
Chapter 11
Separable Potentials Model for Atoms
and Molecules in Strong Ultrashort
Laser Pulses

Yu. V. Popov, A. Galstyan, B. Piraux, P. F. O’Mahony, F. Mota-Furtado,
P. Decleva and O. Chuluunbaatar

Abstract In this contribution, we discuss a model based on the replacement of the
potential describing the interaction of a single active electron with the nucleus or the
nuclei of atoms or molecules, with a potential, separable in momentum space and
consisting of several terms. Each term supports only one single electron bound state
of the system.We apply this model to the description of the interaction of atomic and
molecular hydrogen, hydrogen anion and water molecule with an external ultrashort
laser pulse. As expected, this short range separable potential model works very well
for the hydrogen negative ion due to the short range nature of it real potential. In
the case of other systems, we show that, at high frequency, taking into account the
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long range interaction in the final state is equivalent to multiplying the ionisation
probability by a constant factor independent of the laser parameters.

11.1 Introduction

Nonlocal two-particle separable potentials are widely used in nuclear physics. For
more than two particle scattering processes, they might significantly simplify the
calculation of matrix elements, in particular if it involves the evaluation of the two-
body scattering amplitudes (see e.g. [1]). In some cases, one can even solve the
problem analytically, e. g. when a light particle interacts with two heavy ones (see
Takibayev [2]). This model was applied to study the structure of H+

2 by the same
author, but to our regret this paper exists only in Russian and does not have an online
version [3]. It is important to note at this stage that in the configuration space the
separable potential has a short range.

Given the simplicity of the calculations, the separable potentials can be applied to
treat the laser-matter interactions. In this case, the main difficulty is the long range
of the Coulomb interaction, which is usually dominating. Besides this problem, the
use of separable potentials raises additional questions:

• Can a separable potential be uniquely defined?
• The observables in the presence of the electromagnetic field should be gauge
invariant. In quantum physics the gauge invariance is assured by a property of
locality of the potentials. What to do with separable non-local potentials?

• What is the predictive power of this model? Does it allow to find new mechanisms
and processes in the domain of its validity?

These are the questions we are trying to answer in this chapter.
The model we consider here (we abbreviate it below by SPAM for Separable

Potentials for Atoms andMolecules), was first introduced in [4] to describe the inter-
action of atomic hydrogen with a laser pulse. The separable potentials are defined in
terms of the bound state wave functions, and the continuum functions are obtained
by solving the stationary Schrödinger equation. Subsequently in [5–8], more com-
plicated potentials have been considered and the calculation of different observables
in the case of atomic hydrogen interacting with a laser pulse has been discussed in
detail.

Electron energy and angular spectra in the case of atomic hydrogen, interacting
with an external electromagnetic field of fixed frequency, have beenmeasured [9–16].
On the other hand, a robust numerical code exists that is solving the time dependent
Schrödinger equation (TDSE) bydecomposing the initialwave function in aSturmian
basis and propagating it during its interaction with a laser pulse [17, 18]. Thus it is
possible to compare our SPAMresults to both experimental data and results of “exact”
numerical calculations, such as TDSE based simulations, which may be considered
as “numerical experiments”. Finally, separable potentials have been also used in
[19, 20], focusing, in particular, on the gauge invariance problem.
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It is worth noting that the SPAM model is related to the strong field approxima-
tion (SFA) [21]. We remind here that SFA neglects the Coulomb potential after the
emission of the electron when the electric field is sufficiently intense. In this case,
the solution of the TDSE with a time dependent dipole interaction potential is a
Volkov wave, so that the transition matrix elements in the length gauge and in the
velocity gauge can be easily calculated. We can generalise it and build an iterative
series in the Coulomb potential, which allows one to calculate the SFA wave packet
at different orders in the Coulomb potential [22]. This approximation has, however,
serious drawbacks:

• it is gauge dependent;
• the series has been shown to diverge in some situations [23].

Finally, within the single active electron (SAE) approximation, the SPAM can be
applied to many-electron systems. The SAE approximation is used in the case of a
single electron ionisation of a complex target by different projectiles, in particular
by a laser pulse. The main idea behind the SAE approximation is that only one
electron in the atomic (molecular) target is interacting with the projectile, and this
is the electron which leaves the target. All other electrons are frozen. This model
is working pretty well in the case of high energy projectiles, when the momentum
of the ejected particle is much higher than a characteristic velocity of the target
electrons, meaning that the transferred momentum has to be big. Conversely, if it is
not the case, then the slow electron inelastically interacts with other electrons, and
the SAE model is no longer applicable. For example, if the core electron is ejected
from the atom, this vacancy will be filled with outer electrons, which could lead to
cascade processes and, possibly, auto-ionisation. The SAE model would work well
only if the ejection of the electron is much faster than these subsequent processes.
We therefore expect that the SAE model can be successfully applied for the outer
orbital ionisation.

