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Abstract. We describe POTHMF, a program to compute matrix el-
ements of the coupled radial equations for a hydrogen-like atom in a
homogeneous magnetic field. POTHMF computes with a prescribed
accuracy the oblate angular spheroidal functions, which depend on a
parameter and corresponding eigenvalues, and the matrix elements,
which are integrals of the eigenfunctions multiplied by their deriva-
tives with respect to the parameter. The program, implemented
in Maple-Fortran, consists of a package of symbolic-numerical algo-
rithms that reduce a singular two-dimensional boundary value prob-
lem for an elliptic second-order partial differential equation to a reg-
ular boundary value problem for a system of second-order ordinary
differential equations using the Kantorovich method.

1 Introduction

The calculation of the dynamics of electron states of hydrogen-like atoms in a
magnetic field in atomic physics is reduced to a boundary value problem for
an elliptic second-order partial differential equation in a two-dimensional region
for fixed values of the magnetic number and parity [1]. Efficient algorithms for
the numerical solution of this problem are based on its reduction to a system
of ordinary differential equations by the Kantorovich method, using the oblate
angular spheroidal functions [2] as the basis for the expansion of the unknown
solution. For an efficient application of the Kantorovich method we elaborate
the POTHMF program as a set of symbolic-numerical algorithms for computing
the following quantities to a prescribed accuracy [3]:

• oblate angular spheroidal functions on a bounded interval of the parameter
values,
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• derivatives with respect to the parameter of the angular functions and of
the matrix elements (integrals of the eigenfunctions multiplied by their deriva-
tives with respect to the parameter),

• asymptotics of the radial parameter of the eigenfunctions and of the matrix
elements that appear as variable coefficients in the system of ordinary differential
equations,

• asymptotics of the solutions to the system of ordinary differential equations
for small and large values of the radial variable,

• solutions of the boundary value problem for the system of second-order
ordinary differential equations.

The program also calculates asymptotic regular and irregular matrix solu-
tions of the system of second-order ordinary differential equations at the end
of interval in the radial variable needed for solving the corresponded boundary
problem with third-type boundary conditions.

2 The problem statement

The Schrödinger equation for the hydrogen atom in an axially symmetric mag-
netic field B = (0, 0, B) in spherical coordinates (r, η = cos θ, ϕ) can be written
as the 2D-equation in the region Ω = {0 < r < ∞,−1 < η < 1} [1]

(
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The operator Â(0)(r, η) = A(0)(r, η) + γmr2, where A(0)(r, η) is given by
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Here m = 0,±1, . . . is the magnetic quantum number, γ = B/B0, B0
∼= 2.35×

105T is a dimensionless parameter which determines the field strength B, and
the atomic units (a.u.) ~ = me = e = 1 are used under the assumption of infinite
mass of the nucleus having charge Z. In these expressions, ε = 2E is the doubled
energy (in Rydbergs, 1Ry=(1/2) a.u.) of the state |mσ〉 at fixed values of m
and z-parity; σ = ±1; Ψ ≡ Ψmσ(r, θ) = (Ψm(r, θ) + σΨm(r, π − θ))/

√
2 is the

corresponding wave function. The wave functions ΨEmσ
i (r, η) exp(ımϕ)/

√
2π

with fixed parity σ and azimuthal quantum number m is expanded over the
one-dimensional basis, Φmσ

j (η; r),

ΨEmσ
i (r, θ) =

∑jmax

j=1
Φmσ

j (η; r)χ(mσi)
j (E, r),

with unknown radial vector-solutions χ
(mσi)
j (E, r). The basis functions are so-

lutions of the eigenvalue problem for the angular oblate spheroidal functions[2]

Â(0)(r, η)Φj(η; r) = Ej(r)Φj(η; r), Iij(r) =
∫ 1

−1

Φi(η; r)Φj(η; r)dη = δij . (3)
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Thus, the Schrödinger equation in the 2D-region, Ω = {R1
+× [−1, 1]}, is reduced

to a set of coupled differential equations
(
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dr
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+
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+
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d r2Q(r)
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)
χ(i)(r) = εi Iχ(i)(r). (4)

The matrix of effective potentials U(r) and Q(r) of jmax × jmax are given by

Uij(r) =
Ei(r) + Ej(r)

2
δij − 2Zrδij + r2Hij(r), Iij = δij , (5)

Hij(r) =
∫ 1

−1

∂Φi(η; r)
∂r

∂Φj(η; r)
∂r

dη, Qij(r) = −
∫ 1

−1

Φi(η; r)
∂Φj(η; r)

∂r
dη.

