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Abstract. Symbolic-numeric solving of the boundary value problem for
the Schrödinger equation in cylindrical coordinates is given. This prob-
lem describes the impurity states of a quantum wire or a hydrogen-like
atom in a strong homogeneous magnetic field. It is solved by apply-
ing the Kantorovich method that reduces the problem to the boundary-
value problem for a set of ordinary differential equations with respect
to the longitudinal variables. The effective potentials of these equations
are given by integrals over the transverse variable. The integrands are
products of the transverse basis functions depending on the longitudinal
variable as a parameter and their first derivatives. To solve the prob-
lem at high magnetic quantum numbers |m| and study its solutions we
present an algorithm implemented in Maple that allows to obtain ana-
lytic expressions for the effective potentials and for the transverse dipole
moment matrix elements. The efficiency and accuracy of the derived al-
gorithm and that of Kantorovich numerical scheme are confirmed by
calculating eigenenergies and eigenfunctions, dipole moments and decay
rates of low-excited Rydberg states at high |m| ∼ 200 of a hydrogen atom
in the laboratory homogeneous magnetic field γ ∼ 2.35×10−5(B ∼ 6T ).

1 Introduction

In earlier papers, we considered the application of the Kantorovich method for
solving the discrete- and continuous-spectrum boundary-value problems (BVP)
[1] for hydrogen-like atoms in magnetic field and the ion axial channelling prob-
lem in a crystal. The approach implies the use of a parametric basis of oblate
spheroidal angular functions in spherical coordinates where the radial variable
runs a semi-axis [2,3,4,5]. The method has been further developed in connection
with calculations of spectral and optical characteristics of model semiconductor
nanostructures, namely, quantum dots(QD), quantum wells(QW) and quantum
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wires(QWr) [6,7,8,9]. For this purpose we used different parametric basis func-
tions in appropriate coordinate systems. The functions were calculated by solving
parametric eigenvalue problems by means of the program ODPEVP [10].

Taking into account the growing interest in problems possessing axial symme-
try, like impurity states of QWr’s or high-angular-momentumRydberg states and
quasi-stationary states imbedded in continuum of a hydrogen atom in magneto-
optical traps [11,12,13], it is imperative to implement the Kantorovich scheme for
solving the BVP for the longitudinal variable running the whole axis of a cylin-
drical coordinate system[8,9]. This would allow direct calculation of the main
characteristics of a multichannel scattering problem, such as reflection and trans-
mission coefficients matrices, recombination rates and ionization cross-sections
for Rydberg states, and decay rates of the lowest bound states of manifolds with
high values of the magnetic quantum number |m| [11,12,13].

For the Schrödinger equation describing a hydrogen-like atom in a strong
homogeneous magnetic field, the boundary-value problem (BVP) in cylindrical
coordinates is reduced to solving a set of the longitudinal equations in the frame-
work of the Kantorovich method. The effective potentials of these equations are
given by integrals over the transverse variable, the integrands being products
of transverse basis functions, depending on the longitudinal variable as a pa-
rameter, and their first derivatives with respect to the parameter. One can say
that at high |m|, the discrete-spectrum problem is described by a system of two
coupled 2D- and 1D-oscillators corresponding to the transverse ρ and longitu-
dinal z variables, with the frequencies ωρ and ωz, respectively. To analyze the
low-excited Rydberg states of such system it is useful to have the solution in
an analytic form. Indeed, for high |m| we can consider the Coulomb potential
as a perturbation with respect to the transversal centrifugal potential and the
oscillator potential with the frequency ωρ = γ/2. For the laboratory magnetic
field B = B0γ ∼ 6T , i.e., γ ∼ 2.35×10−5, this is true at the adiabatic parameter
values m̃ ∼ 5.89, where m̃ is defined as m̃ = (ωρ/ωz)

4/3 = |m|γ1/3. Under the
condition |m| ≥ 6γ−1/3 we can approximate the Coulomb potential by a Taylor
expansion in powers of the auxiliary transverse variable with respect to a spe-
cially chosen point with given accuracy in the region of its convergence. Then we
can find the approximate transversal eigenvalues and eigenfunctions depending
parametrically on the longitudinal variable, in the framework of a perturbation
scheme and by using the eigenvalues and eigenfunctions of the 2D oscillator
as unperturbed ones. To express analytically the transverse basis functions and
eigenvalues, the corresponding effective potentials, and the transverse dipole mo-
ment matrix elements as well as perturbation solution of the BVP, we elaborate a
symbolic-numerical algorithm (SNA) implemented in Maple. The efficiency and
accuracy of the algorithm and that of the derived Kantorovich numerical scheme
are confirmed by computation of eigenenergies and eigenfunctions, dipole mo-
ments and decay rates for the manifolds of high-|m| low-excited Rydberg states
of a hydrogen atom in the laboratory homogeneous magnetic field, and by com-
parison with the results obtained by other methods.
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The paper is organized as follows. In Section 2, we briefly describe the reduc-
tion by the KM of the 3D eigenvalue problem at fixed values |m| of magnetic
quantum number to the 1D eigenvalue problem for a set of close-coupled longi-
tudinal equations. In Sections 3 and 4, the algorithm for calculating the effective
potentials and the transverse dipole moment matrix elements in the analytic
form at large values of |m| is presented. The algorithm has been implemented
in Maple. To find the validity range of the method, in Section 5 we compare our
results with the known ones obtained in the cylindrical coordinates. Decay rates
of the lowest bound states of manifolds with high magnetic quantum number |m|
are also presented here. In Section 6, we conclude and discuss possible future
applications of the described method.