All these features will be discussed in more detail below. Atomic units (a.u.), in
which � = e = me = 1, are used throughout unless otherwise specified.

11.2 Atomic Hydrogen

11.2.1 Preliminary Remarks on Gauge Invariance

The property of gauge invariance of theories which include the electromagnetic field
is a central problem of such theories. This property allows one to obtain various
equivalent forms of the Schrödinger equation related to each other through unitary
transformations: this leads to the invariance of the physical observables. Let us recall
that the Maxwell equations can be written in terms of the scalar and vector poten-
tials,U (r, t) andA(r, t). These potentials determine unambiguously the electric and
magnetic fields. However, the potentials themselves are not uniquely defined. For
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example, two sets of potentials (A′,U ′) and (A,U ), where

A′ = A + ∇ f, U ′ = U − 1

c

∂ f

∂t
,

give the same electric and magnetic fields for an arbitrary scalar function f (r, t).
The electric field E is related to the potentials as follows:

E(r, t) = −1

c

∂

∂t
A(r, t) − ∇U (r, t). (11.1)

In the so-called Coulomb gauge it is assumed that

divA = 0.

Furthermore, one makes a physical assumption about weak dependence of the
scalar potential on the coordinate within the atom, i.e.

U (r, t) � U (0, t),

which allows one to neglect the gradient of the scalar potential in (11.1). In addition,
we write

A(r, t) � A(0, t) = A(t).

which is the well known dipole approximation.
In the following, we consider a linearly polarised pulsed field which means that

the vector potential can be written as A(t) = eA(t), where e is the unit polarisation
vector1 and

A(t) =
√

I

I0
sin2

(
π

t

T

)
sin(ωt), 0 ≤ t ≤ T .

Here ω is field frequency, T = 2πN
ω

is the total pulse duration where N is the
number of optical cycles and I is the peak intensity of the pulse with I0 = 3.5 × 1016

W/cm2. It is important to note that A(t)must be zero before and after the laser pulse.
Consider the TDSE in velocity form (V-form) describing the interaction between

an electric pulse and a hydrogen-like atom which is initially in its ground state,

[
i
∂

∂t
− 1

2

(
−i∇ + 1

c
eA(t)

)2

+ Z

r

]
ΦV (r, t) = 0, ΦV (r, 0) = ϕ0(r) =

√
Z3

π
e−Zr ,

∫
d3r |ΦV (r, t)|2 = 1, (11.2)

1The approach is not limited to linear polarisation of the external field or a particular form of the
envelope.
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where Z designates the nuclear charge. By using the well known unitary Göppert-
Mayer transformation that relates the full wave packet in velocity and length gauges,

ΦV (r, t) = exp

[
−i

1

c
A(t)(er)

]
ΦL(r, t), (11.3)

we obtain from (11.2) the length form (L-form) of the TDSE:[
i
∂

∂t
+ 1

2
� − E(t)(er) + Z

r

]
ΦL(r, t) = 0, ΦL(r, 0) = ϕ0(r).

Here E(t) = − 1
c

∂A(t)
∂t .

Usually one requires a good numerical algorithm to obtain a good agreement of the
computed observables (level populations, electron angular and energy distributions
etc.) in the L- and V- forms. In the exact theory they must be identical. In the
momentum space the V-form TDSE takes the form

[
i
∂

∂t
− 1

2
(p + 1

c
A(t)e)2

]
Φ̃V (p, t) +

∫
d3u

(2π)3

4π Z

|p − u|2 Φ̃V (u, t) = 0, (11.4)

Φ̃V (p, 0) = ϕ̃0(p) = 8
√

π Z5

(p2 + Z2)2
.

In (11.4), the function Φ̃V (p, t) designates the Fourier transform of the function
ΦV (r, t). Similarly, the L-form TDSE becomes

[
i
∂

∂t
− p2

2
− iE(t)(e · ∇ p)

]
Φ̃L(p, t) +

∫
d3u

(2π)3

4π Z

|p − u|2 Φ̃L(u, t) = 0,

Φ̃L(p, 0) = ϕ̃0(p), (11.5)

and the gauge transformation (11.3) becomes

Φ̃V (p, t) = Φ̃L(p + 1

c
A(t)e, t).

Equations (11.4) and (11.5) are the basic ones that we use in our SPAM model.

