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ABSTRACT

Three-body model comprising a diatomic homonuclear molecule and an atom, the solutions of which are necessary
for modelling interactions of three-body systems with laser radiation and spectroscopy, is formulated in the
collinear configuration of the adiabatic representation. The mapping of the relevant 2D boundary-value problems
(BVPs) in the Jacobi coordinates and in polar (hyperspherical) coordinates is reduced to a 1D BVP for a system
of coupled second-order ordinary differential equations (ODEs) by means of the Kantorovich expansion in basis
functions of one of the two independent variables, depending on the other independent variable parametrically.
The efficiency of the proposed approach and software is demonstrated by benchmark calculations of the discrete
spectrum of Be3 trimer in the collinear configuration.
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1. INTRODUCTION

The recent studies of tunnelling of bound particles through repulsive barriers revealed the effect of resonance
quantum transparency of the barrier: when the cluster size is comparable with the spatial width of the barrier, one
can observe enhanced barrier transparency, the mechanism of which is analogous to blooming of optical systems.1

At present this effect and its possible applications are a subject of extensive theoretical and experimental studies
in different physical fields, e.g., the quantum diffusion of molecules,2 the processes of resonance scattering of
diatomic molecules by atoms via weakly-bound and metastable states3 and the quantum control of molecular
processes in laser fields.4

The model of quantum tunnelling of a diatomic molecule through Gaussian barriers in the collinear config-
uration was formulated as 2D boundary-value problems (BVPs) in the Jacobi and polar coordinates.5,6 The
considered situation corresponds to the scattering of a diatomic homonuclear molecule in the potential field of
the third atom having the infinite mass, resembling the scattering of electron by helium ion.7 Using the solutions
of different auxiliary boundary-value problems as basis functions of transverse or angular variable, parametri-
cally depending upon the (hyper)radial variable, the 2D BVPs were reduced to systems of coupled second-order
ordinary differential equations (ODEs). In the Jacobi coordinates, the effective potentials decrease exponentially
(below the dissociation threshold) and in the polar coordinates they decrease as inverse powers of the inde-
pendent variable. In the latter case it is necessary to calculate the asymptotic expansions of matrix elements
and fundamental solutions of the ODE system. For this aim the symbolic-numeric algorithms, implemented
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in the Maple computer algebra system were developed6,8 that offer a way to new optimal calculation schemes
and software required for further study of bound and metastable states and resonance scattering in three-body
systems.9

In this paper we consider a model of a diatomic molecules interacting with an atom in collinear configuration.
We briefly discuss the computational model using the Kantorovich expansion of the 2D solution in the parametric
basis functions in Jacobi and polar coordinates and the software implementation of the technique. Comparative
analysis of benchmark calculations using these coordinates is presented for the discrete spectrum and bound
states of Be3 trimer.

The paper is organized as following. Section II formulates the 2D boundary-value problem. Sections III and
IV present the calculation schemes and benchmark calculations of the bound states spectrum of Be3 trimer in
collinear configuration using the Kantorovich method in the Jacobi and polar coordinates, respectively. In the
Conclusion the results and perspectives are discussed.

2. SETTING OF THE PROBLEM

Consider a 2D model of three identical particles with the mass M and the coordinates xi ∈ R1, i = 1, 2, 3,
coupled via the pair potential Ṽ (|xi−xj |) i, j = 1, 2, 3. Performing the change of variables at cyclic permutation
(α, β, γ) = (1, 2, 3):

x≡x(αβ)=xα−xβ , y≡y(αβ)γ=
xα+xβ−2xγ√

3
, x0=

√
2√
3

(x1+x2+x3),

(
x(αβ)
y(αβ)γ

)
=−

(
1
2

√
3
2

−
√
3
2

1
2

)(
x(βγ)
y(βγ)α

)

or in the case of a diatomic molecule with identical nuclei coupled via the pair potential Ṽ (|x1 − x2|) in the
potential field Ṽ b(|xi − x3|), i = 2, 1 of the third atom having the infinite mass

x = x1 − x2, y = x1 + x2,

we arrive at the Schrödinger equation(SE) for the wave function Ψ(y, x) in the center-of-mass system {xi ∈
R1|x1 + x2 + x3 = 0} or in the laboratory frame with the origin x3 = 0 placed at the third atom having the
infinite mass (

