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We consider fully symmetric quadrature rules with positive weights, and with nodes lying inside the 3, … , 6
dimensional simplex (so-called PI-type). PI-type fully symmetric quadrature rules up to 20-th order on the 
tetrahedron, 16-th order on 4-simplex, 10-th order on 5- and 6-simplexes are presented. The number of 
nodes of the presented quadrature rules for the corresponding orders does not exceed the known ones, and 
most of them are new. In the calculation we applied the modified Levenberg-Marquardt methods for solving 
nonlinear equations with convex constraints. The corresponding programs are implemented in MAPLE-FORTRAN 
environment, and the weights and nodes are first calculated using a FORTRAN program with an accuracy of 10−25
and refined up to accuracy of 10−50 using a MAPLE program.
1. Introduction

The high-order finite element method (FEM) schemes yield highly 
accurate solutions of the boundary value problems due to their fast 
convergence. However, they are not currently used to solve multidimen-

sional problems, since their implementation requires large resources. 
This obstacle is gradually being removed with the progress in computa-

tional technology.

The cornerstone hindering factor in the implementation of the FEM 
schemes is the calculation of integrals. It is well known [1] that, as a 
result of applying the 𝑝-th order FEM to the solution of the discrete spec-

trum problem for the elliptic (Schrödinger) equation, the eigenfunctions 
and the eigenvalues are determined with accuracies of the order 𝑝 + 1
and 2𝑝, respectively, provided that all intermediate quantities are cal-

culated with sufficient accuracy. It follows that, for the realization of an 
FEM scheme of the order 𝑝, the corresponding integrals must be com-

puted with an accuracy of the order 2𝑝 at least. The most economical 
way of calculating such integrals rests on the use of quadratures of the 
Gaussian type. In the one-dimensional case, these quadrature rules are 
known analytically. Using their Cartesian product, analytical quadra-

ture rules may be built for rectangular hyperparallelepipeds, without 
being optimal, however. Such quadrature rules, which are characterized 
by almost minimal numbers of nodes were reported in [2]. Quadrature 
rules are also known for curvilinear domains [3,4].
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The purpose of this work is the derivation of fully symmetric quadra-

ture rules with positive weights and with nodes lying inside the simplex 
(rules of so-called PI-type). The derivation of quadrature rules (usually 
in barycentric coordinates) in the general case is reduced to the solution 
of systems of large nonlinear algebraic equations.

In the lower order cases, being expressed in terms of radicals, the 
weights and nodes of the quadrature rules are exact. Such solutions for 
quadrature rules up to the fifth order on a triangle and up to the third 
order on a tetrahedron were reported in [5], while quadrature rules of 
the second and the third orders on an arbitrary simplex were reported 
in [6]. The use of Gröbner bases makes it possible the derivation of 
general solutions of the systems of nonlinear algebraic equations for 
quadrature rules up to the fifth order on a simplex (for example, by 
using the program “PolynomialSystem” implemented in MAPLE). This 
approach, however, cannot provide solutions beyond the eighth order. 
Note that for multidimensional integrals, a variety of quadrature rules 
of the Grundmann-Möller and of the Newton-Cotes types are known 
(see, for instance, Refs. [7,8]).

Gaussian quadrature rules on a triangle have been reported in many 
papers (for instance [9–21]). Among them, we notice the symmetric 
PI-type quadrature rules up to 50-th order reported in [18], and the 
asymmetric quadrature rules up to 25-th order reported in [16]. In [14], 
Gaussian quadrature rules up to 20-th order were reported. The pro-

gram presented in the article [14] allows the derivation of high-order 
quadrature rules in a reasonable computational time.
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Table 1

The orbits 𝑆[𝑖] ≡ 𝑆𝑚1…𝑚𝑟𝑑𝑖
with different parameters 𝑟𝑑𝑖 and their numbers of permutations 𝑃𝑑𝑖 for 𝑑 = 2, … , 6.

𝑖 𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 5 𝑑 = 6

Orbits 𝑟2𝑖 𝑃2𝑖 Orbits 𝑟3𝑖 𝑃3𝑖 Orbits 𝑟4𝑖 𝑃4𝑖 Orbits 𝑟5𝑖 𝑃5𝑖 Orbits 𝑟6𝑖 𝑃6𝑖

0 𝑆3 1 1 𝑆4 1 1 𝑆5 1 1 𝑆6 1 1 𝑆7 1 1

1 𝑆21 2 3 𝑆31 2 4 𝑆41 2 5 𝑆51 2 6 𝑆61 2 7

2 𝑆111 3 6 𝑆22 2 6 𝑆32 2 10 𝑆42 2 15 𝑆52 2 21

3 𝑆211 3 12 𝑆311 3 20 𝑆33 2 20 𝑆43 2 35

4 𝑆1111 4 24 𝑆221 3 30 𝑆411 3 30 𝑆511 3 42

5 𝑆2111 4 60 𝑆321 3 60 𝑆421 3 105

6 𝑆11111 5 120 𝑆222 3 90 𝑆331 3 140

7 𝑆3111 4 120 𝑆322 3 210

8 𝑆2211 4 180 𝑆4111 4 210

9 𝑆21111 5 360 𝑆3211 4 420

10 𝑆111111 6 720 𝑆2221 4 630

11 𝑆31111 5 840

12 𝑆22111 5 1260

13 𝑆211111 6 2520

14 𝑆1111111 7 5040
In the multidimensional case, two kinds of supplementary diffi-

culties arise in comparison with the two-dimensional case: the rapid 
growth of the number of independent equations with increasing dimen-

sion and the large number of different systems, which lead to the need 
of constructing initial estimations for the iterative process. Thus, in the 
case of the asymmetric 𝑝-order quadrature rules, the numbers of the in-

dependent nonlinear equations are 𝐶𝑑
𝑝+𝑑

= (𝑝+ 𝑑)!∕(𝑝!𝑑!), where 𝑑 is the 
dimension of the simplex. In the case of the symmetric 𝑝-order quadra-

ture rules, the numbers of the independent equations, which can be 
calculated using recurrence formulas with respect to the 𝑝 and 𝑑 [22], 
are much smaller than 𝐶𝑑

𝑝+𝑑
. At the same time, the very question of the 

minimal number of nodes for PI-type quadrature rules remains open. In 
[22] lower estimations only were inferred.

Many Gaussian quadrature rules on the 3- and 4-simplexes were 
reported (see, e.g., [13,15,19,20,23–29]). Among them, we notice the 
PI-type quadrature rules up to 20-th order on the tetrahedron [26] and 
up to 16-th order on the 4-simplex [29].

Finally, Gaussian PI-type quadrature rules up to 8-th order on the 5-

and 6-simplexes are presented in our previous paper [23].

In this paper we report new PI-type fully symmetric quadrature rules 
the maximal orders 𝑝 of which go up to 20 on the tetrahedron, up to 
16 on the 4-simplex, and up to 10 on the 5- and 6-simplexes, under the 
use of almost minimal numbers of nodes. To this aim, we use modified 
Levenberg-Marquardt methods [30–33] to solve systems of nonlinear 
algebraic equations in convex domains. The boundaries of the convex 
domains were carefully chosen by numerical experiments. The num-

bers of nodes entering our high-order quadrature rules are significantly 
lower than the corresponding figures reported in the recent papers [26]

and [29] for the 𝑑 = 3 and 𝑑 = 4 cases. Improvements are also reported 
in comparison with our previous results [23] for the 5- and 6-simplexes.

The paper is organized as follows. In Section 2, the derivation of 
the systems of the independent nonlinear equations is discussed. In Sec-

tion 3, algorithms for solving the system of nonlinear equations are 
presented. In Sections 4 and 5 the calculated quadrature rules and their 
error estimates are analyzed. The concluding section summarizes the 
main features of the reported methods and discusses the applications of 
quadrature rules to physical problems. In Appendix A, a brief descrip-

tion of the program for converting quadrature rules from compact to 
expanded forms is presented.

2. Fully symmetric quadrature rules for the 𝒅-simplex

Let us construct the 𝑝-order quadrature rule

∫Δ𝑑

𝑉 (𝑥)𝑑𝑥 = 1
𝑑!

𝑁𝑑𝑝∑
𝑗=1

𝑤𝑗𝑉 (𝑥𝑗1,… , 𝑥𝑗𝑑 ),

𝑥 = (𝑥1,… , 𝑥𝑑 ), 𝑑𝑥 = 𝑑𝑥1…𝑑𝑥𝑑, (1)
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for integration over the standard unit 𝑑-simplex Δ𝑑 with vertices 𝑥̂𝑗 =
(𝑥̂𝑗1, … , ̂𝑥𝑗𝑑 ), 𝑥̂𝑗𝑘 = 𝛿𝑗𝑘, 𝑗 = 0, … , 𝑑, 𝑘 = 1, … , 𝑑, which is exact for all 
polynomials of the variables 𝑥1, … , 𝑥𝑑 of degree not exceeding 𝑝. In 
Eq. (1), 𝑁𝑑𝑝 is the number of nodes, 𝑤𝑗 are the weights, and (𝑥𝑗1, … , 𝑥𝑗𝑑 )
are the nodes.

To building up PI-type fully symmetric quadrature rules, we use the 
barycentric coordinates (BC) (𝑦1, …, 𝑦𝑑+1) of nodes:

𝑑+1∑
𝑘=1

𝑦𝑘 = 1. (2)

Using the invariance of the symmetric quadrature rules, Eq. (1) can be 
represented in the symmetric expanded form,

∫Δ𝑑

𝑉 (𝑥)𝑑𝑥 = 1
𝑑!

