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Abstract
A correlated product of two two-centre continuum Coulomb waves is constructed to describe
the state of two ejected electrons in the (e, 3e) double ionization of the two most common and
naturally existing diatomic molecules, H2 and N2, for which experiments are currently in
progress. New computational approaches are introduced to overcome and improve the
numerical precision of the calculations involved. We show that the introduction of correlation
significantly modifies the outcome of the results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The double (e, 3e) ionization designates complete experiments
in which an atomic or molecular target is doubly ionized by the
impact of an incident electron ejecting two electrons, which
are detected in coincidence with the scattered electron [1].
These experiments give precious insight into the electronic
structure of the targets, help to verify the different hypothesis
about the possible ionization mechanisms and above all they
represent, with the photo-double ionization, experimental
means to quantify electron–electron correlation, which is the
main cause of the double ionization of bound electrons by a
single electron or photon. Double ionization, in general, can
also be considered as a process in which an important amount
of energy is deposited in the target. This can be, in the case of
the ionization of organic molecules, the main cause of cellular
death. Monte Carlo calculations nowadays are undertaken to
determine the effects of collisions of the secondary electrons
produced in the irradiation of living matter by heavy ions [2]
which cause major damage by ionizing the molecules of living
matter.

In the case of atoms, and particularly in the case of
helium, it has been shown [3] that correlated 3C functions are
necessary to obtain satisfactory results when used to describe
the two ejected electrons in the photo-double ionization
(γ , 2e) of helium. Similar applications of the (e, 3e) ionization

of helium [4, 5] have also shown the importance of correlation
by introducing the same 3C correlated function. In the case of
the double ionization of diatomic molecules, the correlated
product of two two-centre mono-electronic wavefunctions
developed in [6, 7] has been successfully applied to the photo-
double ionization (γ , 2e) of H2 [8].

In this paper, we determine the multi-fold differential
cross section of the double (e, 3e) ionization of H2 and
the outermost electrons of N2 by using the correlated two-
centre continuum (TCC) wave for the description of the
ejected electrons in a procedure, which takes into account
only the first term of the Born series. We apply new
computational approaches both in the numerical integration
and the calculation of the confluent hypergeometric functions.
Our aim is first of all to interact with the actual experimental
efforts to produce data for the (e, 3e) double ionization of N2

and compare our results obtained by the present correlated
function for the (e, 3–1e) ionization of H2 to the experimental
results [9] and to those obtained by the uncorrelated function
[10], by the external complex scaling method [11] and by the
second Born treatment [12].

2. Theory

The multiply differential cross section (MDCS) of a general
out-of-plane detection of the scattered and the two ejected
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electrons from a diatomic molecule is sixfold, and is given by
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where d�s , d�1, d�2 and d�ρ , are respectively the elements
of the solid angles for the orientations of the scattered and
the ejected electrons and the internuclear axis ρ. ki , ks , k1

and k2 represent respectively the moduli of the wave vectors
of the incident, scattered and ejected electrons. In the case
of randomly oriented targets, we must pass to the fivefold
differential cross section (FDCS) by integrating overall
possible and equally probable directions of the molecule in
space

σ (5) = 1

4π

∫
d�ρσ

(6)(ρ). (2)

The conservation of the energy for the fixed internuclear
distance ρ gives

Ei = Es + E1 + E2 + I, (3)

where Ei , Es , E1 and E2 represent respectively the energies
of the incident, scattered and ejected electrons, with I being
the energy necessary to eject two electrons from the target at
the equilibrium internuclear distance. We define the transition
matrix element by the first term of the Born series:

Tf i = 1

2π

∫
dr0

∫
dr1

×
∫

dr2 exp(ıKr0)χ̄f (r1, r2)V ϕi(r1, r2). (4)

Here, the overline indicates the complex conjugate. r0 is
the position of the fast incident–scattered electron, which we
will describe as a plane wave. rj (j = 1, 2) refer to the
positions of the bound (ejected) electrons. K = ki − ks is
the momentum transferred to the target and V represents the
Coulomb interaction between the incident electron and the
target given by

V = − 1

|r0 − ρ/2| − 1

|r0 + ρ/2| +
1

|r0 − r1| +
1

|r0 − r2| . (5)

Integrating over the position of the fast incident electron r0

using the Bethe transformation, we have

Tf i = 2

K2

∫
dr1

∫
dr2 exp(ıKr0)χ̄f (r1, r2)

× (−2 cos(Kρ/2) + exp(ıKr1) + exp(ıKr2))ϕi(r1, r2).