11.2.2 Definition of Separable Potentials

First of all and based on [24, 25], it is possible to show that the kernel of the Coulomb
potential may be expanded as follows
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4π Z

|p − u|2 = (2π)2Z

pu

∞∑
l=0

(l!)2
(

4qp

q2 + p2

)l+1 (
4qu

q2 + u2

)l+1

×

l∑
m=−l

Y ∗
l,m(θp, φp)Yl,m(θu, φu)

∞∑
n=0

n!
(n + 2l + 1)! C

l+1
n

[
q2 − p2

q2 + p2

]
Cl+1
n

[
q2 − u2

q2 + u2

]
.

(11.6)
In other words, this Coulomb kernel may be expanded as a sum of products

of separable potentials, given by Gegenbauer polynomials Cl+1
n (x). Note that this

expansion is not unique since it depends on the arbitrary parameter q. In practice, we
have to truncate the infinite expansion. In this case we deal again with a sum of the
short range separable potentials, and q determines their range in the configuration
space [8]. Equation (11.6) presents one way to define non-local separable potentials.
Here, however, we focus on a different method.

Before describing thismethod inmore detail, let us discuss a few important points.
The approximation of a singular local potential by a non-singular non-local potential
raises some questions about the validity of this approximation. Instead of the long
range Coulomb potential that gives rise to an infinite number of bound states, we
obtain a short rangepotentialwith afinite number of bound states. In fact, this problem
exists only in theory, as in the reality the potential is always truncated. Moreover, the
locality of the potential is an approximation as well. Finally, the gauge invariance is
a feature of a theory with a local potential only. Separable potential theories cannot
be gauge invariant. However, as we see below, separable potentials are very useful
for calculations, and they allow one to investigate the dominating mechanisms. In
the second method, we approximate the Coulomb potential in the following way

4π Z

|p − u|2 ≈
N∑

n=0

L∑
l=0

l∑
m=−l

vnl(p)Yl,m(θp, φp) v
∗
nl(u)Y ∗

l,m(θu, φu).

The components vnl(p) of the separable potential correspond to some eigenfunc-
tions of the Hamiltonian with the Coulomb potential

(
ε j − p2

2

)
ϕ̃ j (p) +

N∑
q=1

L∑
l=0

l∑
m=−l

vql(p)Yl,m(θp, φp)×
[∫

d3u

(2π)3
v∗
ql(u)Y ∗

l,m(θu, φu)ϕ̃ j (u)

]
= 0,

(11.7)

where ϕ̃ j (p) = ϕ̃ jl j (p)Yl j ,m j (θp, φp) are the Coulomb bound state eigenfunctions.
By substituting in (11.7), we get



11 Separable Potentials Model for Atoms and Molecules … 227

(
ε j − p2

2

)
ϕ̃ jl j (p) +

N∑
q=1

aq jl j vql j (p) = 0 (11.8)

with

aq jl j =
∫ ∞

0

u2du

(2π)3
v∗
ql j (u)ϕ̃ jl j (u). (11.9)

We see that a given angular momentum l defines a group of separable potentials.
For example, the states j = 1s, 2s, 3s, . . . enter the group l = 0, j = 2p, 3p, 4p, . . .

enter the group l = 1, etc. The functions g j (p) =
(
ε j − p2

2

)
ϕ̃ j (p) are called the

vertex functions. They define the components of the separable potentials.
We denote vn(p) = vnl(p)Yl,m(θp, φp) and redefine in (11.7)

∑N
q=1

∑L
l=0

∑l
m=−l

by
∑

n=1 (do not confuse n with the principal quantum number). Equation (11.7)
can be written in matrix form as follows

G + AV = 0,

or
V = −A−1G,

where the components of V are the unknown vn(p). For the matrix A we obtain a
matrix equation from (11.8)

Γ = AAT , (11.10)

whereAT denotes the transposematrix ofA. The elements of thematrixΓ are known
and given by:

Γi j =
∫

d3u

(2π)3
ϕ̃∗
i (u)

(
1

2
u2 − ε j

)
ϕ̃ j (u).

Equation (11.10) can have an infinite number of solutions for the elements of
matrix A within any �-block, if the number of states we take into account in each
block is more than one. If we choose matrix A to be triangular, we obtain a unique
solution for the components of the separable potentials. For example, let us consider
� = 0 and write from (11.8)

(
ε1s − p2

2

)
ϕ̃1s(p) + a11v1s(p) = 0,

(
ε2s − p2

2

)
ϕ̃2s(p) + a21v1s(p) + a22v2s(p) = 0.