∑
𝑗=1

𝑤𝑗

∑
𝑘1 ,…,𝑘𝑑+1

𝑉 (𝑦𝑗𝑘1
,… , 𝑦𝑗𝑘𝑑

|𝑦𝑗𝑘𝑑+1
), (3)

where the internal summation over 𝑘1, … , 𝑘𝑑+1 is carried out over 
the different permutations of the BC (𝑦𝑗1, … , 𝑦𝑗𝑑+1), while 𝑉 (𝑦𝑗𝑘1

, … ,
𝑦𝑗𝑘𝑑

|𝑦𝑗𝑘𝑑+1
) means that the 𝑑-dimensional integrand function 𝑉 (𝑥) is 

calculated for the set 𝑦𝑗𝑘1
, … , 𝑦𝑗𝑘𝑑

.

In Table 1 we present the different ordered orbits 𝑆[𝑖], 𝑖 = 0, … , 𝑀𝑑 , 
for 𝑑 = 2, … , 6 that have been used in [22], where 𝑀2 = 2, 𝑀3 = 4, 
𝑀4 = 6, 𝑀5 = 10, 𝑀6 = 14. The orbit 𝑆[𝑖] ≡ 𝑆𝑚1…𝑚𝑟𝑑𝑖

contains the BC

(𝑦1,… , 𝑦𝑑+1) = (

𝑚1 times
⏞⏞⏞⏞⏞⏞⏞
𝜆1,… , 𝜆1,… ,

𝑚𝑟𝑑𝑖
times

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜆𝑚𝑟𝑑𝑖

,… , 𝜆𝑚𝑟𝑑𝑖
), (4)

with

𝑟𝑑𝑖∑
𝑗=1

𝑚𝑗 = 𝑑 + 1,
𝑟𝑑𝑖∑
𝑗=1

𝑚𝑗𝜆𝑗 = 1, 𝑚1 ≥… ≥ 𝑚𝑟𝑑𝑖
. (5)

The number of different permutations of the BC (4) is expressed by 
permutations of multisets

𝑃𝑑𝑖 =
(𝑑 + 1)!

𝑚1!…𝑚𝑟𝑑𝑖
!
. (6)

The following formula holds for any permutations (𝑙1, … , 𝑙𝑑+1) of 
(𝑘1, … , 𝑘𝑑+1):

∫Δ𝑑

𝑥
𝑙1
1 ⋯𝑥

𝑙𝑑+1
𝑑+1𝑑𝑥 =

∏𝑑+1
𝑖=1 𝑘𝑖!(

𝑑 +
∑𝑑+1

𝑖=1 𝑘𝑖

)
!
, 𝑥𝑑+1 = 1 −

𝑑∑
𝑖=1

𝑥𝑖. (7)

Substituting symmetric polynomials with respect to the variables 
𝑥1, … , 𝑥𝑑+1 of degree not exceeding 𝑝 in (3) instead of 𝑉 (𝑥), and taking 
into account (7), we obtain the system of nonlinear algebraic equations:
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Table 2

The numbers 𝐸𝑑𝑝 of independent equations for fully symmetric 𝑝-order quadra-

ture rules.

𝑝 𝐸𝑑𝑝

𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 5 𝑑 = 6

4 4 5 5 5 5

5 5 6 7 7 7

6 7 9 10 11 11

7 8 11 13 14 15

8 10 15 18 20 21

9 12 18 23 26 28

10 14 23 30 35 38

11 16 27 37 44 49

12 19 34 47 58 65

13 21 39 57 71 82

14 24 47 70 90 105

15 27 54 84 110 131

16 30 64 101 136 164

17 33 72 119 163 201

18 37 84 141 199 248

19 40 94 164 235 300

20 44 108 192 282 364

Table 3

The minimal numbers 𝑁̂𝑑𝑝 of nodes for fully symmetric 𝑝-order quadrature 
rules. The numbers in the second, third, fourth, fifth and seventh columns are 
taken from [22]. The numbers in the right columns at 𝑑 = 5 and 𝑑 = 6 are the 
new recalculated results.

𝑝 𝑁̂𝑑𝑝

𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 5 𝑑 = 6

4 6 11 16 22 22 29 29

5 7 14 21 28 28 36 36

6 12 24 41 68 63 98 84

7 13 30 55 84 79 140 127

8 16 43 90 164 164 267 259

9 19 52 120 210 210 351 344

10 24 68 171 325 325 644 623

11 27 81 206 470 466 848 827

12 33 117 306 736 706 1456 1330

13 36 133 381 917 882 1911 1772

14 42 163 485 1272 1267 2870 2786

15 46 190 616 1662 1623 3816 3613

16 52 233 766 2218 2188 5019

17 58 266 931 2734 2734

18 66 318 1161 3649 3609

19 70 355 1396

20 78 415 1750

∫Δ𝑑

𝑠
𝑙2
2 ×⋯ × 𝑠

𝑙𝑑+1
𝑑+1𝑑𝑥 = 1

𝑑!

𝑀𝑑∑
𝑖=0

𝑃𝑑𝑖

𝐾𝑑𝑖∑
𝑗=1

𝑊𝑖,𝑗𝑠
𝑙2
𝑖,𝑗2 ×⋯ × 𝑠

𝑙𝑑+1
𝑖,𝑗𝑑+1, (8)

2𝑙2 +⋯+ (𝑑 + 1)𝑙𝑑+1 ≤ 𝑝, (9)

where, for each orbit 𝑆[𝑖], a set of 𝐾𝑑𝑖 different BC is used. In (8), 𝐾𝑑0 = 0
or 1 and 𝐾𝑑𝑖 ≥ 0, 𝑖 ≠ 0; 𝑊𝑖,𝑗 is the 𝑗-th weight of the orbit 𝑆[𝑖];

𝑠𝑘 =
𝑑+1∑
𝑙=1

𝑥𝑘
𝑙
, 𝑘 = 2,… , 𝑑 + 1, (10)

is the symmetric polynomial of degree 𝑘. Finally,

𝑠𝑖,𝑗𝑘 =
𝑟𝑑𝑖∑
𝑙=1

𝑚𝑙𝜆
𝑘
𝑖,𝑗𝑙

(11)

denotes the 𝑗-th value of (10) on the components 𝜆𝑖,𝑗𝑙 of the BC of the 
orbit 𝑆[𝑖].

The count of all the solutions of Eq. (9) characterized by 𝑙𝑘 ≥ 0 pro-

vides the number 𝐸𝑑𝑝 of the independent nonlinear equations for the 
𝑝-ordered quadrature rule. The value of 𝐸𝑑𝑝 can be calculated by recur-

rence for arbitrary 𝑑 and 𝑝 [22]:
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𝐸𝑑𝑝 =
⎧⎪⎨⎪⎩
1 +

⌊
𝑝

2

⌋
, 𝑑 = 1, 𝑝 ≥ 0

𝐸𝑑−1𝑝, 𝑑 ≥ 2, 0 ≤ 𝑝 ≤ 𝑑,

𝐸𝑑−1𝑝 +𝐸𝑑𝑝−𝑑−1, 𝑑 ≥ 2, 𝑝 ≥ 𝑑 + 1,
(12)

where ⌊𝑥⌋ denotes the integer part of 𝑥. Table 2 presents the 𝐸𝑑𝑝 values 
for 𝑑 = 2, … , 6 and 𝑝 = 4, … , 20.

The number of the unknowns 𝑈𝑑𝑝 in Eq. (8) and the number 𝑁𝑑𝑝 of 
nodes are given respectively by

𝑈𝑑𝑝 =
𝑀𝑑∑
𝑖=0

𝑟𝑑𝑖𝐾𝑑𝑖, 𝑁𝑑𝑝 =
𝑀𝑑∑
𝑖=0

𝑃𝑑𝑖𝐾𝑑𝑖. (13)

A necessary condition for the existence of a solution of the nonlinear 
system (8) is

𝐸𝑑𝑝 ≤ 𝑈𝑑𝑝. (14)

From Eq. (13) it follows that the number 𝐾𝑑𝑖 is bounded from above,

𝐾𝑑𝑖 ≤min
(⌊

𝑈𝑑𝑝

𝑟𝑑𝑖

⌋
,

⌊
𝑁𝑑𝑝

𝑃𝑑𝑖

⌋)
. (15)

The additional consistency conditions described in [22,27] have also 
been used. These consistency conditions help to find the combinations 
of orbits for which the nonlinear system (8) can have solutions, thereby 
significantly reducing the total computational time. In particular, for 
the orbits with 𝑟𝑑𝑗 = 1, 2 and 𝑑 = 3, … , 6, six sets of simple conditions 
follow from [22,27]:

𝐾𝑑0 + 2𝐾𝑑𝑗 ≤ 𝑈𝑑𝑝 −𝐸𝑑𝑝 + 𝑝, (16)

where 𝑗 = 1 for 𝑑 = 2, 3, 𝑗 = 1, 2 for 𝑑 = 4, 5 and 𝑗 = 1, 2, 3 for 𝑑 = 6;

𝐾𝑑0 + 2𝐾𝑑𝑗 ≤ 𝑈𝑑𝑝 −𝐸𝑑𝑝 +
⌊ 𝑝

2

⌋
+ 1, (17)

where 𝑗 = 2 for 𝑑 = 3 and 𝑗 = 3 for 𝑑 = 5;