The wave function χ(r) = {χ(mσi)
j (E, r)}j=1 satisfies the following boundary

conditions at r → 0

lim
r→0

r2

(
I

d

dr
−Q(r)

)
χ(r) = 0, (6)

and at large r = rmax À 1

χ(r) = 0, for the discrete spectrum, (7)(
I

d

dr
−Q(r)

)
χ(r) = µ(r)χ(r), for the continuous spectrum. (8)

Note, the energy ε ≡ ε(rmax) plays the role of eigenvalues of the boundary
problem (4)–(7) on a finite interval 0 ≤ r ≤ rmax, while the unknown parameters
µ ≡ µ(rmax, ε) at fixed value of ε play the role of eigenvalues of the logarithmic
normal derivative matrix of the solution of the boundary problem (4)–(6), (8).

To reduce the system of radial equations to the finite interval r ∈ (0, rmax)
with homogeneous boundary conditions of the third type, symbolic algorithms
for evaluating asymptotics of the effective potentials and the solutions of radial
equations at small and large values of r are elaborated. The resulting system
of radial equations, which contains the first-derivative coupling terms, is solved
using the finite element method by means of the KANTBP program, imple-
mented in FORTRAN. POTHMF calculates energy values, the reaction matrix
and unknown radial vector-solutions, and the photoionization cross-sections.
POTHMF prepares input files for KANTBP and has the structure given by the
following diagram:

→ 1. EIGENF → 3. MATRA
↘ ↓ ↘

2. MATRM 4. ASYMRS
↓ ↘↙ ↓

KANTBP(I) KANTBP(II)
↘ ↓

5. DIPPOT →
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In procedure EIGENF, the eigenvalue problem for one-dimension differential
equation is reduced to the algebraic eigenvalue problem, which is solved for a
finite set of values of parameter r.
In procedure MATRM, using solutions of the algebraic eigenvalue problem
above, the parametric derivatives of the basis functions, ∂Φj(η; r)/∂r and ma-
trix elements Qij(r), Hij(r), ∂Qij(r)/∂r, etc, are calculated.
In procedure MATRA, the asymptotic solutions of the algebraic eigenvalue prob-
lem generated in EIGENF as well as its matrix elements are calculated as a
power series in the parameter r2 and its inverse.
In procedure ASYMRS, using asymptotics of matrix elements, the asymptotics
of the fundamental radial solutions at small and large values r are calculated and
the needed boundary conditions for a reduced interval [0, rmax] are generated.
In procedure DIPPOT, the transition matrix elements are evaluated using the
results of program KANTBP.

3 The procedure EIGENF

In procedure EIGENF, the eigenvalue problem for a one-dimensional differential
equation is reduced to the algebraic eigenvalue problem, which is solved for a
finite set of values of parameter r.

We obtain eigenfunctions Φj(η; r̂) in the form of a series expansion at fixed
values σ = ±1 and m,

Φj(η; r̂) =
smax∑

s=(1−σ)/2

cmσ
sj (r̂)P |m||m|+s(η). (9)

Here, s is an even (odd) integer at σ = (−1)s = ±1 until smax = 2(Nmax − 1) +
(1 − σ)/2, where Nmax is the number of even or odd terms of expansion, and
P
|m|
|m|+s(η) are the normalized associated Legendre polynomials defined by the

relation [2]:

− d

dη
(1− η2)

d

dη
P
|m|
|m|+s(η) +

m2

1− η2
P
|m|
|m|+s(η) = λmσ

s (0)P |m||m|+s(η), (10)

