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2 Université Paul Verlaine—Metz, Laboratoire de Physique Moléculaire et des Collisions,
1 Bd Arago, 57078 Metz Cedex 3, France
3 National University of Mongolia, School of Physics and Electronics, Ulaanbaatar, Mongolia

Received 25 July 2007, in final form 29 October 2007
Published 19 December 2007
Online at stacks.iop.org/JPhysB/41/015204

Abstract
The fully differential cross section (FDCS) of the double ionization of the hydrogen molecule
by electron impact, with the coincidence detection of the two ejected and the scattered
electrons, is determined by the application of a product of two modified two-centre Coulomb
continuum (MTCC) wavefunctions describing the two ejected electrons. The MTCC, which
fulfils the correct boundary conditions asymptotically up to the order O((kr)−2), is obtained in
a closed analytical form by solving the Schrödinger equation of an electron with wave vector k
and position vector r in the Coulomb field of two fixed nuclei. After the study of the variation
of the (FDCS) for some typical geometries the multiply differential cross section of the
(e, 3 − 1e) process is determined and compared to the experimental values.

1. Introduction

The multiple ionization of atoms and molecules by photon
or charged-particle impact is of considerable interest in many
branches of physics, such as plasma physics, astrophysics and
radio-physics, as it results in the transfer of an appreciable
amount of energy to the target and consequently to its
environment. Such processes are also important to understand
the electronic structure, the ionization mechanisms and to
probe electron–electron correlation in the case of double
ionization which is the main cause of this process [1].

The coincidence detection techniques, measuring the
momenta of fragments emerging from atomic collision
processes and especially from dissociative ionization
experiments of diatomic species by electron impact, are now
undergoing a very rapid development [2–5]. This type of
coincidence detections has been already performed in collision
experiments involving the multiply charged ionic projectiles
and the hydrogen molecule [6–9].

The electronic two-centre problem, met in the study of
inelastic collisions of diatomic targets, is very closely related
to the Coulomb three-body problem that one meets in simple
ionization experiments by electron impact [10]. In the last few
years, many elegant models have been proposed to describe
the dynamics of the ejected electron in an (e, 2e) experiment,
which presents a unique physical situation together with that of
(γ , e), where an electron can be found in the field of two fixed
nuclei. Joulakian et al [11] used an approximate 3C-type one
parameter wavefunction inspired from the Pluvinage model
[12] constructed by the product of two Coulomb functions.
Serov et al [13] compared a wave packet evolution approach
to that using partial waves constructed by the exact solutions
in prolate spheroidal coordinates of the two-centre Coulomb
problem [14].

In this paper, we study theoretically the double ionization
of H2 by electron impact by describing the double electronic
two-centre continuum by a product of two modified two-
centre Coulomb continuum (MTCC) [15] wavefunctions.
This is particularly interesting, as the double continuum is
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constituted by two equivalent electrons coming from the
electron cloud of the same target, in contrast to (e, 2e)
experiments, where only one of the electrons comes from the
target. This permits the verification of different theoretical
models proposed to describe the electronic continuum and
understand the mechanisms of the double ionization. Up to
now, (e, 3e) experiments have only been performed on atoms
[16]. Recently, (e, 3−1e) experiments on molecular hydrogen
at about 600 eV incident energy have been reported [17]. These
experiments are double ionization experiments, where only
one of the ejected electrons is detected in coincidence with the
scattered electron.

The paper is organized as follows. In section 2, we give
briefly the basic expressions to calculate the fully differential
ionization dissociation cross section of the ground state of a
hydrogen molecule ion by a fast electron. In section 3, we
present and comment on our results, and conclude.