2 Problem Statement in Cylindrical Coordinates

The component Ψ(ρ, z) of the wave function Ψ(ρ, z, ϕ) = Ψ(ρ, z) exp(ımϕ)/
√
2π

of a hydrogen atom in an axially symmetric magnetic field B = (0, 0, B) in
the cylindrical coordinates (ρ, z, ϕ) satisfies the 2D Schrödinger equation in the
region Ωc = {0 < ρ < ∞ and −∞ < z < ∞}:

− ∂2

∂z2
Ψ(ρ, z) +AcΨ(ρ, z) = εΨ(ρ, z), Ac = −1

ρ

∂

∂ρ
ρ
∂

∂ρ
+mγ + U(ρ, z), (1)

U(ρ, z) =
m2

ρ2
+

γ2ρ2

4
+ Vc(ρ, z), Vc(ρ, z) = − 2q

√
ρ2 + z2

. (2)

Here m = 0,±1, . . . is the magnetic quantum number, γ = B/B0 = h̄ωc/(2Ry),
B0

∼= 2.35 × 105 T is a dimensionless parameter which determines the field
strength B, ωc = eB/(mec) = eB0γ/(mec) is the cyclotron frequency, and
U(ρ, z) is the potential energy (see Fig. 1a), q is Coulomb charge of nucleus.
We use the atomic units (a.u.) h̄ = me = e = 1 and assume the mass of the
nucleus to be infinite. In these expressions, ε = 2E, E is the energy (expressed
in Rydbergs, 1Ry = (1/2) a.u.) of the bound state |mσ〉 with fixed values of m
and z-parity σ = ±1, and Ψ(ρ, z) ≡ Ψmσ(ρ, z) = σΨmσ(ρ,−z) is the correspond-
ing wave function. The boundary conditions in each mσ subspace L2(Ω) of the
complete Hilbert space have the form

lim
ρ→0

ρ
∂Ψ(ρ, z)

∂ρ
= 0, for m = 0, and Ψ(0, z) = 0, for m �= 0, (3)

lim
ρ→∞Ψ(ρ, z) = 0. (4)

The eigenfunction Ψ(ρ, z) ≡ Ψt(ρ, z) ∈ L2(Ω) of the discrete real-valued spec-
trum ε : ε1 < ε2 < · · · εt < · · · < γ obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the sec-
ond and/or first type at small and large |z|, but finite |z| = zmax 
 1,

lim
z→0

∂Ψ(ρ, z)

∂z
= 0, σ = +1, Ψ(ρ, 0) = 0, σ = −1, (5)

lim
z→±∞Ψ(ρ, z) = 0 → Ψ(ρ,±|zmax|) = 0. (6)
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In numerical calculation of the eigenvalues and eigenfunctions with given accu-
racy by programs KANTBP2 and ODPEVP realizing the finite element method,
we used computational schemes derived from the Rayleigh–Ritz variational func-
tional [1,10]

R(Ψt, εt) =

( zmax∫

−zmax

dz

∞∫

0

ρdρ
∂Ψt(ρ, z)

∂z

∂Ψt(ρ, z)

∂z
+

∂Ψt(ρ, z)

∂ρ

∂Ψt(ρ, z)

∂ρ
(7)

+Ψt(ρ, z)(mγ + U(ρ, z))Ψt(ρ, z)

)
/

∫ zmax

−zmax

dz

∫ ∞

0

ρdρΨt(ρ, z)Ψt′(ρ, z)

with the additional normalization and orthogonality conditions

〈t|t′〉=
∫ zmax

−zmax

dz

∫ ∞

0

ρdρΨt(ρ, z)Ψt′(ρ, z)=2

∫ zmax

0

dz

∫ ∞

0

ρdρΨt(ρ, z)Ψt′(ρ, z)=δtt′ . (8)

For m �= 0 eigenfunctions Ψt(ρ, z) ∼ ρ|m|/2 at small ρ. So, in numerical calcula-
tions, a reduced interval [0 < ρmin, ρmax 
 1] is conventionally used [8].

2.1 Kantorovich Reduction

Consider a formal expansion of the partial solution Ψmσ
t (ρ, z) of Eqs. (1)–(4) cor-

responding to the eigenstate |mσt〉 expanded in the finite set of one-dimensional
basis functions {Bm

j (ρ; z)}jmax

j=1

Ψmσ
t (ρ, z) =

jmax∑

j=1

Bm
j (ρ; z)χ

(mσt)
j (z). (9)

In Eq. (9), the functions χ(t)(z)≡χ(mσt)(z), (χ(t)(z))T =(χ
(t)
1 (z),. . . ,χ

(t)
jmax

(z))

are unknown, and the surface functions B(ρ; z) = Bm(ρ;−z), (B(ρ; z))T =
(B1(ρ; z), . . . , Bjmax(ρ; z)) form an orthonormal basis for each value of the vari-
able z ∈ R which is treated as a parameter.