𝐾𝑑0 + 2𝐾𝑑𝑖 + 2𝐾𝑑𝑗 ≤ 𝑈𝑑𝑝 −𝐸𝑑𝑝 +max(𝑝,2𝑝− 3), (18)

where 𝑖 = 1, 𝑗 = 2 for 𝑑 = 5 and (𝑖, 𝑗) ∈ (1, 2, 3), 𝑖 < 𝑗 for 𝑑 = 6;

𝐾𝑑0 + 2𝐾𝑑𝑖 + 2𝐾𝑑𝑗 ≤ 𝑈𝑑𝑝 −𝐸𝑑𝑝 + 𝑝+
⌊ 𝑝

2

⌋
− 1, (19)

where 𝑖 = 1, 𝑗 = 2 for 𝑑 = 3 and 𝑖 = 1, 2, 𝑗 = 3 for 𝑑 = 5;

𝐾𝑑0 + 2𝐾𝑑1 + 2𝐾𝑑2 + 2𝐾𝑑3 ≤ 𝑈𝑑𝑝 −𝐸𝑑𝑝 +max
(
𝐸𝑑𝑝,3𝑝− 8

)
, (20)

where 𝑑 = 6;

𝐾𝑑0 + 2𝐾𝑑1 + 2𝐾𝑑2 + 2𝐾𝑑3 ≤ 𝑈𝑑𝑝 −𝐸𝑑𝑝 +max
(
𝐸𝑑𝑝,2𝑝+

⌊ 𝑝

2

⌋
− 5

)
, (21)

where 𝑑 = 5.

For such sets, the rank of the corresponding matrix [22] is calculated 
in the Maple without loss of accuracy. Table 3 summarizes the minimal 
number 𝑁̂𝑑𝑝 of nodes at which a consistency set of orbits can exist 
for fully symmetric quadrature rules of 𝑝-order. Our obtained minimal 
numbers 𝑁̂𝑑𝑝 of nodes coincides with the results of [22] at 𝑑 = 2, 3, 4, 
while some of our obtained minimal numbers 𝑁̂𝑑𝑝 of nodes at 𝑑 = 5, 6
are smaller than those reported in [22].

Note that, for 𝑑 = 2 the condition (16) is equivalent to

3𝐾22 ≥ 𝐸2𝑝 − 𝑝, (22)

and it coincides with the condition derived in [10]. Our calculations 
show that the symmetric quadrature rules must include the last orbit 
𝑆111 for 𝑑 = 2 at 𝑝 ≥ 6 (in agreement with [10,22]); the last orbit 𝑆1111
for 𝑑 = 3 at 𝑝 ≥ 12 (in agreement with [22]); the last orbit 𝑆11111 for 
𝑑 = 4 at 𝑝 ≥ 20 (in agreement with [22]). Finally, at 𝑝 ≥ 30 the last orbit 
𝑆111111 for 𝑑 = 5 and at least one of the last two orbits 𝑆211111, 𝑆1111111
for 𝑑 = 6 are to enter the symmetric quadrature rules.
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Table 4

The approximated minimal numbers 𝑁̄𝑑𝑝 of nodes for asymmetric and the approximated maximal numbers 𝑁̌𝑑𝑝 of 
nodes for fully symmetric 𝑝-order quadrature rules.

𝑝 𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 5 𝑑 = 6

𝑁̄𝑑𝑝 𝑁̌𝑑𝑝 𝑁̄𝑑𝑝 = 𝑁̌𝑑𝑝 𝑁̄𝑑𝑝 𝑁̌𝑑𝑝 𝑁̄𝑑𝑝 = 𝑁̌𝑑𝑝 𝑁̄𝑑𝑝 𝑁̌𝑑𝑝

4 5 6 9 14 15 21 30 35

5 7 7 14 26 26 42 66 70

6 10 12 21 42 45 77 132 133

7 12 12 30 66 66 132 246 246

8 15 15 42 99 100 215 429 434

9 19 19 55 143 145 334 715 715

10 22 22 72 201 201 501 1144 1148

11 26 27 91 273 275 728 1768 1771

12 31 31 114 364 365 1032 2652 2653

13 35 36 140 476 476 1428 3876 3878

14 40 40 170 612 615 1938 5538 5538

15 46 48 204 776 776 2584 7752 7756

16 51 51 243 969 970 3392 10659 10661

17 57 57 285 1197 1200 4389 14421 14421

18 64 64 333 1463 1465 5609 19228 19229

19 70 70 385 1771 1771 7084 25300 25305

20 77 78 443 2126 2126 8855 32890 32893
On the other hand, the minimal numbers 𝐸̄𝑑𝑝 of the independent 
nonlinear equations for asymmetric 𝑝-order quadrature rules are found 
from the formula

𝐸̄𝑑𝑝 = 𝐶𝑑
𝑝+𝑑

≡ (𝑝+ 𝑑)!
𝑝!𝑑!

, (23)

and the corresponding minimal numbers 𝑁̄𝑑𝑝 of nodes (see Table 4) are 
found from

𝑁̄𝑑𝑝 =

⌈
𝐸̄𝑑𝑝

𝑑 + 1

⌉
, (24)

where ⌈𝑥⌉ denotes the smallest integer that is greater than or equal to 
𝑥. From here, we defined the approximated maximal numbers 𝑁̌𝑑𝑝 of 
nodes for fully symmetric 𝑝-order quadrature rules (see Table 4),

𝑁̌𝑑𝑝 =

⎧⎪⎪⎨⎪⎪⎩
𝑁̄𝑑𝑝,

for 𝑑 = 3,5 or 𝑑 = 2,4,6 and mod(𝑁̄𝑑𝑝, 𝑑 + 1) = 0,1,
𝑁̄𝑑𝑝 + 𝑑 + 1 −mod(𝑁̄𝑑𝑝, 𝑑 + 1),

for 𝑑 = 2,4,6 and mod(𝑁̄𝑑𝑝, 𝑑 + 1) ≠ 0,1.

(25)

In addition, taking into account the conditions (8) at 𝑙2 =… = 𝑙𝑑+1 =
0 and (5), the 𝑗-th weight 𝑊𝑖,𝑗 and components 𝜆𝑖,𝑗𝑙 of the BC of the 
orbit 𝑆[𝑖], must obey the simple bounds and the linear constraints re-

spectively,

0 ≤ 𝑊𝑖,𝑗 ≤ 1
𝑃𝑑𝑖

, 0 ≤ 𝜆𝑖,𝑗𝑙 ≤ 1
𝑚𝑙

, 0 ≤
𝑟𝑑𝑖−1∑
𝑙=1

𝑚𝑙𝜆𝑖,𝑗𝑙 ≤ 1. (26)

Using a coordinate transformation in the integral (1), one obtains 
the following quadrature rule for an arbitrary simplex Δ𝑞 :

∫Δ𝑞

𝑉 (𝑥)𝑑𝑥 = |Δ𝑞|𝑁𝑑𝑝∑
𝑗=1

𝑤𝑗𝑉 (𝑥𝑗1(𝑦𝑗1,… , 𝑦𝑗𝑑+1),… , 𝑥𝑗𝑑 (𝑦𝑗1,… , 𝑦𝑗𝑑+1)),

(27)

where |Δ𝑞| denotes the volume of the simplex Δ𝑞 . It equals 1∕𝑑! for the 
standard unit 𝑑-simplex.

3. Solving system of nonlinear equations with convex constraints

Below we discuss a modified Levenberg-Marquardt (LM) method 
[30–33] for the solution of a system of nonlinear equations with convex 
constraints, instead of the quasi-Newtonian method used in our previ-

ous article [23], because the LM method is more robust to the initial 
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guess, and it can be more stable in the cases when the inverse problem 
becomes ill-posed.

Consider the problem of solving the constrained system of nonlinear 
equations

𝑓𝑖(𝐱) = 0, 𝑖 = 1,… ,𝑚, 𝐱 = (𝑥1,… , 𝑥𝑛) ∈  , (28)

and the corresponding minimization problem

min
𝐱∈ ‖𝐅(𝐱)‖2, 𝐅(𝐱) = (𝑓1(𝐱),… , 𝑓𝑚(𝐱))𝑇 , (29)

where  ⊆ 𝑅𝑛 is a nonempty, closed and convex set.

The LM-type algorithm is an iterate method which, basically, solves 
at each iteration a linearization subproblem of the form

min
𝐱𝑘+𝐡∈ 𝐺𝑘(𝐡), (30)

with the objective function

𝐺𝑘(𝐡) =
1
2
‖𝐅(𝐱𝑘) + 𝐉𝑘𝐡‖2 + 1

2
𝜇𝑘(𝐡,𝐃𝑘𝐡), (31)

where 𝐱𝑘 is the current iterate, 𝐉𝑘 ∈ 𝑅𝑚×𝑛 is a Jacobian of 𝐅(𝐱) at 
𝐱 = 𝐱𝑘, 𝐃𝑘 ∈ 𝑅𝑛×𝑛 is a positive diagonal matrix and in most cases 
𝐃𝑘 = diag(𝐉𝑇

𝑘
𝐉𝑘) or a unit matrix, and 𝜇𝑘 is a positive parameter. Note 

that 𝐺𝑘(𝐡) is a strictly convex quadratic function. Hence the solution 
𝐺𝑘(𝐡) of the subproblem (30) always exists and is unique, in particular 
for the unconstrained case

𝐡𝑘 = −(𝐉𝑇
𝑘 𝐉𝑘 + 𝜇𝑘𝐃𝑘)−1𝐉𝑇

𝑘 𝐅(𝐱
𝑘). (32)

In [32] the following two algorithms (with unit matrix 𝐷𝑘) have 
been proposed:

Algorithm 1. (local version)

1. Choose 𝐱0 ∈ , 𝜈 > 0, 𝜖 > 0, and set 𝑘 = 0.

2. If ‖𝐅(𝐱𝑘)‖ ≤ 𝜖, stop.

3. Calculate 𝐉𝑘 and set 𝜇𝑘 = 𝜈‖𝐅(𝐱𝑘)‖2, and compute 𝐡𝑘 as the solution 
of (30).

4. 𝐱𝑘+1 = 𝐱𝑘 + 𝐡𝑘, 𝑘 = 𝑘 + 1, and go to 2.

