N v$	$N w$	$N s v w$	$N v w$	a	b	N
50	14	18	60	18	4.0	2.5	2204
60	14	19	70	19	4.5	2.5	2937
65	14	19	75	19	4.5	2.5	3424
75	15	20	80	20	4.5	2.5	4077
80	15	22	90	22	5.0	3.0	4683
90	15	22	100	22	5.8	3.0	5272
100	15	22	110	22	6.3	3.5	5669

Table 2. Variational parameter values $\alpha \equiv \alpha(Z, N)$ in (10)

	Z														
N	10	9	8	7	6	5	4							3	2
2204	22.0	19.9	17.6	15.4	13.1	10.8	8.6	6.3	3.9						
2937	24.8	22.2	19.7	17.2	14.6	12.1	9.6	7.1	4.5						
3424	28.1	25.2	22.4	19.5	16.6	13.7	10.9	8.1	5.0						
4077	29.2	26.9	23.8	21.2	18.2	15.0	11.9	8.7	5.2						
4683	30.5	27.4	24.3	21.2	18.2	15.0	11.9	8.7	5.2						
5272	30.5	27.4	24.3	21.2	18.2	15.0	11.9	8.7	5.2						
5669	30.5	27.4	24.3	21.2	18.2	15.0	11.9	8.7	5.2						

partial bases, in accordance with the resampling down procedure (13), which are finally used to form the N-dimensional ground state vector (14). These sets provide an appropriate condition number of the matrix $A(\alpha, Z, M)$ of the order 10^{6}, that is three orders better than that for $a=b=1$ in equation (13). The achieved stability allows one to accelerate the stiffness matrix diagonalization when more than a 13-digit accuracy is required and quadrupleprecision calculations are necessary. Note that in real computing we should add a regularization parameter $\varepsilon=10^{-25}$. Table 2 displays the variational parameter values $\alpha=\alpha(Z, N)$ in au for the set of N values actually used in our calculations. Table 3 shows the variational energy $E=E(N)$ in au and the extrapolation values $E^{\text {as }}$ calculated in the present work. The comparison with the other published data is also presented in this table.

4. Comparison of two uncoupled correlation calculations

Below we briefly describe the method of paper [1] to compare it with our approach. In this method the special projective coordinates have been used

$$
\begin{equation*}
u=r_{>}, \quad v=\frac{r_{<}}{r_{>}}, \quad w=\frac{r_{12}-r_{>}}{r_{<}} \tag{17}
\end{equation*}
$$

where $r_{>}=\max \left(r_{1}, r_{2}\right), r_{<}=\min \left(r_{1}, r_{2}\right)$. The Hamiltonian (2) can be rewritten without trouble in terms of such coordinates

$$
\begin{equation*}
r_{1}=u(\Theta+v \bar{\Theta}), \quad r_{2}=u(\bar{\Theta}+v \Theta), \quad r_{12}=u(1+v w) \tag{18}
\end{equation*}
$$

where Θ is the Heaviside step function

$$
\Theta=\Theta\left(r_{1}-r_{2}\right)= \begin{cases}1 & \text { if } r_{1} \geqslant r_{2} \tag{19}\\ 0 & \text { if } r_{1}<r_{2}\end{cases}
$$

Table 3. Variational energy values $E(N)$ in au, calculated by means of the N-dimensional eigenvector (14) for isoelectronic ($Z=2, \ldots, 10$) and isotopic $\left({ }^{4} \mathrm{He}\right.$ and $\left.{ }^{3} \mathrm{He}\right)$ ground states of helium atoms, in comparison with the data published by other authors. Asymptotic values of energy $E^{\text {as }}$ were calculated using the formula (23). The energy values for ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ are new results for the helium isotopes having nuclear masses $M_{3} \mathrm{He}^{2+}=5495.8852 m_{e}$ and $M_{4} \mathrm{He}^{2+}=7294.2996 m_{e}$ presented in [5].