λmσ
s (0) = (|m|+ s)(|m|+ s + 1), s = 2(j − 1) + (1− σ)/2,

∫ 1

−1

P
|m|
|m|+s(η)P |m||m|+s′(η)dη = δss′ . (11)

The coefficients cmσ
sj (r̂) satisfy the relation

smax∑

s=(1−σ)/2

cmσ
sj (r̂)cmσ

sj′ (r̂) = δjj′ . (12)

The eigenvalue problem for eigenvectors cj = {cmσ
sj (r̂)}smax

(1−σ)/2 , and eigenvalues
λj(r̂) take the form

A(0)cj = λj(r̂)cj , (13)
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where matrix A(0) is the symmetric tridiagonal Nmax ×Nmax matrix:

A
(0)
ss−2 = A

(0)
s−2s =

−p2

(2s + 2|m| − 1)

√
(s− 1)s(s + 2|m| − 1)(s + 2|m|)
(2s + 2|m| − 3)(2s + 2|m|+ 1)

,

A(0)
ss = (s+|m|)(s+|m|+1) + 2p2 (s2 + s + 2s|m|+ 2m2 + |m| − 1)

(2s + 2|m| − 1)(2s + 2|m|+ 3)
. (14)

The expansion (9), which provides stability of the numerical calculation with
double precision arithmetic (the relative machine precision is eps ≈ 2 · 10−16),
was implemented using the subroutine DSTEVR from the LAPACK Fortran
Library [4]. The orthogonality relations (12) were computed with an accuracy
of the order of eps.

3.1 Finding the optimal value of smax and the matching
point Rmatch of numerical and asymptotic solutions

At large s elements of matrix A(0) (14) take the form

A(0)
ss =

(2s+2|m|+1)2 − 1
4

+
p2

2
+ O(s−2), A

(0)
ss±2 = −p2

4
+ O(s−2). (15)

On intervals s ∈ (sb, se) at sb, se À 1, we suppose that the elements of matrix
A(0) have slow dependence on s. Therefore, for a given value of λ, the solution
of the algebraic problem (13), (15) will be represented in the form

cs = xcs+2, cs−2 = xcs. (16)

From (16), (13), and (15) we have the following algebraic equation with respect
to factor x

x + x−1 = d ≡ p−2
(
(2s + 2|m|+ 1)2 − 1− 4λ + 2p2

)
. (17)

For s > s2, where s2 = (
√

4λ + 1 − 2|m| − 1)/2 is determined from equation
(17) at d = 2, equation (17) has two real solutions. One of them,

xs = p−2
(√

(s−s2)(s+s2+2|m|+1) +
√

p2+(s−s2)(s+s2+2|m|+1)
)2

, (18)

exceeds unity by its absolute value and the other, x−1, is smaller than one.
Thus, the solution of (16) with decreased coefficients cs at increased s exists.
For s < s2 we have two solutions with oscillating coefficients cs. Then, the
solution of Eq. (17) allows us to determine an algorithm for evaluating smax:

∏smax−1

s=s2
xs < 1/eps,

∏smax

s=s2
xs > 1/eps. (19)

We need an approximate value of the eigenvalue λ for the above calculation.
If we use the fact all diagonal elements A

(0)
ss of the tridiagonal matrix A(0) and
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eigenvalues εj(p) or λj(p) increased by the number j, then we can obtain the
upper bound of the eigenvalue λN with the help of Wilkinson’s shift [5]:

shift = G + A(0)
sN sN

+
√

G2 + (A(0)
sN sN−2)2, G =

A
(0)
sN−2sN−2 −A

(0)
sN sN

2
, (20)

where sN = 2(N − 1) + (1 − σ)/2. But shift À λN at p À 1. In this case
we use an asymptotic expression of the eigenvalue (29) at p ≥ 2sN , since the
asymptotic expression gives an upper bound of the eigenvalue.