This system of linear equations allows to determine components of the separable
potential, and the integrals (11.9) allow to determine all unique positive coefficients
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a11, a21, a22. We have tested our approach with several cases of symmetric matrixA,
but have not found any significant difference.

The continuum states for a separable potential follow from the definition of the
potential. They are important for the calculation of the ionisation yield and the elec-
tron energy spectrum. We get from (11.7)

(
k2

2
− p2

2

)
ϕ̃−(k,p) +

N∑
n=1

Cn(k)vn(p) = 0, Cn(k) =
∫

d3u

(2π)3
v∗
n(u)ϕ̃−(k,u).

(11.11)
and

ϕ̃−(k,p) = (2π)3δ(k − p) − 2

k2 − p2 − i0

N∑
j=1

Cn(k)vn(p) (11.12)

For the coefficients Cn(k), we obtain the linear system of algebraic equations

Cn(k)[1 + λnn] +
N∑
j 
=n

λnjC j (k) = v∗
n(k),

with

λnj = 2
∫

d3u

(2π)3

v∗
n(u)v j (u)

k2 − p2 − i0
.

For atomic hydrogen all the integrals can be evaluated analytically.

11.2.3 TDSE with Separable Potentials

Let us go back to the TDSE (11.4) in the momentum space and define the action

S(p, t) = 1

2

∫ t

0

(
p + 1

c
A(ξ)e

)2

dξ.

We also define the functions

Fn(t) =
∫

d3u

(2π)3
v∗
n(u)Φ̃V (u, t), (11.13)
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and write the solution of (11.4) as

Φ̃V (p, t) = e−iS(p,t)

[
ϕ̃0(p) + i

N∑
n=1

vn(p)

∫ t

0
dξFn(ξ)eiS(p,ξ)

]
. (11.14)

By inserting (11.14) into (11.13),we obtain a systemof coupledVolterra equations
for the functions Fn(t). We can write this system in matrix form as follows

F(t) = F0(t) +
∫ t

0
K(t, ξ)F(ξ)dξ.

The analytical expressions for the free term F0(t) and the kernel K(t, ξ) can be
found in [8].

Let us discuss (11.14). If we turn off the external field, then, from (11.4), we
obtain

Φ̃V (p, t) = ϕ̃0(p)e
−iε0t . (11.15)

It is thanks to the integral term in (11.14) that Φ̃V (p, t) tends to the hydrogen
ground statewhen thefield is zero. Itmeans thatwe cannot take the term e−iS(p,t)ϕ̃0(p)
as a zero order approximation and build an iterative series out of it. Indeed, this free
wavepacket in (11.14) disperses in the configuration space even in the absence of
the field, which contradicts the meaning of a stationary state. This observation is
discussed further in the context of SFA in [22].

If the separable potentials have been generated by imposing that they support N
bound states, the ionisation yield P(t) can be calculated as

P(t) = 1 −
N∑

n=1

|〈ϕ̃n|Φ̃(t)〉|2. (11.16)

11.2.4 Gauge Invariance and Separable Potentials

We have noted above that the TDSE with non-local separable potentials is not gauge
invariant. If we put Φ̃V (p, t) = Φ̃L(p + 1

c A(t)e, t) into (11.4), which we reproduce
here for clarity

[
i
∂

∂t
− 1

2
(p + 1

c
A(t)e)2

]
Φ̃V (p, t) +

∑
n=1

vn(p)

∫
d3u

(2π)3
v∗
n(u)Φ̃V (u, t) = 0,

(11.17)
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we get

[
i
∂

∂t
− 1

2
p2 − iE(t)(e · ∇ p)

]
Φ̃L(p, t) +

∑
n=1

vn(p − 1

c
A(t)e)×

∫
d3u

(2π)3
v∗
n(u − 1

c
A(t)e)Φ̃L(u, t) = 0.

(11.18)

There are two equivalent ways to obtain (11.18) from (11.5):

4π Z

|p − u|2 →
∑
n=1

vn(p)v∗
n(u),

or

4π Z

|p − u|2 →
∑
n=1

vn(p − 1

c
A(t)e)v∗

n(u − 1

c
A(t)e).

A question arises: how to generate the time dependent separable potential compo-
nents vn in terms of the (time independent) bound state wave functions? To answer
this question, we consider the following TDSE

[
i
∂

∂t
− 1

2
(p − 1

c
A(t)e)2 − iE(t)(e · ∇ p)

]
ϕ̃ j L (p, t) +

∫
d3u

(2π)3
4π Z

|p − u|2 ϕ̃ j L (u, t) = 0.