In KM, the wave functions Bj(ρ; z) (see Fig. 2) and the potential curves Ej(z)
(in Ry) are determined as solutions of the following eigenvalue problem

AcBj(ρ; z) = Ej(z)Bj(ρ; z), (10)

with the operator Ac from (1)–(2) and the boundary conditions (3), (4) at each
fixed z ∈ R. Since the operator in the left-hand side of Eq. (10) is self-adjoint,
its eigenfunctions are orthonormal

〈
Bi(ρ; z)

∣
∣
∣∣Bj(ρ; z)

〉

ρ

=

∫ ∞

0

Bi(ρ; z)Bj(ρ; z)ρdρ = δij , (11)

where δij is the Kronecker symbol. Therefore, we transform the solution of the
above problem into the solution of an eigenvalue problem for a set of jmax
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Fig. 1. Left panel: the profile of potential energy U(ρ, z) = m2/ρ2 + γ2ρ2/4+ Vc(ρ, z)
(U) in the plane z = 0 and its components, namely, the centrifugal (C), oscillator (Osc),
and Coulomb (Coul) potentials. Right panel: the approximation errors δU (jmax)(ρ, z) ≡∑jmax

i=1 U (i)(ρ, z) − U(ρ, z) (jmax = 1, ..., 9) of the potential energy U(ρ, z = 0). Here
q = −1, m = −200, γ = 2.553191 · 10−5 (B = 6T, m̃ ≈ 5.89)

ordinary second-order differential equations that determines the energy ε and
the coefficients χ(i)(z) of the expansion (9)

(
−I

d2

dz2
+U(z) +Q(z)

d

dz
+

dQ(z)

dz

)
χ(t)(z) = εtIχ

(t)(z). (12)

Here I, U(z) = U(−z), and Q(z) = −Q(−z) are the jmax×jmax matrices whose
elements are expressed as

Uij(z) = Ei(z)δij +Hij(z), Hij(z) =

∫ ∞

0

∂Bi(ρ; z)

∂z

∂Bj(ρ; z)

∂z
ρdρ, (13)

Iij(z) = δij , Qij(z) = −Qji(z) = −
∫ ∞

0

Bi(ρ; z)
∂Bj(ρ; z)

∂z
ρdρ.

The discrete spectrum solutions ε : ε1 < ε2 < · · · εt < · · · < γ at fixed m and
parity σ = ±1 obey the asymptotic boundary condition and are orthonormal

lim
z→0

(
d

dz
−Q(z)

)
χ(t)(z) = 0, σ = +1, χ(t)(0) = 0, σ = −1, (14)

lim
z→±∞χ(t)(z) = 0 → χ(t)(±zmax) = 0, (15)
∫ zmax

−zmax

(
χ(t)(z)

)T
χ(t′)(z)dz = 2

∫ zmax

0

(
χ(t)(z)

)T
χ(t′)(z)dz = δtt′ . (16)

Remark 1. In diagonal adiabatic approximation
(
− d2

dz2
+ Ujj(z)

)
χ
(v)
j (z) = εjvχ

(v)
j (z) (17)

discrete spectrum ε : εj1 < εj2 < · · · εjv < · · · < γ numerated by number v that

determines the number v − 1 of nodes of the solution χ
(v)
j (z) at fixed value j.
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Fig. 2. The basis functions B1 and B2 for m = −200, q = 1, γ = 2.553191 · 10−5

3 Solving the Parametric Eigenvalue Problem at
Large |m|

Step 1. In (10), (11) apply the transformation to a scaled variable x

x =
γρ2

2
, ρ =

√
x

√
γ/2

, (18)

and put λj(z) = Ej(z)/(2γ) = λ
(0)
j +m/2+δλj(z), where λ

(0)
j = n+(|m|+1)/2.

The eigenvalue problem reads
⎛

⎝− ∂

∂x
x
∂

∂x
+

m2

4x
+

x

4
+

m

2
− q

γ
√

2x
γ + z2

− λj

⎞

⎠Bj(x; z) = 0, (19)

with a normalization condition

1

γ

∫ ∞

0

Bj(x; z)
2dx = 1. (20)

At q = 0, Eq. (19) without m/2 takes the form

L(n)B
(0)
j (x) = 0, L(n) = − ∂

∂x
x
∂

∂x
+

m2

4x
+

x

4
− λ

(0)
j , (21)

and has the regular and bounded solutions at

λ
(0)
j = n+ (|m|+ 1)/2, (22)

where the transverse quantum number n ≡ Nρ = j− 1 = 0, 1, . . . determines the

number of nodes of the solution B
(0)
j (x) ≡ B

(0)
nm(x) with respect to the variable

x. The normalized solutions of Eq. (21) take the form



Symbolic-Numerical Calculations of High-|m| Rydberg States 161

B
(0)
j (x) = Cn|m|e−

x
2 x

|m|
2 L|m|

n (x), Cn|m| =
[
γ

n!