The matching point Rmatch of the numerical and asymptotic solution is cal-
culated by the MATRA algorithm as follows:

rmatch = max(rε, rh, rq), rε =
18

√
|ε(18)

N |
eps

, rh =
18

√
|H(18)

NN |
eps

, rq =
17

√
|Q(17)

NN−1|
eps

, (21)

since |ε(2k)
j | < γ|ε(2k+2)

j |, |Q(2k−1)
jj′ | < γ|Q(2k+1)

jj′ |, |H(2k)
jj′ | < γ|H(2k+2)

jj′ | and

|Q(17)
jj′ | ≤ |Q(17)

NN−1|, |H(18)
jj′ | ≤ |H(18)

NN |.

4 The procedure MATRM

In the procedure MATRM, based on solutions of the above algebraic eigenvalue
problem, the parametric derivatives of the basis functions ∂Φj(η; r)/∂r and
matrix elements Qij(r), Hij(r), ∂Qij(r)/∂r, etc., are calculated.

The derivatives of functions Φj(θ; r) at fixed values of σ = ±1 and m can
be represented as the following expansion in terms of the normalized Legendre
polynomials (9):

Φ(n)
j (θ; r) =

smax∑

s=(1−σ)/2

c
(n)
sj P

|m|
|m|+s(η), c

(n)
sj ≡ ∂ncsj(r)

∂rn
, (22)

where c(0) ≡ cj and λ(0) ≡ λj(r).
Following (12)–(13), we solve the following linear recurrence system of alge-

braic equations:

(A(0)c(k) − c(k)λ(0)) + (A(k)c(0) − c(0)λ(k)) = b(k), A(k) ≡ ∂kA(0)

∂rk
,

b(k) ≡
k−1∑
n=1

k!
n!(k − n)!

(c(k−n)λ(n) −A(n)c(k−n)), b(1) ≡ 0. (23)

From the normalization condition (12) we obtain the required additional equality

k∑
n=0

k!
n!(k − n)!

c(k−n)T
c(n) = 0, (24)

providing the uniqueness of the solution (23). The details of the algebraic
realization of the algorithm are given in [3].
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5 The procedure MATRA

In procedure MATRA, the asymptotic solutions of the algebraic eigenvalue prob-
lem generated in EIGENF and the matrix elements are calculated as a power
series of the parameter r2 and its inverse at small and large values r.

At step 1 we go from coordinate η ∈ [0, 1] (or η ∈ [−1, 0]) to the new
coordinate y using the formula y = 2p(1− η) (or y = 2p(1 + η)).
At steps 2 and 3 we go from the set of functions Φj(y) to the set of functions
Fn(y)

Φj(y) = exp
(
−y

2

) (
y

4p

)|m|/2 (
1− y

4p

)|m|/2

Fn(y), (25)

that are found as a sum of Laguerre polynomials L
|m|
n+s(y) [2] with unknowns

Cn(s, r)

Fn(y) = 2|m|+1/2p(|m|+1)/2
∑

s
Cn(s, r)L|m|n+s(y). (26)

In step 4, where we evaluate integrals, we change the domain from [0, 2p] to
[0,∞), and then drop exponentially small terms. Step 5 finds Cn(s, r) and λn

as a series expansion

Cn(s, r) = c(0)
s,n +

kmax∑

k=1

c
(k)
s,n

(4p)k
, λn = 4p

[
|m|+ 1

2
+ β(0)

n +
kmax∑

k=1

β
(k)
n

(4p)k

]
. (27)

Substituting (27) in the result of step 3 and equating coefficients at the same
powers of p, we arrive at a system of recurrence relations for evaluating coeffi-
cients β

(k)
n and c

(k)
s,n (except c

(k)
0,n):

sc(k)
s,n = ((ns + |m|+ 1)(2ns + |m|+ 1)− (ns + |m|)(|m|+ 1))c(k−1)

s,n (28)

−ns(ns + |m|)c(k−1)
s−1,n − (ns + |m|+ 1)(ns + 1)c(k−1)

s+1,n +
k−|s|∑

k′=1

β(k′)
n c(k−k′)

s,n ,

with initial conditions β
(0)
n = n, c

(0)
s,n = δs0

√
n!/(n + |m|)!.