N	$Z=10$	$Z=9$	$Z=8$	$Z=7$
2204	-93.906806515037549362	-75.531712363959491046	-59.156595 122757925500	-44.781445 148772704587
2937	-93.9068065150375494152	-75.5317123639594910987	-59.1565951227579255524	-44.7814451487727046391
3424	-93.9068065150375494193	-75.5317123639594911028	-59.1565951227579255564	-44.7814451487727046431
4077	-93.9068065150375494211	-75.5317123639594911045	-59.156595 1227579255581	-44.781445 1487727046448
4683	-93.906806515037549421372	-75.531712363959491104782	-59.156595 122757925558454	-44.781445148772704645091
5272	-93.906806515037549421424	-75.531712363959491104833	-59.156595 122757925558506	-44.781445148772704645 142
5669	-93.906806515037549421438	-75.531712363959491104847	-59.156595 122757925558519	-44.781445148772704645 156
$E^{\text {as }}$	-93.906806515037549421453	-75.531712363959491104855	-59.156595 122757925558528	-44.781445148772704645 162
[6]	-93.906806515037541			
[7]	-93.9068065150375455	-75.5317123639594872	-59.156595 1227579217	-44.781445 1487727008
[8]	-93.9068065150374	-75.5317123639594	-59.156595 1227578	-44.7814451487726
N	$Z=6$	$Z=5$	$Z=4$	$Z=3$
2204	-32.406246601898530254	-22.030971580242781486	-13.655566238423586648	-7.279913412669305914
2937	-32.4062466018985303046	-22.0309715802427815358	-13.6555662384235866964	-7.2799134126693059595
3424	-32.4062466018985303084	-22.0309715802427815396	-13.6555662384235867000	-7.2799134126693059629
4077	-32.4062466018985303102	-22.0309715802427815413	-13.6555662384235867017	-7.279913412669 3059645
4683	-32.406246601898530310464	-22.030971580242781541564	-13.655566238423586701993	-7.279913412669305964836
5272	-32.406246601898530310515	-22.030971580242781541615	-13.655566238423586702043	-7.279913412669 305964884
5669	-32.406246601898530310528	-22.030971580242781541627	-13.655566238423586702054	-7.279913412669 305964893
$E^{\text {as }}$	-32.406246601898530310535	-22.030971580242781541635	-13.655566238423586702 061	-7.279913412669305964899
[6]			-13.655566238423582	
[7]	-32.4062466018985265	-22.0309715802427777	-13.6555662384235829	-7.2799134126693020
[8]	-32.4062466018984	-22.0309715802427	-13.6555662384235	-7.2799134126692
N	$Z=2$	${ }^{4} \mathrm{He}$	${ }^{3} \mathrm{He}$	
2204	-2.903724377034119549	-2.903 304557733234348	-2.903167210703584071	
2937	-2.9037243770341195933	-2.903304557733234392 6	-2.9031672107035841155	
3424	-2.9037243770341195963	-2.9033045577332343955	-2.9031672107035841185	
4077	-2.9037243770341195979	-2.903 3045577332343972	-2.903167210703584 1201	
4683	-2.903724377034119598231	-2.903 004557733234397493	-2.903167210703584120433	
5272	-2.903724377034119598280	-2.903 004557733234397542	-2.903167210703584120481	
5669	-2.903724377034119598288	-2.903304557733234397550	-2.903167210703584120489	
$E^{\text {as }}$	-2.903724377034119598297	-2.903304557733234397556	-2.903167210703584120495	
[1]	-2.903724377034119594			
[3]	-2.903724377034119598296			
[4]	-2.903724377034119596			
[6]	-2.903724377034 118			
[7]	-2.903724377034114			

and $\bar{\Theta}=1-\Theta$. However, the corresponding Hamiltonian contains the Dirac delta function

$$
\begin{equation*}
\delta\left(r_{1}-r_{2}\right)=\frac{1}{u} \delta(1-v) \tag{20}
\end{equation*}
$$

as has been shown explicitly in [2]. Note that the variables u, v and w have been introduced in the basis set to improve the cusp condition for the probe wavefunction at $r_{1}=r_{2}$ in two ways: (a) by using r_{12} explicitly; (b) by using the variables $r_{>}$and $r_{<}$[1]. In this case any radial basis function cannot be written as a product of two radial hydrogen-like functions in the coordinates (17)

$$
\begin{equation*}
\mathrm{e}^{\alpha s} \equiv \mathrm{e}^{\alpha\left(r_{1}+r_{2}\right)}=\mathrm{e}^{\alpha\left(r_{>}+r_{<}\right)}=\mathrm{e}^{\alpha u(1+v)} \tag{21}
\end{equation*}
$$

i.e. it cannot be reduced to the form $f(u) g(v)$ which immediately follows from (10) in accordance with (5). So, if one omits the term $u v$ in the exponent of the right-hand side of equation (21), then the basis set is defined in the form

$$
U_{i}(u)=N_{i} \mathrm{e}^{-\alpha u} L_{i}^{5}(2 \alpha u), \quad V_{j}(v)=\bar{N}_{j} P_{j}^{(0,2)}(2 v-1), \quad W_{k}(w)=\tilde{N}_{k} P_{k}^{(0,1)}(w)(22)
$$

Table 4. Comparison of the variational energies $E(N)$ in au used with basis vectors (22) and (10) at given values of the charge Z and the variational parameter α.