(n+ |m|)!
] 1

2

, (23)

1

γ

∫ ∞

0

B(0)
nm(x)B

(0)
n′m(x)dx = δnn′ , (24)

where L
|m|
n (x) are Laguerre polynomials [14].

Step 2. Substituting the notation δλj(z) = λj(z)− λ
(0)
j −m/2 ≡ Ej(z)/(2γ)−

(n + (m + |m| + 1)/2), and the Taylor expansion in the vicinity of the point
x0 = xsγ:

Vc(x, z) = − q

γ
√

2x
γ +z2

= −
jmax∑

k=1

V (k)(x, z)εk = − εq

γ(z2+2xs)1/2
(25)

+
εq(x−xsγ)

γ2(z2+2xs)3/2
− 3ε2q(x−xsγ)

2

2γ3(z2+2xs)5/2
+

5ε3q(x−xsγ)
3

2γ4(z2+2xs)7/2
+O

(
ε4

(z2+2xs)9/2

)
,

into Eq. (19) at q �= 0, transform it to the following form

L(n)Bj(x; z) +

(
jmax∑

k=1

V (k)(z)εk − δλj(z)

)

Bj(x; z) = 0. (26)

Here ε is a formal parameter that will be put to be 1 in the final expression.
The parameters xs = ρ2s/2 and ρs approximately correspond to the minimum
of the potential energy (2). In so doing, the Coulomb term is neglected. In
the calculations we choose ρs =

√
2|m|/γ under assumption that the condition

γ2ρ2/4 + m2/ρ2 
 2|q|/ρ is valid. The approximation errors δU (jmax)(ρ, z) at
jmax = 1, ..., 9 are illustrated in Fig. 1b. One can see that in the localization
interval ρ ∈ [3000, 5000] of the eigenfunction (19), the errors decrease with in-
creasing order jmax (see Fig. 2). Performing Taylor expansion at |z|/ρs 
 1, we
arrive at the inverse power series that gives the same results as the perturbation
theory in powers of 1/|z| [8].
Step 3. The solution of Eq. (26) is found in the form of perturbation expansion
in powers of ε

δλj(z) =

kmax∑

k=1

εkλ(k)
n (z), Bj(x; z) = B(0)

n (x) +

kmax∑

k=0

εkB(k)
n (x, z). (27)

Equating coefficients at the same powers of ε, we arrive at the system of inhomo-

geneous differential equations with respect to corrections λ
(k)
n (z) and B

(k)
n (x, z):

L(n)B(0)
n (x) = 0 ≡ f (0)

n (z), (28)

L(n)B(k)
n (x, z) = (λ(k)

n (z)− V (k)(z))B(0)
n (x)

+
k−1∑

p=1

(λ(k−p)(z)− V (k−p)(z))B(p)
n (x, z) ≡ f (k)

n (z), k ≥ 1.
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Fig. 3. The eigenvalues Ej(z) and the effective potentials Hjj(z), Hjj′(z) (curves
Hjj−1(z), j = 2, ..., 6, are marked by number 1, curves Hjj−2(z), j = 3, ...6, are
marked by number 2 and curves Hjj−3(z), j = 4, ..., 6, are marked by number 3) and
Qjj′(z) (curves Qjj−1(z), j = 2, ..., 6, are marked by number 1, and curves Qjj−2(z),
j = 3, ..., 6, are marked by number 2) for m = −200, q = 1, γ = 2.553191 · 10−5

To solve Eqs. (26) we used the nonnormalized orthogonal basis

Bn+s(x) = Cn|m|e−
x
2 x

|m|
2 L

|m|
n+s(x) = Cn|m|C

−1
n+s|m|B

(0)
n+s,m(x), (29)

〈s|s′〉 =
∫ ∞

0

Bn+s(x)Bn+s′ (x)dx = δss′γ
n!

(n+ |m|)!
(n+ s+ |m|)!

(n+ s)!
.

The action of the operators L(n) and x on the functions Bn+s(x) is defined by
the relations

L(n)Bn+s(x) = sBn+s(x), (30)

xBn+s(x) = −(n+ s+ |m|)Bn+s−1(x) + (2(n+ s) + |m|+ 1)Bn+s(x)

−(n+ s+ 1)Bn+s+1(x)

that involve no fractional powers of quantum numbers n and m.

Step 4. Applying Eqs. (30), the right-hand side f
(k)
n (z) and the solutions

B
(k)
n (x, z) of the system (28) are expanded over the nonnormalized basis states

Bn+s(x)

B(k)
n (x, z) =

smax∑

s=−smax

b(k)n;s(z)Bn+s(x), f (k)
n (z) =

smax∑

s=−smax

f (k)
n;s (z)Bn+s(x).(31)

Then the recurrent set of linear algebraic equations for unknown nonnormalized

coefficients b
(k)
n;s(z) and corrections λ

(k)
n (z) is obtained

sb(k)n;s(z)− f (k)
n;s (z) = 0, s = −smax, . . . , smax,
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which is solved sequentially for k = 1, 2, . . . , kmax:

f
(k)
n;0(z) = 0 → λ(k)

n (z); b(k)n;s(z) = f (k)
n;s (z)/s, s = −smax, . . . , smax, s �= 0.