In step 6, substituting (27) the coefficients c
(k)
s,j evaluated in step 5 for expressions

of the matrix elements evaluated in step 4, we easily find the matrix elements
as a series expansion of inverse powers of r

r−2εj(r) =
kmax∑

k=0

ε
(2k)
j

r2k
, Hjj′(r) =

kmax∑

k=1

H
(2k)
jj′

r2k
, Qjj′(r) =

kmax∑

k=1

Q
(2k−1)
jj′

r2k−1
. (29)

6 Procedure ASYMRS

In procedure ASYMRS, using asymptotics of matrix elements, the asymptotics
of the fundamental radial solutions at small and large values r are calculated and
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the needed boundary conditions for a reduced interval [0, rmax] are generated.
Now let us consider the asymptotic solution

χjio(r) = R(pio , r)φjio(r) +
dR(pio , r)

dr
ψjio(r), (30)

where R(pio , r) = p
−1/2
io

r−1(ı F0(pio , r) + G0(pio , r))/2, F0(pio , r) and G0(pio , r)
are the Coulomb regular and irregular functions, respectively [2]. The function
R(pio

, r) satisfies the differential equation

d2R(pio , r)
dr2

+
2
r

dR(pio , r)
dr

+
(

p2
io

+
2Z

r

)
R(pio , r) = 0. (31)

Substituting the function (30) into Eq. (4) using (31) and extracting the coef-
ficients for the Coulomb function and its derivative, we arrive at two coupled
differential equations with respect to the unknown functions φjio

(r) and ψjio
(r).

Then we expand the functions φjio(r) and ψjio(r) in the inverse power series
of r:

φjio(r) =
∑kmax

k=0
φ

(k)
jio

r−k, ψjio(r) =
∑kmax

k=0
ψ

(k)
jio

r−k. (32)

After substituting the expansions (29), (32) to the given coupled differential
equations and equating the coefficients of the same powers of r, we compute
a set of recurrence relations with respect to the unknown coefficients φ

(k)
jio

and

ψ
(k)
jio

(
p2

io
− 2E + ε

(0)
j

)
φ

(k)
jio
− 2p2

io
(k − 1)ψ(k−1)

jio
− (k − 2)(k − 3)φ(k−2)

jio

−2Z(2k − 3)ψ(k−2)
jio

+
k∑

k′=1

(
ε
(k′)
j + H

(k′)
jj

)
φ

(k−k′)
jio

(33)

=
N∑

j′=1,j′ 6=j

k∑

k′=1

[(
(2k − k′ − 3)Q(k′−1)

jj′ −H
(k′)
jj′

)
φ

(k−k′)
j′io

+
(
2p2

io
Q

(k′)
jj′ + 4ZQ

(k′−1)
jj′

)
ψ

(k−k′)
j′io

]
,

(
p2

io
− 2E + ε

(0)
j

)
ψ

(k)
jio

+ 2(k − 1)φ(k−1)
jio

− k(k − 1)ψ(k−2)
jio

+
k∑

k′=1

(
ε
(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
jio

(34)

=
N∑

j′=1,j′ 6=j

k∑

k′=1

[(
(2k − k′ + 1)Q(k′−1)

jj′ −H
(k′)
jj′

)
ψ

(k−k′)
j′io

− 2Q
(k′)
jj′ φ

(k−k′)
j′io

]
.

From the first four equations of the set (33), (34) for φ
(0)
ioio

, φ
(0)
j0io

, ψ
(0)
ioio

, ψ
(0)
j0io

, we
obtain the leading terms of the eigenfunction, the eigenvalue p2

io
, i.e., the initial
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data for solving the recurrence equations (33), (34),

φ
(0)
j0io

= δj0io
, ψ

(0)
j0io

= 0, p2
io

= 2E − ε
(0)
io

. (35)

Open channels have p2
io
≥ 0, and close channels have p2

io
< 0. Suppose that

there are No ≤ N open channels, i.e., p2
io
≥ 0 for io = 1, . . . No and p2

io
< 0 for

io = No + 1, . . . N .
In addition, it should be noted that at large r the linearly independent

functions (30) satisfy the Wronskian-type relation

W(Q(r); χ∗(r), χ(r)) =
ı

2
Ioo, (36)

where W(•; χ∗(r),χ(r)) is a generalized Wronskian with a long derivative de-
fined as

W(•;χ∗(r), χ(r)) = r2

[
(χ∗)T

(
dχ

dr
− •χ

)
−

(
dχ∗

dr
− •χ∗

)T

χ

]
.