− ∂2

∂y2
− ∂2

∂x2
+
M

h̄2
(Ṽ (x, y)− Ẽ)

)
Ψ(y, x) = 0, (1)

where the potential function for a trimer with the pair potentials (see Fig. 6),

Ṽ (x, y)=Ṽ (|x1−x2|)+Ṽ (|x2−x3|)+Ṽ (|x1−x3|)=Ṽ (|x|)+Ṽ (|x−
√

3y

2
|)+Ṽ (|x+

√
3y

2
|), (2)

or the potential function for a dimer in the field of barrier potentials

Ṽ (x, y)=Ṽ (|x1−x2|)+Ṽ b(|x2−x3|)+Ṽ b(|x1−x3|)=Ṽ (|x|)+Ṽ b(|x−y
2
|)+Ṽ b(|x+y

2
|),

is symmetric with respect to the straight line x = 0 (i.e., x1 = x2), which allows one to consider the solutions
of the problem in the half-plane x ≥ 0. Using the Dirichlet or Neumann boundary condition at x = 0 one can
obtain the solutions, symmetric and antisymmetric with respect to the permutation of two particles. If the pair
potential possesses a high maximum in the vicinity of the pair collision point, then the solution of the problem
in the vicinity of x = 0 is exponentially small and can be considered in the half-plane x ≥ xmin. In this case
setting the Neumann or Dirichlet boundary condition at xmin makes only a minor contribution to the solution.
The equation, describing the molecular subsystem, has the form(

− d2

dx2
+
M

h̄2
(Ṽ (x)− ε̃)

)
φ(x) = 0. (3)
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a b
Figure 1. The potential V that enters Eq. (3) in sector 2: a) V (x; y) versus x at y = ±n/

√
3, for n = 0, ..., 5 and b) V (φ; ρ)

versus φ in the finite interval φ ∈ (0, π/3) for ρ = 4.4, 4.5, 5, 5.5, 6, 7, 10, 25.

We assume that the molecular subsystem has a discrete spectrum, consisting of a finite number n of bound
states with the eigenfunctions φj(x), j = 1, n and the eigenvalues ε̃j = −|ε̃j |, and the continuous spectrum of
eigenvalues ε̃ > 0 with the corresponding eigenfunctions φε̃(x). As a rule, the solutions of the BVP for Eq. (3)
can be found numerically, using a reduction on the appropriate finite interval in Jacobi or polar coordinates,
such that the continuum spectrum is overlapped by the discrete one ε̃j > 0, j = n + 1, ..., corresponding to
pseudostates or parametric surface functions.6,8 The proposed approach, algorithms and software are illustrated
below by the example of the molecular interaction approximated by the Morse potential for Be2 with the reduced
mass of the nuclei M/2=4.506 Da2,5

V (x) =
M

h̄2
Ṽ (x), Ṽ (x) = D{exp[−2(x− x̂eq)α]− 2 exp[−(x− x̂eq)α]}, (4)

where α = 2.96812 Å−1 is the potential well width, x̂eq = 2.47 Åis the average distance between the nuclei, and
D = 1280 K is the potential well depth or D̄ = 236.510 Å−2 = (M/h̄2)D (1 K=0.184766 Å−2,1 Å−2=5.412262 K).
This potential supports five bound states10 with the energies εi = (M/h̄2)ε̃i, i = 1, ..., n = 5: −ε̃1=1044.879
649 K, −ε̃2=646.157 093 K, −ε̃3=342.791 979 K, −ε̃4=134.784305 K, −ε̃5=22.134 with (D = 1280 K)/(D̂ =
236.510 Å−2) = 5.412262 (D̂ = 236.510 Å−2)/(D=1280 K)=0.184766; The values of the parameters are deter-
mined from the condition (ε̃2 − ε̃1)/(2πh̄c) = 277.124 cm−1, 1K/(2πh̄ c)=0.69503476 cm−1.