Algorithm 2. (global version)

1. Choose 𝐱0 ∈ , 𝜈 > 0, 𝛽, 𝜎, 𝛾 ∈ (0, 1), 𝜖 > 0, and set 𝑘 = 0.

2. If ‖𝐅(𝐱𝑘)‖ ≤ 𝜖, stop.

3. Calculate 𝐉𝑘 and set 𝜇𝑘 = 𝜈‖𝐅(𝐱𝑘)‖2, and compute 𝐡𝑘 as the solution 
of (30).
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Table 5

The minimal numbers 𝑁𝑑𝑝 of nodes for PI-type fully symmetric 𝑝-order quadrature rules and comparison with the known 
numbers 𝑁𝑑𝑝 .

𝑝 𝑁𝑑𝑝

𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 5 𝑑 = 6

cur., [18,20] [15] cur. [23] [20] [15] [26] cur. [23] [29] cur. [23] cur. [23]

4 6 6 14 14 14 14 14 20 20 20 27 27 43 43

5 7 7 14 14 14 14 14 30 30 30 37 37 64 64

6 12 12 24 24 24 24 24 56 56 56 102 102 175 175

7 15 15 35 35 35 36 35 70 76 70 137 137 252 266

8 16 16 46 46 46 46 46 105 110 105 228 257 448 553

9 19 19 59 59 61 59 151 151 338 700

10 25 25 79 81 81 81 210 210 479 1078

11 28 28 98 109 110 275 281

12 33 33 123 140 168 370 445

13 37 37 145 171 172 470 555

14 42 46 175 236 204 601 725

15 49 52 209 264 781 905

16 55 55 248 304 956 1055

17 60 61 284 364

18 67 72 343 436

19 73 73 383 487

20 79 88 441 552
4. If

‖𝐅(𝐱𝑘 + 𝐡𝑘)‖ ≤ 𝛾‖𝐅(𝐱𝑘)‖,

then set 𝐱𝑘+1 = 𝐱𝑘 + 𝐡𝑘, 𝑘 = 𝑘 + 1, and go to 1; otherwise go to 5.

5. Compute a stepsize 𝑡 =max(𝛽𝑙|𝑙 = 0, 1, 2, …), such that

‖𝐅(𝐱𝑘(𝑡))‖2 ≤ ‖𝐅(𝐱𝑘)‖2 + 2𝜎𝐅𝑇 (𝐱𝑘)𝐉𝑘(𝐱𝑘(𝑡) − 𝐱𝑘),

where 𝐱𝑘(𝑡) = 𝑃 (𝐱𝑘 − 2𝑡𝐉𝑇
𝑘
𝐅(𝐱𝑘)). Set 𝐱𝑘+1 = 𝐱𝑘(𝑡), 𝑘 = 𝑘 + 1, and go 

to 2.

Here 𝑃 (𝐱) denotes the projection of 𝐱 onto the feasible set  . The local 
convergences of the above algorithms are proved.

We used 𝜈 ≡ 𝜈𝑘 = ‖diag(𝐉𝑇
𝑘
𝐉𝑘)‖−1 in all the following calculations.

4. Numerical results

The existence of the solution of the constrained system of nonlinear 
equations (8), (26) strongly depends on the number 𝑈𝑑𝑝 of unknowns 
and the number 𝑁𝑑𝑝 of nodes, and on the combinations of the corre-

sponding orbits 𝑆[𝑖]. The number of the iteration processes for finding 
the solution depends on the initial estimates of the weights 𝑊𝑖,𝑗 and the 
components 𝜆𝑖,𝑗𝑙 of the BC. Also the weights 𝑊𝑖,𝑗 depend on the location 
of the components 𝜆𝑖,𝑗𝑙 of the BC. We choose uniform initial estimates 
of the weights 𝑊𝑖,𝑗 for all 𝑁𝑑𝑝 nodes, namely

𝑊𝑖,𝑗 =
1

𝑁𝑑𝑝

. (33)

The initial estimates of the components 𝜆𝑖,𝑗𝑙 of the BC into the simplex 
for each orbit 𝑆[𝑖] are chosen randomly using different algorithms. For 
our calculations, the most efficient was found to be provided by the 
multivariate extreme value distribution algorithm [34]:

𝜆𝑖,𝑗𝑙 =
𝑧𝑖,𝑗𝑙

𝑚𝑙

, 𝑧𝑖,𝑗𝑙 =
log(𝑞𝑖,𝑗𝑙)∑𝑟𝑑𝑖

𝑛=1 log(𝑞𝑖,𝑗𝑛)
, (34)

where 𝑞𝑖,𝑗𝑛 ∈ (0, 1) are sequences of standard quasi-random numbers. 
Note that this algorithm is used to generate the Grundmann-Möller 
quadrature rules for the simplexes [7,35]. In [26,29], to calculate higher 
order quadrature rules (𝑝 > 10), the calculated weights and nodes in the 
previous orders were used as initial estimates.

With the increase of the order 𝑝, the number 𝑁𝑑𝑝 of nodes also in-

creases, while decreasing the minimum and maximum values of the 
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weights. Therefore, to reduce the search domain for the weights 𝑊𝑖,𝑗

and the components 𝜆𝑖,𝑗𝑙 of the BC of the orbit 𝑆[𝑖], we used the follow-

ing simple bound and linear constraints instead of (26)

𝑊 min

10
≤ 𝑊𝑖,𝑗 ≤ 𝑊 max, 𝜆min ≤ 𝜆𝑖,𝑗𝑙 ≤ 𝜆max

𝑙
,

𝑟𝑑𝑖−1∑
𝑙=1

𝑚𝑙𝜆𝑖,𝑗𝑙 ≤ 1 −𝑚𝑟𝑑𝑖
𝜆min.

(35)

Here 𝑊 min and 𝑊 max are the minimum and maximum values of the 
weights of the quadrature rules of the orders 𝑝 − 2 and 𝑝 − 1, and

𝜆max
𝑙

=
1 − (𝑑 + 1 −𝑚𝑙)𝜆min

𝑚𝑙

. (36)

In the calculation, we used 𝜆min = 10−𝑡, 𝑡 = 4, … , 8. This helps finding 
nodes that are not very close to the vertices, edges, and faces of the 
𝑑-simplex.

To find the minimal number 𝑁𝑑𝑝 of nodes for high-order quadrature 
rules using the minimal number 𝑁𝑑𝑝−1 previously found at the order 
𝑝 − 1, we start the search with the number

max
(

𝑁̂𝑑𝑝,

⌊
𝑁𝑑𝑝−1

𝐸𝑑𝑝−1

⌋
𝐸𝑑𝑝

)
. (37)

While the necessary condition (14) for the nonlinear system (8) to 
have a solution yields a bound to the minimal number of unknowns 𝑈𝑑𝑝, 
their maximal number is, in principle, unknown. The larger the number 
of unknowns, the higher the probability that the system of nonlinear 
equation (8) will have a solution. This leads, however, to the increase of 
the total number of orbits or of the number of orbits with large numbers 
of permutations. Because of this, the number 𝑁𝑑𝑝 of nodes (see Eq. (13)) 
can be unnecessarily increased. To put an upper bound to this trend, all 
the quadrature rules are calculated with the additional constraint

𝑈𝑑𝑝 ≤ 𝐸𝑑𝑝 + 𝑑 − 1. (38)

The corresponding programs are implemented in Maple-Fortran en-

vironment. The weights and nodes are first calculated using a Fortran 
program with an accuracy 𝜖𝑓 = 10−25. The Jacobian matrix is calculated 
analytically. To solve the subproblem (30), (31) with simple bound and 
linear constraints (26), we used a modification of the routine VE17AD 
[36] in quadruple precision. The calculated results are refined on Maple 
system by the Newton-type method for the unconstrained minimization 
with analytic Jacobian and Hessian of the function ‖𝐅(𝐱)‖2 (see the 
Eq. (29)) up to an accuracy 𝜖𝑚 = 10−50.
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Table 6

The list of quadrature rules on triangle with the corresponding combination of 
orbits and their error estimates.