The initial conditions (22) and b
(0)
n;s(z) = δs0 follow from Eqs. (21) and (24).

Step 5. To obtain the normalized wave function Bj(x; z) up to the kth order,

the coefficient b
(k)
0 are defined by the following relation:

b
(k)
n;0(z) = − 1

2γ

k−1∑

p=1

smax∑

s′=−smax

smax∑

s=−smax

b(k−p)
n;s (z)〈s|s′〉b(p)n;s′(z), b

(k=1)
n;0 (z) = 0.

As an example of the output file at steps 1–5, we display nonzero coefficients

λ
(k)
n (z), b

(k)
n;s(z) of the expansions (27), (31) over the nonnormalized basis func-

tions (29) up to O(ε2):

λ(0)
n = n+(|m|+1)/2,

λ(1)
n (z) =− q

γ
√
z2+2xs

+
q(2n+|m|+1)

γ2(z2+2xs)3/2
− xsq

γ(z2+2xs)3/2
,

λ(2)
n (z) =−q2(2n+|m|+1)/(γ4(z2+2xs)

3)−3q[|m|2+2+6n|m|
+6n2+6n+3|m|−2γ(2n+|m|+1)xs+x2

sγ
2]/(2γ3(z2+2xs)

5/2),

b
(0)
n;0(z) = 1, (32)

b
(1)
n;−1(z) =−q(n+|m|)/(γ2(z2+2xs)

3/2), b
(1)
n;1(z) = q(n+1)/(γ2(z2+2xs)

3/2),

b
(2)
n;−2(z) = q(n+|m|)(n+|m|−1)(2q−3γ

√
(z2+2xs))/(4γ

4(z2+2xs)
3),

b
(2)
n;−1(z) = q(n+|m|)(2q+3γ(2n+|m|−γxs)

√
(z2+2xs))/(γ

4(z2+2xs)
3),

b
(2)
n;0(z) = q2(2n2+2n+2n|m|+|m|+1)/(2γ4(z2+2xs)

3),

b
(2)
n;1(z) =−q(n+1)(2q+3γ(2n+|m|+2−γxs)

√
(z2+2xs))/(γ

4(z2+2xs)
3),

b
(2)
n;2(z) = q(n+1)(n+2)(2q+3γ

√
(z2+2xs))/(4γ

4(z2+2xs)
3).

These expansions involve parameters xs = ρ2s/2 and ρs that approximately cor-
responded to the minimum of the potential energy (2) and determined the point
x0 = γxs of expansion of (25) of Coulomb potential Vc(x, z).

Step 6. In terms of the scaled variable x, the expressions of the effective poten-
tials Hij(z) = Hji(z) and Qij(z) = −Qji(z) take the form

Hij(z)=
1

γ

∞∫

0

dx
∂Bi(x; z)

∂z

∂Bj(x; z)

∂z
, Qij(z)=− 1

γ

∞∫

0

dxBi(x; z)
∂Bj(x; z)

∂z
. (33)

To calculate them we expand the solution (26) over the normalized orthogonal

basis B
(0)
n+s;m(x) with the normalized coefficients b

(k)
n;n+s;m(z),

Bj(x; z) ≡ Bm
j (x; z) =

kmax∑

k=0

εk
smax∑

s=−smax

b
(k)
n;n+s;m(z)B

(0)
n+s;m(x). (34)
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The normalized coefficients b
(k)
n;n+s;m(z) are expressed via b

(k)
n;s(z),

b
(k)
n;n+s;m(z) = b(k)n;s(z)

√
n!

(n+ |m|)!
(n+ s+ |m|)!

(n+ s)!
(35)

as follows from Eqs. (31), (34), and (29).

Step 7. As a result of substituting Eqs. (34) into Eq. (33), the matrix elements
take the form

Qjj+t(z) = −
kmax∑

k=0

εk
k∑

k′=0

min(smax,smax+t)∑

s=max(−smax,−smax+t)

b
(k′)
n;n+s;m(z)

db
(k−k′)
n+t;n+s;m(z)

dz
,

Hjj+t(z) =

kmax∑

k=0

εk
k∑

k′=0

min(smax,smax+t)∑

s=max(−smax,−smax+t)

db
(k′)
n;n+s;m(z)

dz

db
(k−k′)
n+t;n+s;m(z)

dz
.(36)

By collecting the coefficients at similar powers of ε in Eq. (36) the algorithm
yields the final expansions of eigenvalues and effective potentials available in the
output file

Ej(z) =

kmax∑

k=0

E
(k)
j (z), Hij(z) =

kmax∑

k=2

H
(k)
ij (z), Qij(z) =

kmax∑

k=1

Q
(k)
ij (z). (37)