3. REDUCTION OF THE BVP IN JACOBI COORDINATES USING
KANTOROVICH METHOD

The SE for the wave function Ψ(x, y) ∈ W2
2 (Ωx,y) in the Jacobi coordinates x = x(12), y = y(12)3 has the form(

− ∂2

∂y2
− ∂2

∂x2
+ (V (x, y)− E)

)
Ψ(y, x) = 0, (5)

where the potential function for a trimer of atoms with the pair potentials is

V (x, y) =
M

h̄2
Ṽ (x, y), Ṽ (x, y)=Ṽ (|x|)+Ṽ (|x−

√
3y

2
|)+Ṽ (|x+

√
3y

2
|). (6)

To calculate the trimer bound states, we solve the BVP in the sector 2 Ω2 = {(x, y)|x >
√

3|y|} = {(r, ϕ)|ϕ ∈
(π/3, 2π/3)}, see Fig. 6. The solution of Eq. (5) is sought in the form of the Kantorovich expansion

Ψio(y, x) =

jmax∑
j=1

φj(x; y)χjio(y). (7)
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Figure 2. The potential curves εj(y) of the BVP (8) in sector 2 and the effective potentials Hji(y) and Qji(y) (11) in
Å−2.

Figure 3. The even χ1, χ2, χ4, χ6, χ8, χ9, χ11, and odd χ3, χ5, χ7, χ10, χ12 eigenfunctions of the BVP (9)–(11).
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Figure 4. The isolines of even Ψ1, Ψ2, Ψ4, Ψ6, Ψ8, Ψ9, Ψ11, and odd Ψ3, Ψ5, Ψ7, Ψ10, Ψ12 eigenfunctions of the BVP
(9)–(11) in plane (y, x) of sector 2.

a. b.
Figure 5. The potential curves ε̃j = εj(ρ)/ρ2 (in K, 1 K=0.18 Å−2):a) Be2 and b) Be3.

Here the eigenfunctions φj(y;x) ∈ W2
2 (Ωy;x) corresponding to the eigenvalues εj(y), j = 1, jmax are solutions

of the BVP in Ω2(x; y) = {x ∈ (xmin(y) = 3.8 +
√

3y, xmax(y) = 9.8 +
√

3y)} depending on y as a parameter
y ∈ Ωy = [−ymin, ymax]:

(
− ∂2

∂x2
+V (x, y)−εi(y)

)
φi(x; y)=0, φi(xmin(y); y)=φi(xmax(y); y)=0,

xmax(y)∫
xmin(y)

φi(x; y)φj(x; y)=δij .(8)

The system of coupled self-adjoint ODEs for the unknown functions χio(y) = {χjio(y)}jmax

j=1 ∈ W2
2 (Ωy) has the

form [
− d2

dy2
+ εi(y)− E

]
χiio(y) +

jmax∑
j=1

Wij(y)χjio(y) = 0, Wij(y) = Hji(y) +
d

dy
Qji(y) +Qji(y)

d

dy
, (9)

χjio(ymin) = χjio(ymax) = 0,

ymax∫
ymin

dy

jmax∑
j=1

χjio(y)χji′o(y) = δioi′o . (10)
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a. b. c.

d. e. f.
Figure 6. a)The isolines of 2D potentials (6), (16) and b)-f)the effective potentials (22)of Be3 trimer.

The eigenvalues of the BVP (8) and the corresponding effective potentials (see fig. 2) are defined by the integrals

Qij(y) = −
∫ xmax(y)

xmin(y)

dxφi(x; y)
dφj(x; y)

dy
,Hij(y) =

∫ xmax(y)

xmin(y)

dx
dφi(x; y)

dy

dφj(x; y)

dy
, (11)

In the system of ODEs the effective potentials tend to nonzero constants ε, H Q at |y| ≥ |ymin, ymax| ≥ 1.(
−I

d2

dy2
+ V + 2Q

d

dy
− E I

)
Φ(y) = 0,V = ε+ H. (12)

If Q = 0, then this system has the general solution, explicitly depending upon the spectral parameter E

Φ(y)=

jmax∑
i=1

(CiFi(E,−y)Ψi+Cjmax+iFi(E, y)Ψi) , (13)

where Fi(E, y) = exp(piy) = exp(
√
E−λiy), Ci are unknown coefficients (for bound states the solutions decrease

exponentially as Fi(E, y) = exp(−pi|y|)), λi and Ψi = {Ψ1i, ...,Ψjmaxi}T are solutions of the algebraic eigenvalue
problem that is solved numerically

VΨi = λiΨi. (14)