Z	α^{1}	α^{2}	$E(\mathrm{au})^{1}$	$E(\mathrm{au})^{2}$
10	20.0	28.1	-93.906806515037534	-93.906806515037549419
9	18.0	25.2	-75.531712363959479	-75.531712363959491102
8	16.0	22.4	-59.156595122757914	-59.156595122757925556
7	13.9	19.5	-44.781445148772693	-44.781445148772704643
6	11.9	16.6	-32.406246601898519	-32.406246601898530308
5	9.9	13.7	-22.030971580242771	-22.030971580242781539
4	7.9	10.8	-13.655566238423577	-13.655566238423586700
3	5.9	8.1	-7.279913412669298	-7.279913412669305962
2	3.5	5.0	-2.903724377034118	-2.903724377034119596

${ }^{1}$ Our results used in the basis vectors (22) for $N=3795$.
${ }^{2}$ Our results used in the basis vectors (10) for $N=3424$.
Table 5. The set of parameters of extrapolation formula (25) at given $Z: \beta$ is the power of the convergence rate; D_{18} is the constant used for reducing the scale of the energy. ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ denote the sets for the helium atom isotopes, G is the set for the results of [1].

Z	β	D_{18}
10	≈ 11	93.906806515037549421
9	≈ 11	75.531712363959491104
8	≈ 11	59.156595122757925558
7	≈ 11	44.781445148772704644
6	≈ 11	32.406246601898530310
5	≈ 11	22.030971580242781541
4	≈ 11	13.655566238423586701
3	≈ 11	7.279913412669305964
2	≈ 11	2.903724377034119598
${ }^{4} \mathrm{He}$	≈ 11	2.903304557733234397
${ }^{3} \mathrm{He}$	≈ 11	2.903167210703584120
G	≈ 9	2.903724377034119

where N_{i} and \bar{N}_{j} are given by (11), and

$$
\tilde{N}_{k}=\sqrt{\frac{k+1}{2}} .
$$

Table 4 shows the corresponding results of our calculation for the variational energy $E(N)$ with the basis vectors (22) and (10) for similar N to compare the convergence rate of the two methods mentioned above. We also studied the extrapolation of such eigenvalues by the formula

$$
\begin{equation*}
E^{\mathrm{as}}=E(N)+C N^{-\beta} \tag{23}
\end{equation*}
$$

We have calculated the values of $E^{\text {as }}, C, \beta$ by minimizing the functional

$$
\begin{equation*}
\Phi\left(E^{\mathrm{as}}, C, \beta\right)=\sum_{i=1}^{m}\left(\frac{E^{\mathrm{as}}-E\left(n_{i}\right)-C n_{i}^{-\beta}}{\delta_{i}}\right)^{2} \tag{24}
\end{equation*}
$$

where δ_{i} are the calculation errors. The asymptotic values of energy $E^{\text {as }}$ are given in table 3 and the corresponding values of the parameter β that show the convergence rate are presented

Figure 1. Extrapolation function $D E$ versus $N(25)$ for the ground state energy points $D E(N)=$ $-E(N)-D_{18}$ calculated in this work by means of the N-dimensional eigenvector (14) for the isoelectronic $(Z=2, \ldots, 10)$ and isotopic $\left({ }^{4} \mathrm{He}\right.$ and $\left.{ }^{3} \mathrm{He}\right)$ sets with infinite and finite masses from table 3, respectively. The plot G of the extrapolation function $D E$ is restored using the results of the ground state energy [1] for $Z=2$.

Figure 2. Sum $=\sum C_{i, j, 2 k}\langle\Psi\rangle_{v, w}$. Dotted curve: radial part of the wavefunction for the basis vectors (10). Full curve: radial part of the wavefunction for the basis vectors (22).
in table 5. It is difficult to display the extrapolation graphically without scaling, so we draw the corresponding plots in figure 1 using the expression

$$
\begin{equation*}
D E(N)=\left(-E^{\text {as }}-D_{18}+C N^{-\beta}\right) 10^{20} \tag{25}
\end{equation*}
$$

with the values of D_{18} given in table 5. Finally, we take the basis vectors (22) and (10) to plot the radial parts of the wavefunctions versus s in figure 2 using the above relation (21). One can see that the area under the plots of the radial functions (10) shown by dotted curves is greater than that under the plots of the functions (22) shown by full curves. Table 4 shows that at optimal parameter α found from the condition $\partial E(\alpha) / \partial \alpha=0$ the convergence rate of the decomposition (10) is better than that given by (22). Evidently, this fact is a consequence of the explicit account for the cusp condition for the coordinate r_{12} in the form (20).

We would like to express our gratitude to Professor S P Goldman and Professor V L Derbov for useful discussions. The authors also thank RFBR for partial support (grant nos 00-01-00617 and 00-02-16332).

References

[1] Goldman S P 1998 Phys. Rev. A 57 R667
[2] Chuluunbaatar O, Puzynin I V and Vinitsky S I 2000 Preprint JINR, E11-2000-190, Dubna.
[3] Korobov V I 2000 Phys. Rev. A 61064503
[4] Drake G W F 1999 Phys. Scr. T 8383
[5] Cohen E R and Taylor B N 1997 Phys. Today 50 BG7
[6] Umrigar C J and Gonze X 1994 Phys. Rev. A 503827
[7] Thakkar A J and Koga T 1994 Phys. Rev. A 50854
[8] Freund D E, Huxtable B D and Morgan J D III 1984 Phys. Rev. A 29980