(11.19)

This equation has the same Coulomb spectrum when the external field is zero. It
means that in the configuration space, the solution ϕ̃ j L(r, t) is a Coulomb function,
multiplied by the phase factor, present inGöppert-Mayer transformation (11.3),while
in momentum space we have

ϕ̃ j L(p, t) = ϕ̃ jV (p − 1

c
A(t)e)e−iε j t . (11.20)

To the best of our knowledge, the first one who noticed that was Faisal in [26].
With time dependent separable potentials (11.19) writes

[
i
∂

∂t
− 1

2
(p − 1

c
A(t)e)2 − iE(t)(e · ∇ p)

]
ϕ̃ j L(p, t)+

∑
n=1

vn(p − 1

c
A(t)e)

∫
d3u

(2π)3
v∗
n(u − 1

c
A(t)e)ϕ̃ j L(u, t) = 0.

(11.21)
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By substituting ϕ̃ j L(u, t) by its expression (11.20) we obtain, after changing
variables (compare with (11.7))

[
ε j − 1

2
p2

]
ϕ̃ jV (p, t) +

∑
n=1

vn(p)

∫
d3u

(2π)3
v∗
n(u)ϕ̃ jV (u, t) = 0. (11.22)

Thus, if one has the TDSE (11.17) in theV-gauge, using the time-independent sep-
arable potentials, then (11.18) is its gauge partner, but with time dependent separable
potentials. It is a family of gauge invariant solutions.

Equation (11.18) can be written down, however, with time independent separable
potentials, defined by the same spectral functions. Equation (11.17)will be defined by
time-dependent components with p + 1

c A(t)e as an argument. We will have another
family of gauge invariant solutions as the operators in brackets of (11.17) and (11.18)
differ. This is a price to pay for using separable potentials.

11.2.5 Results

From the numerical point of view, the calculations both for atoms and molecules
are inexpensive. It can be seen from the form of the Fn(t) function in (11.13) that
the spatial dependence is treated analytically. The set of Volterra integral equations
of second kind in time for F functions are solved using a block-by-block method (a
grid in time), using the GPUs to evaluate the kernels K (t, ξ) for different time points
before propagation.

In Figs. 11.1 and 11.2 we compare the predictions of the SPAM model with the
experiment for a low frequency pulse, and with TDSE calculations for a high fre-
quency pulse correspondingly (more results are given in [5–8]). For reference, the
potential in the case 1s and 2p states included is given by

4π

|p − u|2 ≈ 16π

(p2 + 1)(u2 + 1)
+ 32π2

3

(p · u)

(p2 + 1/4)2(u2 + 1/4)2

In the experiment, presented in [15], the authors consider a hydrogen atom, inter-
acting with a laser pulse of frequency of 0.0723 a.u. (630nm wave length), 10 cycles
pulse duration and of peak intensity of 6.5×1013 W/cm2. In Fig. 11.1 a compari-
son of this experimental spectrum with a SPAM model calculation, with 1s and 2p
states included, is presented (the experimental spectrum is normalised to the theo-
retical one). One can notice an agreement for the peak positions for higher electron
energies (> 1 a.u.). At lower energies we do not observe a good agreement for two
reasons:

• the slow emitted electron is described by a planewavewhich neglects the influence
of the binding potential;

• the ac-Stark shift is not properly included in our SPAM model since it involves
only two levels (1s and 2p).
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Fig. 11.1 Electron energy spectrum resulting from the interaction of atomic hydrogen with a laser
pulse of frequency 0.0723 a.u. (630nm), 10 cycles duration and with peak intensity 6.5 × 1013

W/cm2. The red curve is the experimental data from [15], blue curve is the results of calculation
with a SPAMmodelwith 1s and 2p states included. Experimental data is normalised to themaximum
of the theoretical spectrum. Theoretical vector potential is described by a sine squared envelope

Fig. 11.2 Dependence of the ionisation yield of the H atom on the laser pulse frequency for a sine
squared pulse of 2 cycle duration and 1014 W/cm2 peak intensity. The solid line has been obtained
by using our SPAM method which includes only 1s state and the dots show the results of the full
TDSE calculation. The perturbation theory calculation in the same regime is given in [27]

In Fig. 11.2 the SPAM, containing only 1s state, is compared with the TDSE
calculation results. We consider a laser pulse of 2 cycles full duration and 1014

W/cm2 peak intensity. To obtain a better coincidence of the results, we divided the
prediction of SPAMby 2 and obtained the so-called corrected SPAM. This correction
is due to the lack of interaction in the final state of the system with the laser field,
and is obtained analytically for high frequencies in [27].
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11.3 Many-Electron Systems

11.3.1 SAE Approximation

The influence of the electron-electron correlations on the dynamics of the processes
of excitation and scattering is actively studied in helium atom, hydrogen anion and
recently in H2 molecules [28]. All other atoms and molecules are described with a
treatment where electrons are described independently and moving in the mean field
of the nuclei and of the all other electrons (see e.g. Hartree-Fock method and, more
recently, the multiconfiguration time-dependent Hartree-Fock method [29–31] and
the configuration interaction singles method [32, 33]). The best example of such a
treatment is the system of non-linear integrodifferential equations of Hartree-Fock.