𝑝 𝑁𝑑𝑝 𝑆3 𝑆21 𝑆111 max𝜀𝑖1 ,𝑖2

∑
𝜀𝑖1 ,𝑖2

√∑
𝜀2𝑖1 ,𝑖2

4 6 2 2.62 ⋅ 10−6 4.71 ⋅ 10−6 3.00 ⋅ 10−6

5 7 1 2 1.27 ⋅ 10−6 2.64 ⋅ 10−6 1.61 ⋅ 10−6

6 12 2 1 2.46 ⋅ 10−9 6.28 ⋅ 10−9 3.44 ⋅ 10−9

7 15 1 2 3.82 ⋅ 10−9 8.96 ⋅ 10−9 5.15 ⋅ 10−9

8 16 1 3 1 3.89 ⋅ 10−11 9.01 ⋅ 10−11 5.00 ⋅ 10−11

9 19 1 4 1 6.30 ⋅ 10−12 2.10 ⋅ 10−11 1.16 ⋅ 10−11

10 25 1 2 3 9.39 ⋅ 10−15 3.00 ⋅ 10−14 1.48 ⋅ 10−14

11 28 1 5 2 3.08 ⋅ 10−15 6.69 ⋅ 10−15 3.99 ⋅ 10−15

12 33 5 3 1.02 ⋅ 10−17 3.57 ⋅ 10−17 1.66 ⋅ 10−17

13 37 1 4 4 1.28 ⋅ 10−17 3.56 ⋅ 10−17 1.87 ⋅ 10−17

14 42 6 4 7.09 ⋅ 10−20 2.29 ⋅ 10−19 1.12 ⋅ 10−19

15 49 1 4 6 2.95 ⋅ 10−21 7.51 ⋅ 10−21 4.11 ⋅ 10−21

16 55 1 4 7 5.31 ⋅ 10−23 1.92 ⋅ 10−22 8.71 ⋅ 10−23

17 60 6 7 8.27 ⋅ 10−24 2.66 ⋅ 10−23 1.29 ⋅ 10−23

18 67 1 6 8 1.24 ⋅ 10−26 3.92 ⋅ 10−26 1.94 ⋅ 10−26

19 73 1 6 9 3.73 ⋅ 10−28 1.13 ⋅ 10−27 5.14 ⋅ 10−28

20 79 1 8 9 5.92 ⋅ 10−30 2.09 ⋅ 10−29 9.65 ⋅ 10−30

Note that the Algorithm 1 was more efficient than the Algorithm 2, 
and it was faster in solving the constrained system of nonlinear equa-

tions (8), (35), (36), for most cases of the random generations of the 
components 𝜆𝑖,𝑗𝑙 of the BC smaller than 5 × 𝑈𝑑𝑝. This may be due to 
the fact that, within the Algorithm 2, ‖𝐅(𝐱𝑘)‖ decreases at each itera-

tion, and this results in the search of solutions over narrower regions 
than in Algorithm 1. As a consequence, in most cases, the iterative pro-

cess of the Algorithm 2 converges to a local minimum ‖𝐅(𝐱𝑘)‖ ≫ 𝜖𝑓 , ‖𝐉𝑇
𝑘
𝐅(𝐱𝑘)‖ ≤ 𝜖𝑓 instead of a global minimum ‖𝐅(𝐱𝑘)‖ ≤ 𝜖𝑓 .

Our calculated minimal numbers 𝑁𝑑𝑝 of the nodes for PI-type fully 
symmetric 𝑝-order quadrature rules are presented in Table 5. For com-

parison, similar previously reported the numbers 𝑁𝑑𝑝 are also shown.

To assess the reliability of the present quadrature rules, we com-

pared our calculated results for 2-simplex (triangle) with known quadra-

ture rules [14,15,18,20]. In [15,18,20] the presented fully symmetric 
quadrature rules are PI-type, while in [14] only some quadrature rules 
are of PI-type. Our minimal numbers 𝑁2𝑝 up to 20-orders are exactly 
the same as in [18,20], also some quadrature rules are the same as pre-

sented in the Supplementary material of [20].

Unlike our results, in [20,29] the constructed 59 points 9-order rule 
for 𝑑 = 3 and the 210 points 10-order rule for 𝑑 = 4 contain nodes which 
are very close to the vertices, or edges, or faces (∼ 5 ⋅ 10−17 − 4 ⋅ 10−7).

Moreover, the comparison of the numbers 𝑁𝑑𝑝 of nodes of the 
present PI-type fully symmetric quadrature rules with those reported in 
previous publications ([26] at 𝑑 = 3 and [29] at 𝑑 = 4) showed equal to 
each other values at lower order 𝑝 values, thresholds 𝑝(𝑑) have been 
found (𝑝(3) = 9 and 𝑝(4) = 10) beyond which the present algorithms 
show less nodes. The difference generally increases with the order 𝑝
(from 2 at 𝑝 = 10 to 111 at 𝑝 = 20 in the 𝑑 = 3 case, and from 6 at 𝑝 = 11
to 124 at 𝑝 = 15 in the 𝑑 = 4 case). Similar trends have been noticed 
in the cases 𝑑 = 5 and 𝑑 = 6, where comparisons are available with our 
previous results [23].

The quadrature rules themselves in compact form including pro-

grams for converting in expanded form, and examples of their appli-

cation are provided in the JINRLIB Program Library [37] (for details 
see Appendix A). Note that [37] contains some additional high-order 
quadrature rules with close to the minimal number of nodes that the 
users may choose for the solution of further practical problems.

5. Estimates of the errors of the quadrature rules

To estimate the error of the quadrature rules (1), we decompose 
the integrand 𝑉 (𝑥) into a Taylor series in the vicinity of the point 𝑥𝑡 =
(𝑥1𝑡, … , 𝑥𝑑𝑡) inside the simplex

𝑉 (𝑥) = 𝑉 𝑡(𝑥) +𝑂(𝑥𝑝+2), 𝑉 𝑡(𝑥)
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=
∑

𝑖1+…+𝑖𝑑≤𝑝+1
𝑉 (𝑖1 ,…,𝑖𝑑 )(𝑥𝑡)

(𝑥1 − 𝑥1𝑡)𝑖1 ×…× (𝑥𝑑 − 𝑥𝑑𝑡)𝑖𝑑
𝑖1! ×…× 𝑖𝑑 !

, (39)

where 𝑉 (𝑖1 ,…,𝑖𝑑 )(𝑥𝑡) is a mixed derivative at 𝑥 = 𝑥𝑡 and consider the aux-

iliary function

𝜀(𝑉 (𝑥)) =
||||||∫Δ𝑑

𝑉 (𝑥)𝑑𝑥− 1
𝑑!

𝑁𝑑𝑝∑
𝑗=1

𝑤𝑗𝑉 (𝑥𝑗1,… , 𝑥𝑗𝑑 )
|||||| . (40)

Taking into account that the quadrature is exact for polynomials of de-

gree less than 𝑝, one has

𝜀(𝑉 𝑡(𝑥)) =
||||||∫Δ𝑑

𝑉 𝑡(𝑥)𝑑𝑥− 1
𝑑!

𝑁𝑑𝑝∑
𝑗=1

𝑤𝑗𝑉
𝑡(𝑥𝑗1,… , 𝑥𝑗𝑑 )

||||||
=
|||||

∑
𝑖1+…+𝑖𝑑=𝑝+1

𝑉 (𝑖1 ,…,𝑖𝑑 )(𝑥𝑡)

(
∫Δ𝑑

𝑥
𝑖1
1 ×…× 𝑥

𝑖𝑑
𝑑

𝑖1! ×…× 𝑖𝑑 !
𝑑𝑥

− 1
𝑑!

𝑁𝑑𝑝∑
𝑗=1

𝑤𝑗

𝑥
𝑖1
𝑗1 ×…× 𝑥

𝑖𝑑
𝑗𝑑

𝑖1! ×…× 𝑖𝑑 !

)|||||
≤ ∑

𝑖1+…+𝑖𝑑=𝑝+1
|𝑉 (𝑖1 ,…,𝑖𝑑 )|𝜀𝑖1 ,…,𝑖𝑑

, 𝜀𝑖1 ,…,𝑖𝑑
≡ 𝜀

(
𝑥

𝑖1
1 ×…× 𝑥

𝑖𝑑
𝑑

𝑖1! ×…× 𝑖𝑑 !

)
,

(41)

where |𝑉 (𝑖1 ,…,𝑖𝑑 )| is the absolute maximum value of the mixed deriva-

tive on the simplex. As it can be seen from (41), to estimate the errors 
of quadrature rules, it is enough to calculate the coefficients 𝜀𝑖1,…,𝑖𝑑

for 
the corresponding derivatives. However, there are quite a lot of such 
coefficients, so to compare the quadrature rules found, we limited our-

selves to the largest of the coefficients, max𝜀𝑖1 ,…,𝑖𝑑
, their sum ∑𝜀𝑖1 ,…,𝑖𝑑

and the root of the sum of their squares 
√∑

𝜀2𝑖1 ,…,𝑖𝑑
, where summa-

tion was carried out over sets of numbers 𝑖1, … , 𝑖𝑑 at 𝑖1 +… + 𝑖𝑑 = 𝑝 + 1
and only one permutation 𝑖1, … , 𝑖𝑑 was taken into account. The results 
obtained are presented in the Tables 6–10.