2. Theory

The differential cross section, in a general out-of-plane
geometry of the three electrons and one of the protons H+

is nine fold and it is given by

σ (9) = d9σ
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where �ρ,�1 and �2 are the solid angles of the internuclear
axis and the ejection directions. Here, the directions of the
incident and the scattered electrons define the reference plane
such that for the scattered electron we need only the polar
angle θs . ki, ks, k1 and k2 represent respectively the moduli
of the wave vectors of the incident, scattered and ejected
electrons. Assuming that all directions of the molecule are
equally probable, we average over all the possible directions
of the internuclear axis to obtain the seven-fold differential
cross section:

σ (7) = 1

4π

∫
d�ρσ

(9). (2)

The conservation of the energy for fixed internuclear distance
ρ gives

Ei = Es + E1 + E2 + I, (3)

where Ei,Es, E1 and E2 represent respectively the energies of
the incident, scattered and ejected electrons, I = 51 eV being
the energy necessary to eject two electrons from the target
at the equilibrium internuclear distance ρe = 1.4 au. In the
frame of first-order Born approximation, ignoring exchange
between the incident and the ejected electrons, the transition
matrix element Tf i will be given in the case of an unpolarized
incident electron beam by

Tf i = 1

2π

∫
dr1

∫
dr2

∫
dR exp(ıKR)χ∗

f (r1, r2)

× V ϑ	g
(r1, r2, ρ), (4)

where rj (j = 1, 2) refer to the positions of the
bound electrons, χ∗

f represents the complex conjugate of

the wavefunction describing the two ejected electrons, R
represents the position of the fast incident electron described
here by a plane wave and K = ki − ks gives the momentum
transferred to the target. The potential V represents the
interaction between the incident electron and the target H2

V = − Z

Ra

− Z

Rb

+
1

r1p

+
1

r2p

(5)

with Z = 1 for H2. From figure 1 we can have

Ra = R + ρ/2, r1p = R − r1,

r1a = r1 + ρ/2, r2a = r2 + ρ/2,

Rb = R − ρ/2, r2p = R − r2,

r1b = r1 − ρ/2, r2b = r2 − ρ/2,

(6)

where Ra,Rb and rja, rjb are the distances of the incident
electron and ejected electron j from the nuclei a and b,
respectively; rjp is the distance of the incident electron
from the ejected electron j . The wavefunction ϑ	g

(r1, r2, ρ)

describes the initial electronic 	g fundamental state of the
target and was obtained by a variational three-parameter
calculation borrowed from [18]

ϑ	g
(r1, r2, ρ) = N(ρ)(φ(1)ψ(2) + ψ(1)φ(2)), (7)

with

φ(j) = xa(j) + εxb(j), ψ(j) = εxa(j) + xb(j),

xa(j) = exp(−βξj − γ ηj ), xb(j) = exp(−βξj + γ ηj ),

(8)

where ξj = (rja + rjb)/ρ, ηj = (rja − rjb)/ρ; β = 0.835,

γ = 0.775 and ε = 0.137 are variational parameters that
we have determined for the equilibrium internuclear distance
ρe = 1.4 au. Here the norm N(ρe) = 0.255 and the ground-
state energy is equal to −1.149 au.

In the final state, the two ejected electrons in the field of
the two nuclei will be described by a product of two MTCC
[15]:

χf (r1, r2) = υ(|k1 − k2|)

× φf (k1, 1)φf (k2, 2) + φf (k2, 1)φf (k1, 2)√
2

, (9)

with
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(2π)3/2
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Mi = exp(−παi)
�(1 − ıαi − ıεi)

2

�(1 − ıεi)2
, (11)

where 1F1(a, b, x) is the Kummer confluent hypergeometric
function, αi = −Z/ki is the Sommerfeld parameter and εi is
the small real parameter. The term υ is the repulsive Gamow
factor:

υ(|k1 − k2|) = exp(−πα12/2)�(1 − ıα12),
(12)

α12 = 1

|k1 − k2| .
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Figure 1. (a) The reference frame with the different wave vectors ki , ks , k1 and k2 representing the momenta of the incident, scattered the
two ejected electrons, respectively. θs, θ1 and θ2 denote the scattered and ejected electron angles, respectively. (b) The different position
vectors of the incident and the bound electrons with respect to the two nuclei. (c) The different wave vectors which define the momentum
transfer K and the recoil momentum and krec by momentum conservation law.