Successful runs of the Maple implementation of the algorithm were performed
up to kmax = 6 (the run time 30 s using Intel Core i5, 3.36 GHz, 4 GB). Below we
present a few first nonzero coefficients derived in the analytic form (j = n+ 1):

E
(0)
j = 2γ(n+ (m+ |m|+ 1)/2),

E
(1)
j (z) = − 2q

√
z2+ρ2s

+
2q(2n+|m|+1)

γ(z2+ρ2s)
3/2

− ρ2sq

(z2+ρ2s)
3/2

,

E
(2)
j (z) = −2q2(2n+|m|+1)

γ3(z2 + ρ2s)
3

−3q[|m|2+2+6n|m|+6n2+6n+3|m|−γ(2n+|m|+1)ρ2s+ρ4sγ
2/4]

γ2(z2+ρ2s)
5/2

,

Q
(1)
jj−1(z) = −√

n
√
n+|m| 3zq

γ2(z2 + ρ2s)
5/2

,

Q
(2)
jj−1(z) = −√

n
√
n+|m|

[
15zq(2|m|+ 4n− ρ2sγ)

2γ3(z2 + ρ2s)
7/2

+
12zq2

γ4(z2 + ρ2s)
4

]
,

Q
(2)
jj−2(z) = −√

n
√
n−1

√
n+|m|

√
n+|m|−1

15qz

4γ3(z2 + ρ2s)
7/2

,

H
(2)
jj (z) = 9q2(2n2 + 2n|m|+ 2n+ |m|+ 1)

[
1

γ4(z2 + ρ2s)
4
− ρ2s

γ4(z2 + ρ2s)
5

]
,

H
(2)
jj−2(z) = −9q2

√
n
√
n−1

√
n+|m|

√
n+|m|−1

[
1

γ4(z2+ρ2s)
4
+

ρ2s
γ4(z2+ρ2s)

5

]
.
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Fig. 4. Transverse dipole matrix elements P
|m||m|−1
nn′ (subscripts n, n′ run

0, 1, 2, 3, 4, 5, 6) for m = −200, q = 1, γ = 2.553191 · 10−5

As an example, Fig. 3 shows the eigenvalues and effective potentials (37), which
agree with those calculated numerically using ODPEVP [10] with the accuracy
of the order of 10−10. We used finite element grid on the interval ρ ∈ [ρmin =
2000, ρmax = 6000] with the Lagrange elements of fourth order. Expanding (37)
into the Taylor series at |z|/ρs 
 1, we arrive at perturbation expansion in
powers of 1/z [8].

4 Calculations of the Transversal Dipole Matrix Elements

Using the scaled variable x defined by Eq. (18) one can express the trans-

verse dipole matrix elements P
|m|,|m|∓1
ij (z) =

〈
|m|, n

∣
∣
∣ρe±ıϕ

∣
∣
∣|m| ∓ 1, n′

〉
and

P
−|m|,−|m|±1
ij (z) =

〈
−|m|, n

∣
∣
∣ρe∓ıϕ

∣
∣
∣−|m| ± 1, n′

〉
possessing the property

〈
|m|, n

∣
∣
∣ρ exp(±ıϕ)

∣
∣
∣|m| ∓ 1, n′

〉∗
=
〈
|m| ∓ 1, n′

∣
∣
∣ρ exp(∓ıϕ)

∣
∣
∣|m|, n

〉
,

where i = n+ 1 and j = n′ + 1, in the following form

P
−|m|,−|m|±1
ij (z) = P

|m|,|m|∓1
ij (z) =

√
2

γ3

∞∫

0

dxB
|m|
i (x; z)

√
xB

|m|∓1
j (x; z).(38)

According to Eqs. (22.7.12), (33.7.30), and (22.7.31) of [14], the dipole mo-
ment matrix elements calculated with normalized basis functions ||m|, n〉 =

B
(0)
n|m|(x)e

ı|m|ϕ/
√
2π by means of Eq. (23) are expressed as

P
(0);|m||m|∓1
ij =

√
2

γ3

〈
|m|, n

∣
∣
∣
√
xe±ıϕ

∣
∣
∣|m| ∓ 1, n′

〉
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Fig. 5. Energy eigenvalues 2Es for even (σ = +1) lower eigenstates vs the state number
〈j〉 calculated in the diagonal adiabatic approximation (left) and in the Kantorovich
approximation at jmax = 6 with given accuracy (right). Here m = −200, γ = 2.553191 ·
10−5, q = 1, σ = +1. The quantity 〈j〉 =

∑
j

∫
jχj,s(z)

2dz is the averaged quantum
number, s is the eigenvalue number in the ascending energy sequence E1 < E2 < ... <
Es < ... < γ/2, corresponding to the number v of the eigenvalue Ej1 < Ej2 < ... <
Ejv < ... < γ/2 counted at each 〈j〉 = j in diagonal approximation (17) of Eqs. (12)