As a numerical experiment, we consider the class of integrals

𝐼𝑑 = ∫Δ𝑑

(𝑥1 +…+ 𝑥𝑑 ) exp(−𝑥1 −…− 𝑥𝑑 )𝑑𝑥1…𝑑𝑥𝑑 (42)

that for 𝑑 = 2, … , 6 are equal to:

𝐼2 = 2 − 5
𝑒
, 𝐼3 = 3 − 8

𝑒
, 𝐼4 = 4 − 65

6 𝑒
,

𝐼5 = 5 − 163
12 𝑒

, 𝐼6 = 6 − 1957
120 𝑒

.
(43)

In particular, we calculated the Runge coefficient

𝛽 = log2
||||||
𝜖

𝑞
test − 𝜖

2𝑞
test

𝜖
2𝑞
test − 𝜖

4𝑞
test

|||||| , (44)

on three twice condensed grids with the discrepancies 𝜖𝑞
test = 𝐼

𝑞
𝑑
− 𝐼𝑑 , 

where 𝐼𝑞
𝑑

are the numerical results obtained by splitting the simplex Δ𝑑

into 𝑞𝑑 equal simplexes with integration on each of them. The discrep-

ancies 𝜖𝑞
test and the Runge coefficient 𝛽 are presented in Tables 11–15. 

One can see that for the above quadrature rules, the numerical estimates 
of the Runge coefficients correspond to the theoretical error estimates.

6. Conclusions

We presented PI-type fully symmetric quadrature rules up to 20-th 
order on the tetrahedron, 16-th order on 4-simplex, 10-th order on 5-

and 6-simplexes with almost minimal numbers of nodes.

We have briefly explained the application of the versions of the 
LM-type algorithm, adapted to solve different systems of the nonlinear 
algebraic equations (8) with convex constraints, as well as the corre-

sponding choice of the convex domain for the initial estimations of 
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Table 7

The same as in Table 6, but for the tetrahedron.

𝑝 𝑁𝑑𝑝 𝑆4 𝑆31 𝑆22 𝑆211 𝑆1111 max𝜀𝑖1 ,𝑖2 ,𝑖3

∑
𝜀𝑖1 ,𝑖2 ,𝑖3

√∑
𝜀2𝑖1 ,𝑖2 ,𝑖3

4 14 2 1 4.73 ⋅ 10−8 1.42 ⋅ 10−7 6.95 ⋅ 10−8

5 14 2 1 1.43 ⋅ 10−7 3.98 ⋅ 10−7 1.96 ⋅ 10−7

6 24 3 1 4.82 ⋅ 10−9 1.60 ⋅ 10−8 6.92 ⋅ 10−9

7 35 1 1 1 2 1.86 ⋅ 10−10 9.95 ⋅ 10−10 3.71 ⋅ 10−10

8 46 4 1 2 2.80 ⋅ 10−11 6.09 ⋅ 10−11 3.24 ⋅ 10−11

9 59 1 4 1 3 6.19 ⋅ 10−13 2.03 ⋅ 10−12 8.83 ⋅ 10−13

10 79 1 3 1 5 1.47 ⋅ 10−14 8.40 ⋅ 10−14 2.68 ⋅ 10−14

11 98 5 1 4 1 8.59 ⋅ 10−16 3.39 ⋅ 10−15 1.21 ⋅ 10−15

12 123 1 5 1 6 1 8.73 ⋅ 10−18 6.79 ⋅ 10−17 2.00 ⋅ 10−17

13 145 1 3 2 8 1 8.01 ⋅ 10−19 3.27 ⋅ 10−18 1.21 ⋅ 10−18

14 175 1 6 1 10 1 2.23 ⋅ 10−20 1.11 ⋅ 10−19 3.49 ⋅ 10−20

15 209 1 4 2 11 2 5.92 ⋅ 10−22 4.32 ⋅ 10−21 1.14 ⋅ 10−21

16 248 8 2 11 3 1.04 ⋅ 10−23 9.06 ⋅ 10−23 2.25 ⋅ 10−23

17 284 8 2 14 3 5.29 ⋅ 10−25 3.30 ⋅ 10−24 8.96 ⋅ 10−25

18 343 1 6 1 18 4 2.02 ⋅ 10−27 1.93 ⋅ 10−26 4.58 ⋅ 10−27

19 383 1 7 3 18 5 1.37 ⋅ 10−28 1.50 ⋅ 10−27 3.39 ⋅ 10−28

20 441 1 8 4 20 6 8.94 ⋅ 10−30 4.32 ⋅ 10−29 1.32 ⋅ 10−29

Table 8

The same as in Table 6, but for the 4-simplex.

𝑝 𝑁𝑑𝑝 𝑆5 𝑆41 𝑆32 𝑆311 𝑆221 𝑆2111 max𝜀𝑖1 ,…,𝑖4

∑
𝜀𝑖1 ,…,𝑖4

√∑
𝜀2𝑖1 ,…,𝑖4

4 20 2 1 6.23 ⋅ 10−8 2.88 ⋅ 10−7 1.20 ⋅ 10−7

5 30 2 2 1.97 ⋅ 10−8 6.70 ⋅ 10−8 2.76 ⋅ 10−8

6 56 1 1 1 2 2.63 ⋅ 10−10 1.23 ⋅ 10−9 4.28 ⋅ 10−10

7 70 2 2 2 1.03 ⋅ 10−10 1.95 ⋅ 10−10 1.08 ⋅ 10−10

8 105 3 2 2 1 2.15 ⋅ 10−12 5.70 ⋅ 10−12 2.49 ⋅ 10−12

9 151 1 2 2 3 2 4.03 ⋅ 10−14 2.26 ⋅ 10−13 6.73 ⋅ 10−14

10 210 4 2 4 3 1.59 ⋅ 10−15 9.73 ⋅ 10−15 2.79 ⋅ 10−15

11 275 3 3 4 3 1 4.12 ⋅ 10−17 3.61 ⋅ 10−16 8.71 ⋅ 10−17

12 370 4 4 5 3 2 1.06 ⋅ 10−18 9.59 ⋅ 10−18 1.97 ⋅ 10−18

13 470 4 5 5 4 3 4.66 ⋅ 10−20 3.91 ⋅ 10−19 9.38 ⋅ 10−20

14 601 1 4 2 10 6 3 1.42 ⋅ 10−21 1.36 ⋅ 10−20 2.89 ⋅ 10−21

15 781 1 4 2 10 8 5 7.88 ⋅ 10−23 3.35 ⋅ 10−22 9.21 ⋅ 10−23

16 956 1 5 4 10 9 7 2.79 ⋅ 10−25 4.29 ⋅ 10−24 7.67 ⋅ 10−25

Table 9

The same as in Table 6, but for the 5-simplex.

𝑝 𝑁𝑑𝑝 𝑆6 𝑆51 𝑆42 𝑆33 𝑆411 𝑆321 𝑆222 max𝜀𝑖1 ,…,𝑖5

∑
𝜀𝑖1 ,…,𝑖5

√∑
𝜀2𝑖1 ,…,𝑖5

4 27 1 1 1 6.89 ⋅ 10−8 1.11 ⋅ 10−7 7.24 ⋅ 10−8

5 37 1 1 2 1.39 ⋅ 10−9 4.79 ⋅ 10−9 2.10 ⋅ 10−9

6 102 2 2 1 6.31 ⋅ 10−11 2.22 ⋅ 10−10 8.12 ⋅ 10−11

7 137 2 1 1 1 1 1.23 ⋅ 10−12 9.20 ⋅ 10−12 2.76 ⋅ 10−12

8 228 1 2 1 1 2 2 1.34 ⋅ 10−13 4.92 ⋅ 10−13 1.68 ⋅ 10−13

9 338 3 2 1 1 4 1.42 ⋅ 10−14 2.72 ⋅ 10−14 1.50 ⋅ 10−14

10 479 4 1 1 3 4 1 8.36 ⋅ 10−17 6.05 ⋅ 10−16 1.51 ⋅ 10−16

Table 10

The same as in Table 6, but for the 6-simplex.

𝑝 𝑁𝑑𝑝 𝑆7 𝑆61 𝑆52 𝑆43 𝑆511 𝑆421 𝑆331 𝑆322 max𝜀𝑖1 ,…,𝑖6

∑
𝜀𝑖1 ,…,𝑖6

√∑
𝜀2𝑖1 ,…,𝑖6

4 43 1 1 1 2.23 ⋅ 10−9 4.88 ⋅ 10−9 −4.03 ⋅ 10−10

5 64 1 1 1 1 2.45 ⋅ 10−10 5.89 ⋅ 10−10 +5.58 ⋅ 10−11

6 175 2 1 1 1 2.41 ⋅ 10−12 1.43 ⋅ 10−11 −2.65 ⋅ 10−12

7 252 2 1 2 1 1 3.01 ⋅ 10−13 8.26 ⋅ 10−13 −1.97 ⋅ 10−14

8 448 3 2 1 3 7.08 ⋅ 10−15 3.30 ⋅ 10−14 +5.80 ⋅ 10−16

9 700 2 2 3 2 1 1 1 6.48 ⋅ 10−16 2.05 ⋅ 10−15 +6.50 ⋅ 10−18

10 1078 2 3 2 3 3 2 1 3.99 ⋅ 10−18 3.30 ⋅ 10−17 −1.59 ⋅ 10−20
95
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Table 11

The differences 𝜖𝑞
test , between the numerical and exact values, and the corre-

sponding Runge coefficient 𝛽 in the numerical experiments (42).