Integrating over the position of the fast incident electron
R using the Bethe transformation∫

dR
|R − r| exp(ıKR) = 4π exp(ıKr)

K2
(13)

and substituting the functions defined in equations (7) and (9)
into equation (4), and using the Fourier transform for one of
the centres for each electron, we get

Tf i = −2
√

2N(ρ)

(2π)9K2
exp(ı(K − k1 − k2)ρ/2)

× M[(ε2 + 1)D + 2εP ], (14)

where

M = υ∗(|k1 − k2|)M∗
1 M∗

2 ,

D = H(k1, k2, K, X, Y )

− Z(1 + exp(−ıKρ))G(k1, k2, X, Y ), (15)

P = U(k1, k2, K, X, Y )

− Z(1 + exp(−ıKρ))S(k1, k2, X, Y ),

with

H(k1, k2, K, X, Y )

= H1(k1, k2, K, X, Y ) + H2(k2, k1, K, X, Y ),

Hj (kj , k3−j , K, X, Y )

= I (kj , k3−j , K, X, Y ) + I (kj , k3−j , K, Y,X),

G(k1, k2, X, Y )

= I (k1, k2, 0, X, Y ) + I (k1, k2, 0, Y,X), (16)

U(k1, k2, K, X, Y )

= U1(k1, k2, K, X, Y ) + U2(k2, k1, K, X, Y ),

Uj (kj , k3−j , K, X, Y )

= J (kj , k3−j , K, X, Y ) + J (kj , k3−j , K, Y,X),

S(k1, k2, X, Y )

= J (k1, k2, 0, X, Y ) + J (k1, k2, 0, Y,X),

and

I (kj , k3−j , Q, X, Y )

= F(kj , kj − Q, X, Y )F (k3−j , k3−j , Y,X), (17)

J (kj , k3−j , Q, X, Y )

= F(kj , kj − Q, X, Y ) × F(k3−j , k3−j , X, Y ).

Here X = (β + γ )/ρ, Y = (β − γ )/ρ and

F(k, q, X, Y )

=
∫

dτ exp(ıτρ)Wα,ε(k, τ , X)Wα,ε(k, q − τ , Y )

= exp(ıqρ)

∫
dτ exp(−ıτρ)Wα,ε(k, τ , Y )Wα,ε

× (k, q − τ , X). (18)
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Figure 2. The variation of σ (9) in terms of θρ and θs for the (e, 3e)
double ionization of H2 for Ei = 612 eV, Es = 500 eV, E1 = 51 eV
and E2 = 10 eV representing respectively the energy values of the
incident, scattered and ejected electrons. The two ejected electrons
emerge in opposite directions with k1 parallel to K. Here ε1 =
ε2 = 0.

The function Wα,ε(k, q, λ) in the integrand is given [15] by

Wα,ε(k, q, λ)

=
∫

dr exp(−ıqr − λr)1F1(−ıα, 1 + ıε, ı[kr + kr])

= 8π

(λ2 + q2)2

(
λ2F1(−ıα, 2; 1 + ıε, x)

− αk

1 + ıε
2F1(1 − ıα, 2; 2 + ıε, x)

)
, (19)

where x = 2(qk+ıλk)/(λ2 +q2) and 2F1(a, b; c, x) represents
the hypergeometric function. For ε = 0 the integral in
equation (19) can be evaluated analytically [11]:

Wα,0(k, q, λ) = 8π

(λ2 + q2)2
(1 − x)ıα

×
(

λ(1 + ıα) − ıα
λ − ık

1 − x

)
. (20)

3. Results

After verification of our procedure and testing all the symmetry
properties of σ (9), we have studied its variation in terms of the
orientation of the internuclear axis, the scattering and ejection
angles for different values of ε1 = ε2 < 1. We have observed
that the influence of the introduction of these parameters is
relatively small, and does not change the structure of the
curves concerning the fully differential cross section, and that
it becomes sensible for the (e, 3 − 1e) results presented in
figure 5. We have thus chosen to present for the next three
figures only the results obtained for ε1 = ε2 = 0 for which the
basic integral equation (20) can be calculated analytically. We
have chosen as in the experiment of the Orsay group [17]
an incident electron energy value of 612 eV. In figure 2,
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Figure 3. The variation of σ (9) in terms of the scattering angle θs of
the (e, 3e) double ionization of H2, for the same energy values as in
figure 2. The full line corresponds to the case where k1 is parallel to
K and the dashed line to the case where k2 is parallel to K. Here
ε1 = ε2 = 0.

we show the variation of σ (9) with the orientation of the
internuclear axis given by θρ and the scattering angle θs .
We have chosen opposite ejection directions with k1 parallel
to K and fixed ejection energy values of 51 eV and 10 eV,
respectively.