(6)

The final state wavefunction

χf (r1, r2) = φf (k1, r1, k2, r2) + φf (k1, r2, k2, r1)√
2

(7)

describes the state of the two equivalent ejected electrons,
where

φf (k1, r1, k2, r2) = v(k12)1F1(ıα12, 1,

− ı(k12r12 + k12r12))T (k1, r1)T (k2, r2), (8)

in which, we have introduced, as in the case of atoms [4] the
electron–electron correlation. Here, r12 = r1 − r2 and

v(k12) = exp
(
−πα12

2

)
� (1 − ıα12) (9)

represents the Gamow factor with

α12 = 1

2k12
, k12 = 1

2
(k1 − k2). (10)

The final state wavefunction satisfies the orthonormality
condition in the sense

〈φf (k1, r1, k2, r2)|φf (k′
1, r1, k′

2, r2)〉
= δ(k1 − k′

1)δ(k2 − k′
2). (11)

The TCC wavefunction

T (ki , rj ) = exp(−παi)(�(1 − ıαi))
2 exp(ıkirj )

(2π)3/2

× 1F1(ıαi, 1,−ı(kirja + kirja))1F1

× (ıαi, 1,−ı(kirjb + kirjb)) (12)

is borrowed from [10]. It describes the ejected electron in the
field of two Coulomb centres with

αi = −Zi

ki

, rja = rj + ρ/2,

rjb = rj − ρ/2, i, j = 1, 2, (13)

and Zi = 1. Finally, ϕi(r1, r2) represents the space part of the
initial state wavefunction.

Taking into account the symmetry of the final and initial
functions ϕi(r1, r2) = ϕi(r2, r1) with respect to the exchange
of r1 and r2, we can reduce the expression of the transition
matrix element to the following six-dimensional integral:

Tf i = 2
√

2

K2

∫
dr1

∫
dr2φ̄f (r1, r2)

× (−2 cos(Kρ/2) + exp(ıKr1) + exp(ıKr2))ϕi(r1, r2).

(14)

The space coordinates of the wavefunctions are defined in the
molecular frame of reference, whose origin is fixed on the
centre of mass of the molecule and whose z-axis is parallel to
the internuclear vector ρ of constant modulus.

In the case of N2, for which the equilibrium position
ρe = 2.0675 au, the initial wavefunction describing the
valence electrons is given by

ϕi(r1, r2) = 3σg(r1)3σg(r2), (15)

which is borrowed from [13].
In the case of H2, we consider the wavefunction ϕi(r1, r2)

for the initial electronic g fundamental state obtained by a
variational 14-parameters calculation [14]

ϕi(r1, r2) = A1ψ1 + A2ψ2 + A3ψ3, (16)

with

ψ1 = (1 + P12)(1 + Pab) exp(−α1r1a − α2r1b

−α3r2a − α4r2b − γ1r12),

ψ2 = (1 + P12) exp(−α5r1a − α6r1b

−α6r2a − α5r2b − γ2r12),

ψ3 = (1 + P12) exp(−α7r1a − α7r1b

−α8r2a − α8r2b − γ3r12). (17)
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Figure 1. The variation of the FDCS (in au) of the (e, 3e) ionization of N2 in terms of the two ejection angles θ1 and θ2, for Ei = 617 eV,
Es = 500 eV, E1 = E2 = 37 eV and θs = −6◦. (a) Without 1F1 (ıα12, 1, −ı(k12r12 + k12r12)). (b) With 1F1 (ıα12, 1, −ı(k12r12 + k12r12)).

Here, P12 and Pab are the operators that interchange electrons
(1 ←→ 2) and the two nuclei (a ←→ b), respectively.

For both molecules the correlated TCC product, described
above, was used with the total charge Z = Z1 + Z2 = 2
to satisfy the asymptotic conditions of the doubly charged
residual ions. The FDCS for both molecules will be obtained
by six-dimensional integrals, whose numerical calculations
were optimized by the application of an original and practical
method of determination of the confluent hypergeometric
functions presented in the appendix and the adoption of a
very efficient numerical integration procedure.