In the case Q 6= 0 we have no explicit expression for the general solution, but the approximated threshold
energies λi ≡ Etrsh(jmax) are the same as in the case Q = 0, while the value of pi is to be modified.11

We calculated the parametric basis functions of BVP (8) and the effective potentials (11) for the Be3 trimer in
collinear configuration using the program ODPEVP .12 The calculations have been performed in the fast-variable
grid Ωx = {

√
3|y|+ 3.8(60)

√
3|y|+ 9.8} depending on the parameter y, taking its values on the slow-variable grid

Ωy = {−4(6)− 1(20)1(6)4} of sector 2 with the sixth-order Lagrange elements.
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Table 1. The total energy E and the binding energies Eb (in Å−2, 1 Å−2=5.412033094 K) of the even (e) and odd
(o) states of the trimer Be3 depending upon the number jmax of basis functions in Jacobi coordinates (sector 2):
Eb(jmax=12)=E(jmax=12)−Etrsh(jmax=12) and Eb(jmax=40)=E(jmax=40)−Etrsh(jmax=40), relative to the approximate
thresholds Etrsh(jmax=12)=192.42 and Etrsh(jmax=40)=193.05. The total energy and the and binding energies of the
trimer Be3 at jmax=12 basis functions in polar coordinates: Êb(jmax=12)=Ê(jmax=12)−Êtrsh relative to the exact
threshold Êtrsh=193.06.

v E(jmax=12) Eb(jmax=12) E(jmax=40) Eb(jmax=40) Ê(jmax=12) Êb(jmax=12)
1e -388.82 196.39 -389.08 196.03 -389.08 196.02
2e -334.76 142.33 -335.43 142.38 -335.43 142.37
3o -299.79 107.36 -300.57 107.52 -300.58 107.52
4e -285.50 93.07 -287.01 93.96 -287.02 93.96
5o -258.98 66.55 -260.46 67.41 -260.47 67.41
6e -243.21 50.79 -245.83 52.78 -245.84 52.78
7o -225.25 32.83 -227.65 34.60 -227.66 34.60
8e -223.56 31.13 -225.37 32.32 -225.39 32.33
9e -212.70 20.27 -215.36 22.31 -215.37 22.31

10o -202.33 9.90 -204.84 11.79 -204.85 11.79
11e -196.11 3.69 -198.21 5.16 -198.21 5.15
12o -192.71 0.29 -193.89 0.84 -193.86 0.80

For this model the eigenvalues and the components of 2D eigenfunctions of the BVP for the set of ODEs
(9) were calculated using the program KANTBP.13 The discrete energy spectrum of the trimer Be3 is shown in
second, third, forth and fifth columns of Table 1 that demonstrate the convergence of the total energy E(jmax) and
the binding energies Eb(jmax) = E(jmax) − Etrsh(jmax) relative to the approximate threshold Etrsh(jmax) = λ1
to the exact ones. The isolines of even and odd trimer eigenfunctions Ψj(x, y) and their components χj(y) are
shown in Figs. 4 and 3.

4. REDUCTION OF THE BVP IN POLAR COORDINATES USING
KANTOROVICH METHOD

We rewrite Eq. (1) in the polar coordinates (ρ, ϕ) : {x = ρ sinϕ, y = ρ cosϕ} for Ψ(ρ, ϕ) ∈ W2
2 (Ωρ,ϕ)(

−1

ρ

∂

∂ρ
ρ
∂

∂ρ
− 1

ρ2
∂2

∂ϕ2
+ V (ρ, ϕ)− E

)
Ψ(ρ, ϕ) = 0, (15)

in the domain Ωρ,ϕ = (ρ ∈ (0,∞), ϕ ∈ [0, 2π]) (see Fig. 6) for the trimer with the pair potentials

V (ρ, ϕ)=V (ρ sinϕ) + V (ρ sin(ϕ− 2π/3)) + V (ρ sin(ϕ− 4π/3)), (16)

or for a dimer of atoms, coupled by pair potential and interacting with the external barrier potentials

V (ρ, ϕ)=V (ρ sinϕ) + V b(ρ sin(ϕ− π/4)) + V b(ρ sin(ϕ+ π/4)). (17)