It is worth noting here that, as the double ionization and
dissociative ionization of H2 are processes which are used
to produce protons [19, 20], our present results could bring
valuable information about the favourable directions for the
emergence of the protons also. We of course admit here, that
the electronic motion is much faster than the rotational and
vibrational movements and that the ionization process is a
vertical transition from the fundamental electronic level to the
double continuum. In figure 2, we can observe that for small
scattering angles between (0◦ and 5◦), we have two peaks
one around 170◦ and the other around 80◦. These directions
correspond respectively to situations for which the molecule
is aligned with the momentum transfer and perpendicular to
it. In spite of the fact that double ionization is mainly due to
quantum effects such as electron–electron correlation, we can
here try to explain this behaviour of σ (9) by considering the
momentum conservation equation

K = ki − ks = k1 + k2 + krec (21)

where krec, the recoil momentum transferred to the target as a
whole, is in this geometry parallel to K. It is shared equally
by the two nuclei, only in two situations, one when their axis
is perpendicular to K and when they are aligned with it. Now
it happens that these two situations correspond to the two
maxima observed for a given θs .

As the scattering angle is increased, we see that the two
maxima follow the momentum transfer direction, until we
arrive to the maximum at θs = 18◦. In this scattering direction,
we can verify that the magnitude of the momentum transfer K
has reached that of k1. This means that

k2 = −krec (22)

for all values of θρ . This is classically the most favourable
situation as for all other values of θs, k2 will not be aligned to
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Figure 4. The variation of σ (7) in atomic units for the (e, 3e) double ionization of H2 in terms of the ejection direction of the electron 1. The
ejection energy values are 51 eV and 10 eV and ε1 = ε2 = 0. (a) The incident energy value is 5612 eV with a scattering angle θs = 0.45◦.
(b) The incident energy value is 612 eV with a scattering angle θs = 1.5◦. The ejection direction of the second electron is taken parallel to
the momentum transfer K around θ2 � 330◦.

krec. We also observe that σ (9) is relatively less sensitive to
the variation of θρ at this scattering angle. This corresponds to
the Bethe ridge situation in (e, 2e) simple ionization process
when k1 = K, which is a situation of a head on collision of the
projectile electron with the target electron, such that the rest
of the target has very little influence and does not participate
in the reaction.

To show the molecular aspect in our study, we present
in figure 3 the variation of σ (9) with the scattering angle for
ρ‖K. We chose opposite ejection directions like above for
two cases: in one k1 parallel to K, and second for k2 parallel
to K. In both cases, interference patterns appear as expected
due to the diatomic nature of the target, which plays the roll of
two Young obstacles. The presence of these patterns is due to
cos(Kρ/2), which appears in the expression of the transition
matrix element. This is discussed in [11, 21]. In the case
(k2 parallel to K) the value of θs = 15◦ corresponds to the
situation where the magnitude of the momentum transfer K
is equal to the magnitude of k2 which is smaller. Now in
this case, shown by the dashed line in figure 3, we have a
much less pronounced maximum. This is due to the fact that
in this case krec = −k1, which is relatively large. Now if
krec is relatively large the residual ion will get more of the
available energy making the double ionization process less
probable.