These relations will be used to examine the accuracy of the above expansion.
The calculations of the above asymptotics were performed using MATRA and
ASYMRS implemented in MAPLE 8.

7 Procedure DIPPOT

In procedure DIPPOT, the transition matrix elements are evaluated using the
results of program KANTBP.

Let us construct the longitudinal and transversal dipole matrix elements
D

(mσσ′)
jj′ (r) and P

(mm′σ)
jj′ (r) with the photon polarized along the z axis and

along the XOY plane, respectively. Using the expression (9), the above matrix
elements can be written in the form

D
(mσσ′)
jj′ (r)=δ|σ+σ′|0 r

smax∑

s=s(σ)

smax∑

s′=s(σ′)

cmσ
sj (r)cmσ′

s′j′ (r)δ|s−s′|1

√
s>

√
s>+2|m|√

4(s>+|m|)2−1
,

P
(mm′σ)
jj′ (r) = δ|m−m′|1

r√
2

smax∑

s=s(σ)

smax∑

s′=s(σ′)

cmσ
sj (r)cm′σ

s′j′ (r) (37)

×
{

δss′+2

√
s(s−1)

4(s+m<)2−1
− δss′

√
(s+2m<+1)(s+2m<+2)

(2s+2m<+1)(2s+2m<+3)

}
,

where s(σ) = (1− σ)/2, s> = max(s, s′) and m< = min(|m|, |m′|).
Using the coefficients c

(k)
s,j obtained in sections 3 and 4, one can easily find

longitudinal and transversal dipole matrix elements as the series expansion by
the inverse power of r without the exponential terms

D
(mσσ′)
jj′ (r) = r

kmax∑

k=0

r−2kD
(2k)
jj′ , P

(mm′σ)
jj′ (r) = −

kmax∑

k=0

r−2kP
(2k)
jj′ . (38)
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8 Conclusion

Using elaborated algorithms, for large r one could build asymptotic expansions
in the inverse powers of r needed for calculation with a given accuracy of the re-
quired set of basis functions for all values of parameter r [3]. As a consequence,
at large values of the radial variable r, the potential curves, radial matrix el-
ements, and dipole transition matrix elements are calculated using asymptotic
formulae and matching points rmatch < rmax that are found automatically from
the interval of integration 0 ≤ r ≤ rmax. Thus, we can build a more efficient
algorithm for solving the partial algebraic eigenvalue problem depending on pa-
rameter r with an automatic choice of Wilkinson’s shift [5]. Thus, we give a
constructive solution of the key problem to build up a nonsymmetric matrix log-
arithmic derivative, i.e., R-matrix in an adiabatic (parametrically dependent)
basis in terms of the recalculation matrix for solution of a boundary problem
with the boundary conditions of the third type from the inner region to the
outer region.
The LONG WRITE UP of POTHMF and KANTBP will be published in Com-
puter Physics Communications.

Acknowledgments. The authors (AG and VG) thank the Academy of Finland
and RFBR (projects 06-01-90627 and 07-01-00660) for support.

References

[1] Dimova, M.G., Kaschiev, M.S., Vinitsky, S.I. - The Kantorovich method for
high-accuracy calculations of a hydrogen atom in a strong magnetic field:
low-lying excited states J. Phys. B: At., Mol. Phys. Vol. 38, 2005, 2337-2352.

[2] Abramovits M. and Stegun I.A. - Handbook of Mathematical Functions.,
Dover, New York, 1965.

[3] Vinitsky, S.I., et. al, - A Symbolic-Numerical Algorithm for the Computation
of Matrix Elements in the Parametric Eigenvalue Problem Programming and
Computer Software. Vol. 33, 2007, 105-116.

[4] http://www.netlib.org/lapack/

[5] Wilkinson, J.H. - Global convergene of tridiagonal QR algorithm with origin
shifts, Linear Algebra and its Applications Vol. 1, 1968, 409-420.