The solution of Eq. (15) is sought in the form of the Kantorovich expansion

Ψio(ρ, ϕ) =

jmax∑
j=1

φj(ϕ; ρ)χjio(ρ). (18)

Here the eigenfunctions φj(ϕ; ρ) ∈ W2
2 (Ωρ;ϕ) corresponding to the eigenvalues εj(ρ), j = 1, jmax are solutions of

the BVP in the interval Ωφ;ρ = {ϕ ∈ (0, 2π)} depending on ρ as a parameter y ∈ Ωρ = [ρmin, ρmax]:(
− d2

dϕ2
+ ρ2V (ρ, ϕ)− εj(ρ)

)
φj(ϕ; ρ) = 0,

∫ 2π

0

dϕφi(ϕ; ρ)φj(ϕ; ρ) = δij . (19)
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Figure 7. Components χi,σ=e,oj (ρ,E) ≡ χ(i)
j (ρ) of even (e) and odd (o) bound states with the total energy E in Å−2.

For the problems under consideration the potential function V (ρ, ϕ) depending on the parameter ρ can be
determined as follows:
Task 1. The case of one pair potential in the intervals ϕ ∈ (0, ϕα = π/3), ϕ ∈ (0, ϕα = π/4) or ϕ ∈ (0, ϕα = π/2)

V (ρ, ϕ) = V (ρ sinϕ),

Task 2. The case of three pair potentials in the interval ϕ ∈ (0, 2ϕα = π/3)

V (ρ, ϕ)=V (ρ sinϕ) + V (ρ sin(ϕ− 2π/3)) + V (ρ sin(ϕ− 4π/3)),

Task 3. The case of one pair potential and two barrier potentials in the interval ϕ ∈ (0, ϕα = π/4)

V (ρ, ϕ)=V (ρ sinϕ) + V (ρ sin(ϕ− π/4)) + V (ρ sin(ϕ+ π/4)).

The solutions symmetric with respect to the permutation of two particles satisfy the Neumann boundary condition

at ϕ = 0 and ϕ = 2ϕα,
φj(ϕ;ρ)
dϕ

∣∣∣∣∣
ϕ=0

=
φj(ϕ;ρ)
dϕ

∣∣∣∣∣
ϕ=2ϕα

= 0, while the antisymmetric ones satisfy the Dirichlet

boundary condition φj(0; ρ) = φj(2ϕα; ρ) = 0.

If the pair potential possesses a high peak in the vicinity of the pair collision point, then the solution of
the problem (15) will be considered in the half-plane Ωρ,ϕ = (ρ ∈ (ρmin,∞), ϕ ∈ [ϕmin(ρ), 2ϕα − ϕmin(ρ)])
with the Neumann or Dirichlet boundary condition. Since the potential of the boundary-value problem (19) is
symmetric with respect to ϕ = ϕα, the even (e) φj(ϕ; ρ) = φj(2ϕα−ϕ; ρ) and odd (o) φj(ϕ; ρ) = −φj(2ϕα−ϕ; ρ)

solutions, satisfying the Neumann boundary condition
φj(ϕ;ρ)
dϕ

∣∣∣∣∣
ϕ=ϕα

= 0, and the Dirichlet boundary condition

φj(ϕα; ρ) = 0, respectively, will be considered separately in the interval ϕ ∈ [ϕmin(ρ), ϕα].

The set of coupled self-adjoint ODEs for the unknown functions χio(ρ) = {χjio(ρ)}jmax

j=1 ∈ W2
2 (Ωρ) has the
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Figure 8. The isolines of even Ψ1, Ψ2, Ψ4, Ψ6, Ψ8, Ψ9, Ψ11, and odd Ψ3, Ψ5, Ψ7, Ψ10, Ψ12 eigenfunctions of the BVP
(9)–(11) in plane (ρ, ϕ).

form [
−1

ρ

d

dρ
ρ
d

dρ
+
εi(ρ)

ρ2
−E
]
χiio(ρ)+

jmax∑
j=1

Wij(ρ)χjio(ρ)=0, Wij(ρ)=Hji(ρ)+
1

ρ

d

dρ
ρQji(ρ)+Qji(ρ)

d

dρ
, (20)

χjio(ρmin)=χjio(ρmax)=0,

jmax∑
j=1

ymax∫
ymin

ρdρχjio(ρ)χji′o(ρ)=δioi′o . (21)