This system of integrodifferential equations is very often reformulated in terms
of one electron local potentials with Coulomb tail. In this case we obtain a TDSE
which is particularly attractive to treat single ionisation of a molecule in a pulsed
field. This is essentially the SAE approximation, when this “active” electron under
the external perturbation, is leaving the atom, and all other electrons are frozen. This
approximation is of a particular interest for separable potential application when
the separable potentials are built in terms of vertex functions of a single electron.
Usually these separable potentials are generated numerically when the one-particle
wave function is taken from tables or generated with public codes.

When considering an external electromagnetic field as a perturbation that leads
to the emission of an electron from an outer atomic shell, one has to use more
complicated separable potentials that account for the excitation of the active electron.
It allows one to account for different processes which is more adequate in this case.
To find out what can be described with our SPAM model and in which frequency
and intensity domains, we consider below a rather complicated process of single
ionisation in a laser field, for the hydrogen anion, hydrogen molecule and water
molecule.

11.3.2 Hydrogen Anion

A full solution of a TDSE for H− is feasible at a current level of computer resources.
It has two electrons like a helium atom, for which the exact dipole approximation
calculations exist since the end of the last century [37–39]. For the hydrogen anion
several independent calculations have been made too [35, 39–41].

From the point of view of the applicability of the SPAM model, the hydrogen
anion has a major advantage: the anion becomes neutral once one of the electrons is
detached, implying that the SPAMmodel and the short range potential approximation
should work beautifully, as the potential does not have a Coulomb tail [42].

The ground state of the anion 1s2 is incredibly weakly bound, having binding
energy of −0.0277 a.u. only [43].
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The experiments on the photodetachment in a strong laser field are quite difficult
to carry out, but a few exist [44–48]. The main difficulty is the depletion of negative
ions by a low order detachment process at the fore front of the pulse [49, 50]. The
intensity there is low, but sufficient for a many photon detachment process. The
first observation of such many photon detachment, analogous to above threshold
ionisation, was reported in the F−, Cl−, Au− ions [44–47]. Their outer electron
binding energy is much higher than the one of H−, so it was simpler experimentally.

TheSPAMmodel calculations forH− are very similar to those for atomichydrogen
with only 1s state. However, the ground state wave function, as given by Yamaguchi
[51], is slightly different:

ϕ̃(r) =
√
2κβ(κ + β)

β − κ

e−κr − e−βr

r
Y00(θ, φ),

∫
d3r |ϕ̃(r)|2 = 1, (11.23)

with

κ = 0.235, ε = −κ2

2
= −0.0276, β = 0.913.

Here κ and β are fitting parameters. On the basis of this wave functionwe generate
the corresponding separable potential in the same way, like we do it for atomic
hydrogen (see (11.8) and after).

The comparison of the ionisation yield dependence on the intensity for different
calculations is presented in the Fig. 11.3. It has to be mentioned, that the SPAM result
in this case is not multiplied by any factor. The prediction of the SPAM model lies
quite close to the results obtained by Bachau et al. [34], Scrinzi et al. [35] that take
accurately into account the electron-electron correlations.

Fig. 11.3 Comparison of the SPAM ionisation yield intensity dependence with more sophisticated
calculations from [34, 35] that take electron-electron interaction into account. Hydrogen anion
interacts with a sine squared laser pulse of 8 cycles duration and 0.03 a.u. (1520nm) photon energy.
SPAM is presented by a red full line; calculation from [34]—blue triangles; calculation from [35]—
black circles
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Fig. 11.4 Ionisation yield of H− versus external field frequency. The duration of the pulse is fixed
to 2 cycles, the peak intensity is 3.5 × 1010 W/cm2 for the full red line (SPAM) and circles (full
TDSE [36]) and 3.5 × 1011 W/cm2 for the dashed blue line (SPAM) and triangles (full TDSE [36])

Fig. 11.5 Ionisation yield of the SPAMmodel of H− versus external field frequency. The duration
of the pulse is fixed to 64 cycles and the peak intensity is 3.5 × 1010 W/cm2. The cusps result from
the closing of different channels

The good agreement of the SPAM prediction with other approaches in the case of
the negative ion can be explained by the absence of the Coulomb interaction in the
final state. As shown analytically in [8], the difference between the SPAM prediction
for atomic hydrogen with respect to the full TDSE calculation is mainly due to the
short range of the approximate model potential. In the case of hydrogen anion this
approximation is much closer to the real system, leading to a much better agreement.