We next pass to the study of the variation of σ (7)

obtained by equation (2). This will correspond, as we said,
to experiments, where only the scattered and the ejected
electrons are detected in coincidence. One high (5612 eV)
and one intermediate (612 eV) incidence energy values are
investigated. We have kept the ejection energy values the
same as in the preceding cases. Here, we fix the ejection
direction of the second electron parallel to K and vary the
ejection angle of the first electron. This variation is shown in
figures 4(a) and (b). In the case of high incidence energy, we
have considered a small scattering angle θs = 0.45◦ and in
the case of intermediate incidence energy, a larger scattering
angle θs = 1.5◦. In the absence of experimental results we
can observe that, as expected, opposite ejection is the most
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Figure 5. The variation of σ (5) in atomic units of the (e, 3 − 1e)
double ionization of H2 with the ejection angle of electron 1, for the
same energy values as above as in figure 2. The unobserved electron
is the one having an energy of 10 eV. The scattering angle θs = 1.5◦.
Full squares with error bars correspond to experimental results of
[17] scaled to the theory for the best visual fit at the binary lobe
(around 300◦).

probable situation in both cases and that higher energy values
give higher magnitudes for σ (7).

Once we have done, the necessary observations
concerning the ‘normal’ behaviour of the multiply differential
cross sections (MDCS) with our two-centre approach, we have
tried to reproduce the results of the (e, 3 − 1e) experiments
realized by the Orsay group [17]. (e, 3−1e) designates double
ionization experiments in which the scattered and only one
of the ejected electrons are detected in coincidence. The
energy of the non observed electron is deduced from the energy
conservation equation (3). This presents a practical advantage
for the experimental realization, as it needs the coincidence
detection of two electrons instead of three and thus larger
MDCS. Theoretically this can be determined by integrating
our results over the solid angle �2 of the second ejected
electron

σ (5) =
∫

d�2σ
(7). (23)
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We observe in figure 5 that our method reproduces,
for all the choices of εi , the experimental structure of the
variation of σ (5) in terms of the ejection angle θ1, with
two maxima and two minima shifted with respect to the
experimental curve. The theoretical results give all the same
predominant direction parallel to K around θ1 = 350◦. The
experimental curve seems to have shifted. This disagreement
of theory and experiment is also observed in simple ionization
(e, 2e) coincidence detection experiments, specially in the
intermediate incidence energy regime. At higher incident
energy values it disappear [22] and both experiment and
MTCC give similar results with the predominant ejection
direction parallel to K. Now the challenge for our theory
is to explore the different improvements in the intermediate
energy that we could introduce to try to match the theoretical
results. We intend to introduce in a next step a diatomic
distortion of the target, which will be based, by analogy
to the one-centre problem, on the solutions of the two-
centre Schrödinger equation separable in prolate spheroidal
coordinates, which permit us to construct diatomic partial
waves [14].

4. Conclusion

We have determined the fully differential cross section of
the double ionization of H2 by applying a product of two
modified two-centre continuum functions. Our results show
that the scattering direction, which fixes the direction of the
momentum transfer, is the principal factor which will define
the preferential directions for the emergence of the protons. It
is also shown that as expected the two ejected electrons tend
to emerge in opposite directions. The comparison with the
results of (e, 3 − 1e) experiments show that the use of the
first Born term in the perturbation gives the good structure,
but it cannot give the optimal direction of the experiment.
Here, the difficulty of describing the two-centre continuum is
added to the main difficulty of describing the double electronic
continuum and to the difficulty of describing second-order
effects. Nevertheless, this is a preliminary work to which we
intend to introduce an appropriate diatomic distorted waves
constructed by the solutions of the two-centre Schrödinger
equation separable in prolate spheroidal coordinates. This
demands a larger-scale computational effort that we intend to
realize next.

Acknowledgments

We thank the Region of Lorraine (France) for its financial
support, and the C.I.N.E.S. (Centre Informatique National
de l’Enseignement Superieur) for providing computing
facilities. This work was partially supported by the theme
09-6-1060-2005/2009 ‘Mathematical support of experimental
and theoretical studies conducted by JINR’.

References

[1] Byron F W Jr and Joachain C J 1967 Phys. Rev. 164 1–9
[2] Dörner R et al 1996 Phys. Rev. Lett. 77 1024–7
[3] Lafosse A, Houver J C and Dowek D 2001 J. Phys. B: At. Mol.