𝑝 𝜖2test 𝜖4test 𝜖8test 𝛽

4 −3.75 ⋅ 10−8 −5.96 ⋅ 10−10 −9.35 ⋅ 10−12 5.97

5 +5.21 ⋅ 10−9 +7.97 ⋅ 10−11 +1.24 ⋅ 10−12 6.03

6 −6.38 ⋅ 10−12 −2.54 ⋅ 10−14 −9.98 ⋅ 10−17 7.97

7 +1.72 ⋅ 10−12 +6.58 ⋅ 10−15 +2.55 ⋅ 10−17 8.03

8 +7.50 ⋅ 10−15 +7.39 ⋅ 10−18 +7.23 ⋅ 10−21 9.99

9 +3.16 ⋅ 10−16 +3.02 ⋅ 10−19 +2.93 ⋅ 10−22 10.03

10 −4.85 ⋅ 10−19 −1.20 ⋅ 10−22 −2.94 ⋅ 10−26 11.98

11 +1.94 ⋅ 10−21 +4.45 ⋅ 10−25 +1.07 ⋅ 10−28 12.09

12 −7.23 ⋅ 10−23 −4.47 ⋅ 10−27 −2.73 ⋅ 10−31 13.98

13 +2.73 ⋅ 10−24 +1.62 ⋅ 10−28 +9.84 ⋅ 10−33 14.04

14 +3.38 ⋅ 10−27 +5.20 ⋅ 10−32 +7.95 ⋅ 10−37 15.99

15 +3.54 ⋅ 10−28 +5.26 ⋅ 10−33 +7.98 ⋅ 10−38 16.04

16 −1.98 ⋅ 10−30 −7.63 ⋅ 10−36 −2.92 ⋅ 10−41 17.99

17 +1.71 ⋅ 10−32 +6.36 ⋅ 10−38 +2.41 ⋅ 10−43 18.03

18 +5.06 ⋅ 10−35 +4.87 ⋅ 10−41 +4.65 ⋅ 10−47 19.99

19 +8.55 ⋅ 10−37 +7.96 ⋅ 10−43 +7.53 ⋅ 10−49 20.04

20 −2.04 ⋅ 10−39 −4.90 ⋅ 10−46 +1.06 ⋅ 10−52 21.99

Table 12

The same as in Table 11, but for the tetrahedron.

𝑝 𝜖2test 𝜖4test 𝜖8test 𝛽

4 +1.56 ⋅ 10−10 +2.20 ⋅ 10−12 +3.34 ⋅ 10−14 6.15

5 +7.33 ⋅ 10−10 +1.09 ⋅ 10−11 +1.68 ⋅ 10−13 6.07

6 −7.84 ⋅ 10−12 −2.98 ⋅ 10−14 −1.15 ⋅ 10−16 8.04

7 +1.53 ⋅ 10−13 +4.90 ⋅ 10−16 +1.81 ⋅ 10−18 8.28

8 −5.82 ⋅ 10−16 −5.56 ⋅ 10−19 −5.40 ⋅ 10−22 10.03

9 +3.50 ⋅ 10−17 +3.59 ⋅ 10−20 +3.55 ⋅ 10−23 9.93

10 −2.65 ⋅ 10−19 −6.27 ⋅ 10−23 −1.52 ⋅ 10−26 12.04

11 +3.94 ⋅ 10−21 +8.32 ⋅ 10−25 +1.95 ⋅ 10−28 12.21

12 −3.83 ⋅ 10−23 −2.28 ⋅ 10−27 −1.38 ⋅ 10−31 14.04

13 +3.27 ⋅ 10−25 +2.18 ⋅ 10−29 +1.36 ⋅ 10−33 13.87

14 +1.37 ⋅ 10−28 +2.02 ⋅ 10−33 +3.06 ⋅ 10−38 16.05

15 +5.31 ⋅ 10−29 +7.87 ⋅ 10−34 +1.19 ⋅ 10−38 16.04

16 −6.11 ⋅ 10−32 −2.27 ⋅ 10−37 −8.58 ⋅ 10−43 18.04

17 +7.27 ⋅ 10−35 −4.62 ⋅ 10−40 −2.48 ⋅ 10−45 17.26

18 −6.96 ⋅ 10−37 −6.36 ⋅ 10−43 −6.00 ⋅ 10−49 20.06

19 +3.15 ⋅ 10−38 +2.06 ⋅ 10−44 +1.74 ⋅ 10−50 20.54

20 −6.93 ⋅ 10−41 −1.61 ⋅ 10−47 −9.86 ⋅ 10−53 22.04

Table 13

The same as in Table 11, but for the 4-simplex.

𝑝 𝜖2test 𝜖4test 𝜖8test 𝛽

4 −1.46 ⋅ 10−9 −2.33 ⋅ 10−11 −3.66 ⋅ 10−13 5.97

5 +3.62 ⋅ 10−11 +3.20 ⋅ 10−13 +4.08 ⋅ 10−15 6.83

6 −9.17 ⋅ 10−13 −3.71 ⋅ 10−15 −1.46 ⋅ 10−17 7.95

7 −1.57 ⋅ 10−14 −6.13 ⋅ 10−17 −2.40 ⋅ 10−19 8.00

8 −3.88 ⋅ 10−17 −2.33 ⋅ 10−20 −1.92 ⋅ 10−23 10.70

9 −1.69 ⋅ 10−18 −1.49 ⋅ 10−21 −1.42 ⋅ 10−24 10.15

10 −4.05 ⋅ 10−20 −9.80 ⋅ 10−24 −2.39 ⋅ 10−27 12.01

11 +2.28 ⋅ 10−22 +4.58 ⋅ 10−26 +1.06 ⋅ 10−29 12.28

12 −2.88 ⋅ 10−24 −1.57 ⋅ 10−28 −9.28 ⋅ 10−33 14.16

13 +3.51 ⋅ 10−26 +1.94 ⋅ 10−30 +1.16 ⋅ 10−34 14.14

14 +4.83 ⋅ 10−29 +9.35 ⋅ 10−34 +1.50 ⋅ 10−38 15.66

15 +9.87 ⋅ 10−31 +1.24 ⋅ 10−35 +1.80 ⋅ 10−40 16.28

16 +7.13 ⋅ 10−33 +2.92 ⋅ 10−38 +1.13 ⋅ 10−43 17.90

Table 14

The same as in Table 11, but for the 5-simplex.

𝑝 𝜖2test 𝜖4test 𝜖8test 𝛽

4 +2.22 ⋅ 10−10 +3.96 ⋅ 10−12 +6.38 ⋅ 10−14 5.80

5 +1.12 ⋅ 10−11 +1.97 ⋅ 10−13 +3.17 ⋅ 10−15 5.83

6 −8.27 ⋅ 10−14 −2.79 ⋅ 10−16 −1.05 ⋅ 10−18 8.21

7 +1.37 ⋅ 10−15 +5.75 ⋅ 10−18 +2.30 ⋅ 10−20 7.90

8 +1.25 ⋅ 10−18 +3.03 ⋅ 10−21 +3.39 ⋅ 10−24 8.69

9 +6.69 ⋅ 10−20 +2.73 ⋅ 10−23 +1.62 ⋅ 10−26 11.26

10 −2.69 ⋅ 10−21 −6.45 ⋅ 10−25 −1.57 ⋅ 10−28 12.02

Table 15

The same as in Table 11, but for the 6-simplex.

𝑝 𝜖2test 𝜖4test 𝜖8test 𝛽

4 +7.91 ⋅ 10−12 +1.73 ⋅ 10−13 +2.90 ⋅ 10−15 5.50

5 +1.06 ⋅ 10−12 +1.81 ⋅ 10−14 +2.90 ⋅ 10−16 5.87

6 −1.73 ⋅ 10−14 −7.35 ⋅ 10−17 −2.93 ⋅ 10−19 7.88

7 −1.81 ⋅ 10−16 −8.02 ⋅ 10−19 −3.22 ⋅ 10−21 7.82

8 +2.09 ⋅ 10−18 +2.34 ⋅ 10−21 +2.35 ⋅ 10−24 9.80

9 −3.86 ⋅ 10−20 −5.12 ⋅ 10−23 −5.34 ⋅ 10−26 9.56

10 −1.18 ⋅ 10−22 −3.63 ⋅ 10−26 −9.35 ⋅ 10−30 11.66

the weights and nodes (35), (36). Table 5, which compares the min-

imal number of nodes for PI-type fully symmetric 𝑝-order quadrature 
rules with known ones, points to an increased efficiency of the present 
quadrature rules, especially in the higher order cases. We presented er-

ror estimates of the obtained quadrature rules. The quadrature rules are 
given in compact form. Programs for converting in expanded form are 
presented in the JINRLIB Program Library [37].

For high dimensional cases the rapid growth of the number of in-

dependent equations with increasing order of the quadrature rule, and 
a large number of different systems, depending on the combinations of 
the orbits, which lead to the problem of constructing initial estimations 
for the iterative process. We have already encountered this problem at 
𝑝 = 10 and 𝑑 = 6 and we expect it at 𝑝 = 8 and 𝑑 > 6. To construct a 
quadrature formula of the 6-th order, the system to be solved contains 
11 equations, and at the present time fast solution is obtained by the 
considered computational methods.