In Fig. 11.4, we consider the ionisation yield as a function of the frequency for
two intensities 3.5 × 1010 W/cm2 and 3.5 × 1011 W/cm2 and a total pulse duration of
2 optical cycles. The agreement with the full calculation is slightly worse, although
the shape of the curves is the same. The differences are attributed to the fact that the
Yamaguchi potential does not describe the electrons on the same footing as it should
be.

In Fig. 11.5, the ionisation yield for H− is plotted versus the external field fre-
quency for a very long pulse of 64 optical cycles full duration. Since the intensity
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Fig. 11.6 Ionisation yield
versus external field intensity
for H2 molecule, interacting
with a pulse of 6 cycles full
duration and 5 a.u. photon
energy. The red solid line is
corrected SPAM model
prediction and blue dots are
TDSE [53]

3.5 × 1010 W/cm2 is very low and the pulse is very long, the closing of different ion-
isation channels is clearly visible and manifests itself by the presence of a succession
of so-called Wigner cusps.2

11.3.3 Hydrogen Molecule

Molecular hydrogen is a very simple diatomic molecule. However, it is only very
recently that physicists suceeded to obtain exact numerical results for its evolution
in a laser field, taking into account all the electronic and nuclear degrees of freedom
[28, 54].

In Figs. 11.6 and 11.7 we compare the predictions for the ionisation yield of the
SPAM model (with a correction, discussed in detail in [27]) with the full TDSE
calculation [53]. In Fig. 11.6 the laser field frequency is fixed to 5 a.u. and the total
pulse duration is 6 optical cycles. The single ionisation probability, as a function of
the laser pulse peak intensity shows good agreement, despite the fact that in some
cases SAE fails to describe the H2 molecule [55].

In Fig. 11.7 the laser pulse peak intensity is fixed to 4 × 1014 W/cm2 and the
total pulse duration is 2 optical cycles. Again, the single ionisation probability, as
a function of the laser pulse frequency shows relatively good agreement. A strong
disagreement for lower frequencies around the ionisation threshold -0.566 a.u. is
attributed to the strong influence of the binding potential on the slow electrons,
and the important role played by the intermediate states in this region (there are no
intermediate states in this SPAM model).

2Cusp is an abrupt change of the photodetachment cross section which violates theWigner’s thresh-
old law [52].
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Fig. 11.7 Ionisation yield
versus external field
frequency for H2 molecule
interacting with a pulse of 2
cycles duration and 4 × 1014

W/cm2 peak intensity. The
red solid line is the corrected
SPAM model prediction and
blue dots are TDSE [53]

11.3.4 Water Molecule

In this contribution we also consider the 1b1 orbital (the HOMO—highest occupied
molecular orbital) of water molecule. As the water molecule has 5 occupied orbitals,
why do we choose the 1b1 orbital?

HOMO 1b1 is essentially a 2p atomic orbital of the oxygen atom with very lit-
tle influence of each hydrogen atom. Ionization of the water HOMO orbital leaves
the geometry of the molecule unchanged, thus allowing us to apply the fixed nuclei
approximation as the vibrational excitation is low. Farrell et al. showed that by con-
trast to the ionization of the HOMO, the single ionization of the second least bound
orbital 3a1 (HOMO-1) triggers a fast nuclear dynamics of the molecular ion and
strongly excites the bending mode at photon energies around 0.54 a.u. [57]. In fact,
the period of the fastest oscillation in the water molecule, namely the asymmetrical
stretching of the OH bonds, is 8.9 fs which is much longer than the pulse durations
we consider here. In other words, we can assume that the molecule is frozen during
its interaction with the pulse.

To generalize the separable model to the case of the water molecule, we first
generate the spatial part Φ0(r) of the HOMO 1b1 in the configuration space. The
molecule lies in the yz plane, with the z axis (and the polarisation vector) passing
through the oxygen atom, and the hydrogens are equally distanced from this axis. The
spatial part of the molecular orbital is obtained by geometry optimization with the
GAMESS(US) program in the Hartree-Fock approximation [58]. Instead of Hartree-
Fock one could use DFT, it would not change much, as long as one uses experimental
orbital energies instead of the ones generated by GAMESS(US) as they are strongly
influenced by the method while the wave functions are not.