=

√
2

γ3

1

2π

∫ 2π

0

dϕ

∫ ∞

0

e−ı|m|ϕB(0)
i,|m|(x)e

±ıϕ√xeı(|m|∓1)ϕB
(0)
i,|m|∓1(x)dx

=

√
2

γ

[
δnn′

√
n+ |m|+ 1/2∓ 1/2− δn∓1,n′

√
n+ 1/2∓ 1/2

]
. (39)

As a result of substituting Eqs. (34) and (39) into Eq. (38), the matrix elements
take the following analytic form (j = n+ 1)

P
|m|,|m|−1
jj+t (z) =

kmax∑

k=0

P
(k);|m||m|−1
jj+t (z),

P
(k);|m||m|−1
jj+t (z) =

√
2

γ

k∑

k′=0

min(k,k−k′−t)∑

s=max(−k,k′−k−t)

[
b
(k′)
n;n+s;|m|(z)b

(k−k′)
n+t;n+s;|m|−1(z)

×
√
n+ s+ |m|+ 1− b

(k′)
n;n+s;|m|(z)b

(k−k′)
n+t;n+s+1;|m|−1(z)

√
n+ s+ 1

]
. (40)

Successful run of the Maple-implemented algorithm was performed up to kmax =
6 (run time 90 s with Intel Core i5, 3.36 GHz, 4 GB). A few first nonzero
coefficients derived in the analytic form are presented below (j = n+ 1):

P
(0);|m||m|−1
jj (z) = +

√
2
√
n+ |m|+ 1√

γ
, P

(1);|m||m|−1
jj (z) = −

√
2
√
n+ |m|q

γ5/2(ρ2s + z2)3/2
,

P
(0);|m||m|−1
j−1j (z) = −

√
n
√
2√

γ
, (41)

P
(1);|m||m|−1
j−1j (z) = −

√
n
√
2
√
n+ |m|(√n+ |m| − 1−√n+ |m|+ 1)q

(ρ2s + z2)3/2γ5/2
,
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Fig. 6. Upper panels: the first three components of the eigenfunctions χj,70 and χj,71

(j = 1, 2, 3). The dominant components are j = 1 (〈j〉 = 1.43) with v − 1 = 25
nodes and j = 2 (〈j〉 = 1.56) with v − 1 = 18 nodes, respectively. Lower panels:
the profile of the wave function Ψm=−200,σ=+1

s=70 (ρ, z) and Ψm=−200,σ=+1
s=71 (ρ, z) of the

resonance states in the zx plane with the energies 2Em=−200,σ=+1
s=70 = −2.151832 ·

10−4Ry and 2Em=−200,σ=+1
s=71 = −2.150977 · 10−4Ry pointed by arrows in the right

panel of Fig. 5

P
(1);|m||m|−1
jj−1 (z) =

√
n
√
2(
√
n+ |m| − 1

√
n+ |m|+ 1− n− |m|)q

(ρ2s + z2)3/2γ5/2
.

The comparison of our analytical numerical results with those obtained numeri-
cally using the programODPEVP [10] shows the convergence of the perturbation
series expansion up to kmax = 6 with four significant digits. Expanding (40) into
a Taylor series at |z|/ρs 
 1, we arrive at the inverse power series for the dipole
matrix elements. To obtain the leading terms at |z| → ∞ it is sufficiently to put
ρs = 0 in (41).

5 Calculations of Rydberg States and Decay Rates

In Fig. 5 we present an example of the lower part of discrete spectrum calculated
in the diagonal adiabatic and Kantorovich approximations with the effective
potentials (37) by means of the programKANTBP2 [1]. In numerical calculations
at q = −1, γ = 2.553191 · 10−5 for |m| ∼ 200, we use finite element grid on the
interval z ∈ [0, zmax = 11000] with the Lagrange elements of fourth order. In
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Fig. 6, we show an example of resonance states formed by coupling of the quasi-
degenerate states with the energies 2Em=−200,σ=+1

j=1,v=26 = −2.151260 · 10−4Ry and

2Em=−200,σ=+1
j=2,v=19 = −2.151202 · 10−4Ry in the diagonal adiabatic approximation

(17) pointed by arrows in the left panel of Fig. 5.
The partial transition decay rates Γs̃→s̃′ are calculated as

Γs̃→s̃′ =
4

3

e2ω3
s̃s̃′

4πε0h̄c3
|〈s̃′|r̄|s̃〉|2, ωs̃s̃′ = (Ēs̃′ − Ēs̃)/h̄. (42)

In the above expressions, ε0 = 8.854187817 · 10−12 F/m is the dielectric con-
stant, the energy Ēs̃′ = Es̃′EB and the dipole moment 〈s̃′|r̄|s̃〉 = aB〈s̃′|r|s̃〉
are expressed in the atomic units EB = 2Ry = 4.35974434 · 10−18 J, aB =
0.52917721092 · 10−10 m, i.e.