It should be noted, that we have already used the obtained quadra-

ture rules for the FEM solution of 2 and 3 dimensional boundary value 
problems in the calculation of the spectral and optical characteristics 
of the helium atom [38], the axially symmetric quantum dots [39] and 
the collective nuclear model with tetrahedral symmetry [40]. We plan 
to use the obtained quadrature rules in solving multidimensional (up 
to 6-dimensional) boundary value problems by the FEM method for 
the quadrupole-octupole collective nuclear models [41,42] and for the 
models of complex physical systems considered in [43].
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Appendix A. INQSIM: A program for converting PI-type fully 
symmetric quadrature rules on 2-, …, 6-simplexes from compact 
form to expanded form

The *.mw and *.f files contain the Maple and Fortran programs for 
converting quadrature formulas up to the 20-th order on a triangle and 
a tetrahedron, the 16-th order on a 4-simplex, the 10-th order on 5- and 
6-simplexes from compact form to expanded form [37], and examples 
of their application:

• on INPUT

– ‘ddxoy_z.dat’ file,

• on OUTPUT

– wg is an array of weights with a dimension of gnodes,

– xg is an array of BC of nodes with a dimension of (dim+1)×
gnodes.

The “ddxoy_z.dat” files contain the dimension of the simplex, the or-

der of the quadrature rule, the number of nodes, the information about 
orbits, and PI-type fully symmetric quadrature rules in BC (𝑦1, …, 𝑦𝑑+1)
in compact form, where

• x = dim means the dimension of the simplex,

• y = p means the order of the quadrature rule,

• z = gnodes means the number of nodes.

As test examples, we consider the integrals (42). Convergence of 
quadrature rules of order 𝑝 to exact values is given in the output files 
[37].

Appendix B. Supplementary material

Supplementary material related to this article can be found online at 
https://doi .org /10 .1016 /j .camwa .2022 .08 .016. It contains “ddxoy_z.dat” 
files with the PI-type fully symmetric quadrature rules in compact form 
(50 digits of precision):

• second line: the dimension of the simplex, the order of the quadra-

ture rule, the number of nodes;

• fourth line: the number of orbits of each type, in the same order as 
in Table 1;

• next lines: for each orbit: first weights of the quadrature formula, 
then different BCs 𝜆𝑖 of the nodes from (4), ordered by the numbers 
𝑚𝑖 from (5), the last 𝜆𝑖 can be found from (5) and is not printed.
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[42] A. Dobrowolski, K. Mazurek, A. Góźdź, Rotational bands in the quadrupole-octupole 
collective model, Phys. Rev. C 97 (2018) 024321.

[43] I.V. Puzynin, T.L. Boyadjiev, S.I. Vinitsky, E.V. Zemlyanaya, T.P. Puzynina, O. Chu-

luunbaatar, Methods of computational physics for investigation of models of com-

plex physical systems, Phys. Part. Nucl. 38 (2007) 70–116.
97

https://doi.org/10.1016/j.camwa.2022.08.016
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib2D73CB0C097BD5456A4D089B7FF3C92Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib2D73CB0C097BD5456A4D089B7FF3C92Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib13065787F3886A2E55BA89DBDDECD7EFs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib13065787F3886A2E55BA89DBDDECD7EFs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD67C1E27E0D8409BEC2B32C592172B2Ds1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD67C1E27E0D8409BEC2B32C592172B2Ds1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib0A3156F2CCD627A459D6D4CF2F953C82s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib0A3156F2CCD627A459D6D4CF2F953C82s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib1038144C1A5CBA30BAA12D4D816D6D44s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib1038144C1A5CBA30BAA12D4D816D6D44s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib81F0667AD1B119BD257E63D429E4A585s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib81F0667AD1B119BD257E63D429E4A585s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib8C1527F0E6AFD1D1A90D42B1463BE0FDs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib8C1527F0E6AFD1D1A90D42B1463BE0FDs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib5F03DD7B39BA5CA8EB5156B919B3FAB2s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib5F03DD7B39BA5CA8EB5156B919B3FAB2s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib98B9CE8EB9BFEBD079FE80952D1AFA53s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib98B9CE8EB9BFEBD079FE80952D1AFA53s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibC1ACB08D5DF9F8986B3160F869D91917s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibC1ACB08D5DF9F8986B3160F869D91917s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibF3A1A56CF6555A98F36200C75F8E6ADFs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibF3A1A56CF6555A98F36200C75F8E6ADFs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibEFAB71F624292E6C86D88A07F66C8A0Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibEFAB71F624292E6C86D88A07F66C8A0Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib1BC8516ED3E9A8A0F283D10F725AB340s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib1BC8516ED3E9A8A0F283D10F725AB340s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB516E2ABAD3E42F9B8FAC459F903E153s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB516E2ABAD3E42F9B8FAC459F903E153s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib96641E4A5A09E69B32236ADBDFD55407s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib362A2C6BE7122D1DC73876426FC6DFCDs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib362A2C6BE7122D1DC73876426FC6DFCDs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib936E5F6E6C92D8B1773B9AC28CF1645Cs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib936E5F6E6C92D8B1773B9AC28CF1645Cs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD2BF7126723EA8F6005BA141EA3C3E2Cs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD2BF7126723EA8F6005BA141EA3C3E2Cs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib7206495ECE304C864AFAC46CBB9B7C29s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib7206495ECE304C864AFAC46CBB9B7C29s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib7206495ECE304C864AFAC46CBB9B7C29s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib7158323013C5DB78D74947C1DAF9B33Ds1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib7158323013C5DB78D74947C1DAF9B33Ds1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibDB853EC3ECF7FE4ADC358085BA37C278s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibDB853EC3ECF7FE4ADC358085BA37C278s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibA29C5ADA6D6F97338A738E1FB1A4FE69s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibA29C5ADA6D6F97338A738E1FB1A4FE69s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib71E32710D0097FA6604E798DABDB1D03s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib71E32710D0097FA6604E798DABDB1D03s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib71E32710D0097FA6604E798DABDB1D03s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib71E32710D0097FA6604E798DABDB1D03s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib609894D7B91A279D39AECA83D3A2D4A0s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib609894D7B91A279D39AECA83D3A2D4A0s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib609894D7B91A279D39AECA83D3A2D4A0s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib57D58BDF13D767904BCA0788FD136BEBs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib57D58BDF13D767904BCA0788FD136BEBs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibC70903749ED556D98A4966FDFB9CCD04s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibC70903749ED556D98A4966FDFB9CCD04s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibC21E709645C72420B8B8223A6BB758DCs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibC21E709645C72420B8B8223A6BB758DCs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD840538DE0BA0C58268E54A9A49F29ABs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD840538DE0BA0C58268E54A9A49F29ABs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib26168508520327ABADDA74E06630F90Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib26168508520327ABADDA74E06630F90Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib26168508520327ABADDA74E06630F90Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibEF3B446247D42A25614A072C61335FA9s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibEF3B446247D42A25614A072C61335FA9s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB2E89EAD05BA50D8ED09505436C68DE5s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB2E89EAD05BA50D8ED09505436C68DE5s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB8C4EF2DD71E8F3F577354512FA4262Cs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB8C4EF2DD71E8F3F577354512FA4262Cs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB8C4EF2DD71E8F3F577354512FA4262Cs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD94EBC7F0E5114D50477585D06BE5D8Es1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD94EBC7F0E5114D50477585D06BE5D8Es1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibD94EBC7F0E5114D50477585D06BE5D8Es1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibDC2DEAEB8A4BD50EA6824FA0B2966054s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibDC2DEAEB8A4BD50EA6824FA0B2966054s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibDC2DEAEB8A4BD50EA6824FA0B2966054s1
https://people.sc.fsu.edu/~jburkardt/f77_src/simplex_gm_rule/simplex_gm_rule.html
https://people.sc.fsu.edu/~jburkardt/f77_src/simplex_gm_rule/simplex_gm_rule.html
http://www.hsl.rl.ac.uk
http://wwwinfo.jinr.ru/programs/jinrlib/inqsim/indexe.html
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB91441DDEEFF3D2838198A22ED120D77s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB91441DDEEFF3D2838198A22ED120D77s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB91441DDEEFF3D2838198A22ED120D77s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibB91441DDEEFF3D2838198A22ED120D77s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibFB46B9F440A9F0E4F6B78E6DE176190Bs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibFB46B9F440A9F0E4F6B78E6DE176190Bs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibFB46B9F440A9F0E4F6B78E6DE176190Bs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibEC44E2684C1E31F54411B66A7A48CD19s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibEC44E2684C1E31F54411B66A7A48CD19s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibEC44E2684C1E31F54411B66A7A48CD19s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib2D719C05169857C19F8D6B29AD6D328Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib2D719C05169857C19F8D6B29AD6D328Fs1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib81CBD703B426F61B0BBEA0772848F1E2s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bib81CBD703B426F61B0BBEA0772848F1E2s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibE1A4FBC4E80CB41665DB12E9D2239A07s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibE1A4FBC4E80CB41665DB12E9D2239A07s1
http://refhub.elsevier.com/S0898-1221(22)00336-4/bibE1A4FBC4E80CB41665DB12E9D2239A07s1

	PI-type fully symmetric quadrature rules on the 3-, ..., 6-simplexes
	1 Introduction
	2 Fully symmetric quadrature rules for the d-simplex
	3 Solving system of nonlinear equations with convex constraints
	4 Numerical results
	5 Estimates of the errors of the quadrature rules
	6 Conclusions
	CRediT authorship contribution statement
	Data availability
	Acknowledgements
	Appendix A INQSIM: A program for converting PI-type fully symmetric quadrature rules on 2-, ..., 6-simplexes from compact f...
	Appendix B Supplementary material
	References