The general expression of a molecular orbital α, denoted by Φα(r), is:
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Φα(r) =
3∑
j=1

∑
γ j

Cγ j ,α Gγ j (r − R j )

where index j designates each nucleus in the molecule. The second summation
runs over the atomic orbitals around each nucleus and Gγ j is a so-called contracted
gaussian from a 6–31G basis set in the present case. r − R j is the electronic coor-
dinate relative to the nucleus j . The coefficients Cγ j ,α are the ones generated by the
GAMESS(US) program.

Since, to the best of our knowledge, there is no experiment performed for a water
molecule in a laser field for frequencies above the water molecule ionisation thresh-
old, we compare our results to those obtained with another SAE calculation [56].
They use DFT LB94 exchange-correlation functional with a coulomb tail to generate
the Kohn-Sham orbitals that constitute the basis set. The Hamiltonian describes the
motion of the active electron in the potential formed by the nuclei and the remaining
frozen electrons. In the SAE approximation this leads to the frozen Hartree-Fock, or
static-exchange Hamiltonian.

Since the full final momentum wave packet is available in the SPAM model, any
information about the system can be easily extracted. The absence of the intermedi-
ate states means however that regimes where these states are important, like low fre-
quency ionisation, cannot be treated accurately. Being a SAE approach, one neglects
all the dynamical interactions between the particles. Finally, the Born Oppenheimer
approximation neglects all the processes related to the motion of the nuclei. Never-
theless, the SPAM model allows one to make predictions for any complex system,
where the aforementioned approximations are adequate, in the single photon and
ultrashort pulse regimes. The SPAMmodel is very scalable, so the limits on the size
of the system are given by the hardware resources only. All the calculations have been
performed in the 6-31G basis set. We are not aware of any significant discrepancies
in our calculations that could be attributed to the incompleteness of this basis.

In order to have some idea about how accurate is the prediction of the SPAM
model for high frequencies, we ran the SAE-TDSE code from [56] in the 1-photon
ionisation regime and compared the ionisation yield prediction of these two SAE
models (see Fig. 11.8). Laser pulse total duration was fixed to 2 optical cycles and
peak intensity was fixed to 4 × 1014 W/cm2. A significant difference between these
models is the fact that for SAE-TDSE the full Coulomb potential has been taken into
account in generating the one-electron orbital basis, thus we suggest to correct the
SPAM result with the same factor as for atomic hydrogen. In fact, we have perfect
agreement between these models for high frequencies, and poor agreement for the
photon energies near the ionisation threshold. This can be explained by the fact that
SAE-TDSE uses 6000 Kohn-Sham orbitals to propagate the wave function and thus
supports some intermediate configurations, while in SPAMmodel we don’t have any
intermediate state at all.

We can see in Fig. 11.9 that the corrected SPAM coincides with SAE-TDSE in a
wide intensity range as well. This agreement of the corrected SPAMmodel and SAE-
TDSE approach in a wide intensity and frequency range indicates that the SPAM
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Fig. 11.8 The molecule lies
in yz plane. Dependence of
the ionisation yield of two
water molecule models on
the photon energy for a sine
squared pulse of 2 cycles full
duration and 4 × 1014

W/cm2 peak intensity. The
solid line has been obtained
by using our corrected
SPAM method, the dots
show the results of
SAE-TDSE calculation [56]

Fig. 11.9 The molecule lies
in yz plane. Dependence of
the ionisation yield of two
water molecule models on
the laser pulse peak intensity
for a sine squared pulse of 6
cycles full duration and 5
a.u. photon energy. The solid
line has been obtained by
using our corrected SPAM
method, the dots show the
results of the SAE-TDSE
calculation [56]

correction factor does not depend on intensity or on frequency in the high frequency
regime.

11.4 Summary and Conclusions

Wehave developed the SPAMmodel in the case of the interaction of atomic hydrogen
with a laser pulse. In particular, we have analysed in depth the domain of validity of
this model and calculated electron energy spectra which have been compared to the
experimental one and to those obtained by solving the TDSE numerically.

Furthermore, we have extended SPAM method to the treatment, within the SAE
approximation, of the interaction of a complex quantum systemswith high frequency
ultrashort laser pulses.



240 Yu. V. Popov et al.

As a first application we have considered the photodetachment of H− which is a
quantum system that is particularly well adapted to our SPAM approach. We obtain
in this case a very good agreement with full TDSE results.

The SPAM model has also been applied to the case of the single ionisation of the
HOMO orbital of the hydrogen and water molecules by a high frequency ultrashort
laser pulse. Our results for the ionisation yield clearly show the pertinence of the
SPAM method in its application to more complex systems.
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