The potential curves (molecular terms) εj(ρ) and the effective potentials Qij(ρ) = −Qji(ρ), Hij(ρ) = Hji(ρ)
(see Fig. 6) are given by the integrals

Qij(ρ) = −
∫ 2ϕα

0

dϕφi(ϕ; ρ)
dφj(ϕ; ρ)

dρ
,Hij(ρ) =

∫ 2ϕα

0

dϕ
dφi(ϕ; ρ)

dρ

dφj(ϕ; ρ)

dρ
, (22)

and for Task 1 the barrier potentials V bij(ρ) can be expressed as

V bij(ρ) =

∫ 2ϕα

0

dϕφi(ϕ; ρ)(V b(ρ sin(ϕ− π/4)) + V b(ρ sin(ϕ+ π/4)))φj(ϕ; ρ).

The discrete energy spectrum of the dimer Be2 calculated of the grid Ω1(1.8, 10) = {1.8(24)3(10)4(5)5(10)10}
and the set of binding energies of the trimer Be3 calculated on the radial-variable grid Ωρ(4.1, 10) = {4.1(20)7(10)10}
with the twelfth-order Lagrange elements and the angular-variable grid Ωφ = {1.5/ρ(25)π/6} at ρ ≤ 48/π and
Ωφ = {1.5/ρ(15)4/ρ(10)π/6} at ρ > 48/π with the eleventh-order Lagrange elements are shown in Table 1.

As an example, we calculated the parametric basis functions of BVP (8) and (19), the effective potentials
(22) for the models of Be2 dimer and Be3 trimer in collinear configuration using the programme ODPEVP.12

The results are shown in Figs.5, and 6. For this model the eigenvalues and the hyperradial components of 2D
eigenfunctions of the BVP for the set of ODEs (20) were calculated using the program KANTBP.13 The discrete
energy spectrum and a set of the binding energies of the trimer Be3 is shown in the sixth and the seventh column
of Table 1. The isolines of even and odd trimer eigenfunctions Ψj(ρ, ϕ) and their components χj(ρ) are shown

in Figs. 8 and 7 as functions of the radial variable ρ =
√
x2 + y2. They are seen to be more delocalized in

comparison with eigenfunctions in the Jacobi variables (x, y) in Figs. 4 and 3. Note, that the solution calculated
in one of the six sectors of the circle can be extended over all other five sectors (see Fig. 6) similar to Ref.14
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5. CONCLUSIONS

The model of a three-body system comprising a diatomic homonuclear molecule and an atom in the collinear
configuration is formulated as a 2D boundary-value problem for the Schrödinger equation. Using the Kantorovich
expansions of the 2D solution in parametric basis functions, we reduce the problem in Jacobi and polar coordinates
to the boundary-value problem for a set of self-adjoint second-order ordinary differential equations. In these
equations the parameter of the Kantorovich basis is an independent variable.

In polar coordinate, the calculation scheme using the Kantorovich expansion has exact threshold energies
and relative momenta that can be applied both below and above the three-body threshold. In the case of
polar coordinates the asymptotic behavior of the effective potential and the ODEs fundamental solutions is
presented by the long-range expansion in inverse powers of the radial variable, while in the case of Jacobi
coordinates the effective potentials exponentially tend to nondiagonal constant matrices. An important result,
demonstrtated in our benchmark calculations of the discrete-energy spectrum of the trimer Be3 is the convergence
of the total energy E(jmax) and the binding energies Eb(jmax) = E(jmax)−Etrsh(jmax) relative to the threshold
Etrsh(jmax) = λ1 in Jacobi coordinates to the exact ones, calculated in polar coordinates (Table 1). This fact
means that the calculation scheme in Jacobi coordinates using the Kantorovich expansion can be applied to
solving the scattering problems below the three-body threshold.

The proposed approach and software can be adapted and applied to the analysis of quantum transparency
effect, quantum diffusion of molecules, bound and metastable states, and the resonance scattering in triatomic
systems.

The work was supported by the RFBR(grant No. 17-01-00298) and the MES RK (Grant No. 0333/GF4) and
was funded within the Agreement N 02.03.21.0008 dated 24.04.2016 between the MES RF and RUDN University.
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