Opt. Phys. 34 819–37
[4] Edwards A K and Zheng Q 2001 J. Phys. B: At. Mol. Opt.

Phys. 34 1539–48
[5] Weber Th et al 2001 J. Phys. B: At. Mol. Opt. Phys.

34 3669–78
[6] Corchs S E, Busnengo H F and Rivarola R D 1999 Nucl.

Instrum. Methods Phys. Res. B 149 247–56
[7] Wang Y D, McGuire J H and Rivarola R D 1989 Phys. Rev.

A 40 3673–80
[8] Corchs S E, Rivarola R D, McGuire J H and Wang Y D 1993

Phys. Rev. A 47 201–207
[9] Corchs S E, Rivarola R D, McGuire J H and Wang Y D 1994

Phys. Scr. 50 469–72
[10] Brauner M, Briggs J S and Klar H 1989 J. Phys. B: At. Mol.

Opt. Phys. 22 2265
[11] Joulakian B, Hanssen J, Rivarola R and Motassim A 1996

Phys. Rev. A 54 1473–79
[12] Pluvinage P 1951 Phys. Radium 12 789–92
[13] Serov V V, Derbov V L, Joulakian B B and Vinitsky S I 2001

Phys. Rev. A 63 062711-1–8
[14] Serov V V, Joulakian B B, Pavlov D V, Puzynin I V and

Vinitsky S I 2002 Phys. Rev. A 65 062708-1–7
[15] Chuluunbaatar O, Joulakian B B, Tsookhuu Kh and

Vinitsky S I 2004 J. Phys. B: At. Mol. Opt. Phys.
37 2607–16

[16] Berakdar J, Lahmam-Bennani A and Dal Cappello C 2003
Phys. Rep. 374 91–164

[17] Lahmam-Bennani A, Duguet A and Roussin S 2002 J. Phys.
B: At. Mol. Opt. Phys. 35 L59–63

[18] Mueller C and Eyring H 1951 J. Chem. Phys. 19 1495–7
[19] Dunn G H and Kieffer L J 1963 Phys. Rev. 132 2109–2117
[20] Crowe A and McConkey J W 1973 J. Phys. B: At. Mol. Opt.

Phys. 6 2088–106
[21] Stolterfoht N et al 2001 Phys. .R  ev.  L  ett. 87 023201
[22] Weck P F, Fojón O A, Joulakian B, Stia C R, Hanssen J and

Rivarola R D 2002 Phys. Rev. A 66 012711-1–8

6

http://dx.doi.org/10.1103/PhysRev.164.1
http://dx.doi.org/10.1103/PhysRevLett.77.1024
http://dx.doi.org/10.1088/0953-4075/34/5/311
http://dx.doi.org/10.1088/0953-4075/34/8/317
http://dx.doi.org/10.1088/0953-4075/34/18/305
http://dx.doi.org/10.1016/S0168-583X(98)00934-3
http://dx.doi.org/10.1103/PhysRevA.40.3673
http://dx.doi.org/10.1103/PhysRevA.47.201
http://dx.doi.org/10.1088/0031-8949/50/5/004
http://dx.doi.org/10.1088/0953-4075/22/14/010
http://dx.doi.org/10.1103/PhysRevA.54.1473
http://dx.doi.org/10.1051/jphysrad:01951001208078900
http://dx.doi.org/10.1103/PhysRevA.63.062711
http://dx.doi.org/10.1103/PhysRevA.65.062708
http://dx.doi.org/10.1088/0953-4075/37/12/015
http://dx.doi.org/10.1016/S0370-1573(02)00515-X
http://dx.doi.org/10.1088/0953-4075/35/2/102
http://dx.doi.org/10.1063/1.1748107
http://dx.doi.org/10.1103/PhysRev.132.2109
http://dx.doi.org/10.1088/0022-3700/6/10/022
http://dx.doi.org/10.1103/PhysRevLett.87.023201
http://dx.doi.org/10.1103/PhysRevA.66.012711

	1. Introduction
	2. Theory
	3. Results
	4. Conclusion
	Acknowledgments
	References