It is evident that, when we neglect, as a first
step, the correlation in the final state wavefunction
φf (r1, r2) represented by the confluent hypergeometric
function 1F1 (ıα12, 1,−ı(k12r12 + k12r12)), the transition
matrix element of N2 will be given by the products of two
three-dimensional integrals

Tf i = 2
√

2

K2
v(k12)(−2A1A2 cos(Kρ/2) + A3A2 + A4A1),

Aj =
∫

drj T̄ (kj , rj )3σg(rj ), j = 1, 2,

A2+j =
∫

drj T̄ (kj , rj ) exp(ıKrj )3σg(rj ). (18)

In our results, we will present two types of calculations,
one, designated by type (a), where we neglect the function

1F1 (ıα12, 1,−ı(k12r12 + k12r12)) in φf (k1, r1, k2, r2) but
keep the Gamow factor in equation (9) and the other,
without neglecting, designated by type (b). In type (a), the
orthogonality of the final state function is conserved but the
norm is destroyed (equation (11)) because of the presence
of the Gamow factor, and thus the results corresponding to
type (a) cannot be considered as absolute in contrast to those
of type (b).

3. Results

We have chosen in our calculations the same experimental
conditions for both molecules H2 and N2. Here, the scattered
electron of 500 eV is detected at an angle θs = −6◦ with
respect to the incident electron beam. The ejected electrons
of much lower energy values are detected in coincidence with
the scattered electron. The energy of the incident electron is
chosen by the energy conservation equation (3). In contrast to
the double ionization of H2 for which experimental results are
given in [9], no results are available at present for the double
ionization of N2.

In figures 1 and 2, we present plots of the variation of
the FDCS of the double ionization of the valence electrons
of N2 for two particular values. E1 = E2 = 37 eV in
figure 1 and E1 = E2 = 12 eV in figure 2. We can verify
first that, as both ejected electrons have the same energy, the
symmetry with respect to exchange σ (5)(θ1, θ2) = σ (5)(θ2, θ1)

is respected, as the diagonal line θ1 = θ2 is, in all cases, a
line of symmetry. We also observe that the regions on the
plots which correspond to nearly parallel ejection of the two
electrons give very small FDCS values, which is physically
reasonable because of Coulomb repulsion. These regions are
found in the central band θ1 ≈ θ2, and on the two extreme
sides 0◦ < θ1 < 60◦, 300◦ < θ2 < 360◦, 300◦ < θ1 < 360◦

and 0◦ < θ2 < 60◦ as expected. This is ensured by the
presence of the Gamow factor in equation (9), which is present
in both types of calculations (a and b) with and without the
final state correlation. In each figure, the color scale (or grey
scale) has been chosen in such a way as to ensure the best
visibility. Now, as mentioned above, the normalization of
the final state wavefunction being destroyed by the presence
of the Gamow factor in type (a) but not in type (b) means
the comparison between figures 2(a) and (b) can only be
qualitative.

The band of interest for the experimentalist is that found
between the two lines defined by θ2 = θ1 + 60◦ and θ2 =
θ1 + 300◦. In the correlated cases (figures 1(b) and 2(b)), we

3



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 015205 O Chuluunbaatar et al

0 60 120 180 240 300 360
0

60

120

180

240

300

360

2
(deg.)

1(d
eg

.)
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020

0 60 120 180 240 300 360
0

60

120

180

240

300

360

2
(deg.)

1(d
eg

.)

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

(a) (b)

Figure 2. The same as in figure 1 at Ei = 567 eV, Es = 500 eV and E1 = E2 = 12 eV.
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Figure 3. The variation of the FDCS of the (e, 3e) ionization of N2 in terms of the ejection angle θ2 for the same energy values as in figure 1,
θ1 = 45◦ and θs = −6◦.

observe a ‘valley’ along the direction θ2 ≈ θ1 + 180◦. This
valley has already been observed in the case of the photo-
double ionization of atoms such as He and Be in [15] and
that of (e, 3e) calculations of He [5, 16] and for Be in [17].
This valley is only partially present in the non-correlated cases
(figures 1(a) and 2(a)), which is interrupted by the peaks around
θ1 ≈ 40◦ and θ2 ≈ 220◦ in figure 1(a) and around θ1 ≈ 50◦ and
θ2 ≈ 240◦ in figure 2(a), which has no physical significance.
On the other hand, the valley and thus its neighbouring maxima
observed in the same region of figures 1(b) and 2(b) are well
explained in the dipole regime by the binary and recoil maxima
(see [16]).

To present the above results quantitatively, we consider
the variation of the FDCS in terms of one of the ejection
directions keeping the other angle fixed. In figures 3(a) and
(b) we show this variation for the energy conditions of figure 1
and θ1 = 45◦. In figures 4(a) and (b), we consider the energy
conditions of figure 2 and fix θ1 = 60◦. These 2D curves give
the magnitude and show clearly the effect of the introduction
of the correlation as discussed above.

Let us now pass to the results for the (e, 3–1e) double
ionization of H2, which corresponds to an (e, 3e) experiment

[9] in which only one of the ejected electrons is detected
in coincidence with the scattered electron. Experimentally,
this is interesting, as the number of coincidence events
increases significantly, making it easier to reproduce the
needed statistics. The energy conservation ensures that
the coincidences observed correspond well with a double
ionization event. In figure 5, we compare our results obtained
by the full correlated function given by the black continuous
line to those given by the complex scaling method [11] (broken
line) to those obtained by the application of the uncorrelated
TCC product [10] (dotted line) and by the application of the
simplified second Born method [12] (crossed line). We have
scaled these theoretical results to our result at the maximum
of around 345◦. The experimental results [9] on the other
hand were scaled to our results around 300◦. We observe
that all theoretical approaches reproduce curves, which are
symmetrical around 345◦, the direction of the momentum
transfer K = ki − ks which is an axis of symmetry in the first
Born theory. The experimental peak is found around 320◦,
and for the moment, neither theory can reproduce this result.
We observe nevertheless that our correlated results in the
continuous black line show an improvement, when compared

4
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Figure 4. The variation of the FDCS in (au) of the (e, 3e) ionization of N2 in terms of the ejection angle θ2 for the same energy values as in
figure 2, θ1 = 60◦.
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Figure 5. The variation of the fourfold differential cross section of
the (e, 3–1e) ionization H2 for Ei = 612 eV, Es = 500 eV, E1 =
10 eV, E2 = 51 eV. θs = 1.5◦. Present work, continuous line. Full
squares with error bars correspond to the experimental results of [9]
scaled to the theory for the best visual fit at the binary lobe (around
300◦). Dotted line [10], broken line [11], and crossed line [12] are
scaled to the continuous line at 345◦.

especially with the one corresponding to the uncorrelated TCC
(dotted line). It very nearly passes the experimental values in
the regions found between 250◦ and 300◦ and in the region
between 90◦ and 120◦. More experimental results with higher
incident electron energy values are needed in the future to
tackle the present disagreement with the theory.

4. Conclusion

We have determined fully differential cross sections of the
(e, 3e) of the valence electrons of N2 in an approximation
where no account has been taken of the interaction incident
electron with the core by employing an appropriate correlated
TCC wavefunction for the description of the two slow ejected
electrons. We have shown that the introduction of the
correlated part of the final state wavefunction is necessary

to reproduce the characteristic structure of the (e, 3e) curve
observed in the case of other targets. We also observe that the
introduction of the final state correlation improves significantly
the results on the (e, 3–1e) of H2.
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Appendix. High performance and rapid algorithm
for the calculation of the confluent hypergeometric
function

Let us consider the confluent hypergeometric function y(x) =
1F1(a, b, ıx) with the complex parameters a and b and
argument x on the finite interval x ∈ [0, xmax]. This function
satisfies Kummer’s equation:

x
d2y(x)

dx2
+ (b − ıx)

dy(x)

dx
− ıay(x) = 0. (A.1)

High-order derivatives of y(x) are calculated by the relation

dny(x)

dxn
= ın

�(b)

�(a)

�(a + n)

�(b + n)
1F1(a + n, b + n, ıx). (A.2)

Using equation (A.1) we obtain the recurrence formula for the
derivatives of y(x):

x
dny(x)

dxn
+ (b + n − 2 − ıx)

dn−1y(x)

dxn−1

− ı(a + n − 2)
dn−2y(x)

dxn−2
= 0, n � 2. (A.3)

The main idea of the algorithm is to use the predetermined
values of y(x) and their derivatives on the set of points
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{xi = h i}Ni=0 with step h = xmax/N . For the interval
x ∈ [0, xmax], the Taylor series gives

y(x) ≈ ȳ(x) = y(xio ) +
n∑

i=1

1

i!

diy(x)

dxi

∣∣∣∣∣
x=xio

(x − xio )
i .

(A.4)

The optimal point xio is defined from the condition
min0�i�N |x − xi |. From here we obtain io = [x/h + 1/2]
and |x − xio | � h/2, where [x] designates the integer part
of x.

If h < 1, the double precision |y(x) − ȳ(x)| � ε =
2 × 10−16 is usually achieved at n < 20.

For the beforehand calculated values of y(x) and their
derivatives on the set of points {xi}Ni=0, we use the Fortran
code CONHYP [18].

Also if xi > 2, the high-order derivatives of y(xi) can
be obtained from the recurrence formula (A.3), using only
numerical values of y(xi) and its first derivative.
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