Γs̃→s̃′ = 2.142 · 1010(Es̃′ − Es̃)
3|〈s̃′|r|s̃〉|2 × s−1. (43)

Here |〈s̃′|r|s̃〉|2 defined by the expression

|〈s̃′|r|s̃〉|2 = (1/2)|〈s̃′|ρe−ıϕ|s̃〉|2 + |〈s̃′|z|s̃〉|2 + (1/2)|〈s̃′|ρe+ıϕ|s̃〉|2, (44)

where 〈s̃′|z|s̃〉 and 〈s̃′|ρe±ıϕ|s̃〉 are the longitudinal and transverse dipole mo-
ment, respectively. As follows from Eq. (40),

〈s̃′|z|s̃〉 = δm′mδ−σ′σ

jmax∑

i,j=1

∫ zmax

zmin

dzχmσ′
is̃′ (z)zχmσ

js̃ (z), (45)

〈s̃′|ρe±ıϕ|s̃〉 = δm′m∓1δσ′σ

jmax∑

i,j=1

∫ zmax

zmin

dzχm′σ
is̃′ (z)Pm′,m

ij (z)χmσ
js̃ (z). (46)

In Table 1 we show our present results for partial decay rates (43) and dipole
moments (45) and (46). The results were obtained numerically by means of the
program KANTBP 2.0 [1] using the analytically derived effective potentials (37)
and matrix elements of transversal dipole moments (40), i.e., Ms̃′s̃=〈s̃′|ρe−ıϕ|s̃〉
for cyclotron decay (C) (q → q′ = q, where q = j − m is magnetron quantum
number, m→m′=m− 1, σ→σ′=σ, j→ j′= j − 1, v→ v′= v); Ms̃′s̃= 〈s̃′|z|s̃〉
for the bounce decay (B) (q→ q′= q, m→m′ =m, σ→σ′ =−σ, j→ j′= j, v→
v′=v − 1), and Ms̃′ s̃=〈s̃′|ρe+ıϕ|s̃〉 for the magnetron decay (M) (q→q′=q − 1,
m→m′ =m + 1, σ→σ′ =σ, j→ j′ = j, v→ v′ = v). The results agree with the
numerical ones from [12] within the required accuracy.

In Table 1 we also show the energy values 2E|s̃〉 calculated in the Kantorovich
approximation (K) at jmax = 6, and obtained by the aid of the diagonal approx-
imation (17) in the analytical form

2E|s̃〉 ≈ 2Em,σ
i,v = U

(0)
ii + E(0)

i;v +
∑κmax

κ=2
E(κ−1)
i;v , (47)

E(0)
i;v = ωz,i(2v + 1), E(1)

i;v =
3U

(4)
i (2v2 + 2v + 1)

4ω2
z,i

,

E(2)
i;v = − (2v + 1)(17v2 + 17v + 21)(U

(4)
i )2

16ω5
z,i

+
5(2v + 1)(2v2 + 2v + 3)U

(6)
i

8ω3
z,i

.
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Table 1. The partial transition decay rates Γs̃→s̃′ evaluated using Eq. (43) from the
state |s̃〉= |j,v,σ,m〉 to |s̃′〉= |j′,v′,σ′,m′〉 with energies 2E|s̃〉 and 2E|s̃′〉 calculated using
the Kantorovich approximation (K) at jmax = 6 and the corresponding dipole moments
Ms̃′ s̃. In square brackets, numerical results of [12] are given. The energies calculated
in analytical form using the crude diagonal approximation with the Taylor series of
Uii(z) = Ei(z) up to harmonic (H) and anharmonic (A) terms of order of z2 and z10,
respectively. The corresponding energies in the diagonal approximation with Taylor
series of Uii(z)=Ei(z)+Hii(z) differing only in two last digits, are shown in parentheses.

s̃ s̃′ |j, v, σ,m〉 |j′, v′, σ′,m′〉 Γs̃→s̃′ , Ms̃′s̃, 2Es̃, 2Es̃′ ,
s−1 aB 10−4Ry 10−4Ry

C 5 1 |2, 1,+1,−200〉 |1, 1,+1,−201〉 13.1 276.4 K −4.29933 −4.80384
[13.7] [283] H −4.29978(76) −4.80384(83)

A −4.30019(18) −4.80424(23)

C 13 5 |3, 1,+1,−200〉 |2, 1,+1,−201〉 26.3 390.9 K −3.78171 −4.28632
[27.5] [401] H −3.78299(95) −4.28688(86)

A −3.78342(38) −4.28729(27)

B 1 1 |1, 2,−1,−200〉 |1, 1,+1,−200〉 0.180 349.4 K −4.73499 −4.81688
[0.178] [350] H −4.73329(27) −4.81683(83)

A −4.73531(29) −4.81724(23)

B 2 1 |1, 3,+1,−200〉 |1, 2,−1,−200〉 0.345 499.0 K −4.65469 −4.73499
[0.342] [500] H −4.64974(71) −4.73329(27)

A −4.65497(94) −4.73531(29)

M 1 1 |1, 1,+1,−200〉 |1, 1,+1,−199〉 0.045 3870 K −4.81688 −4.83003
[0.044] [3872] H −4.81683(83) −4.82993(93)

A −4.81724(23) −4.83034(33)

The latter was obtained using SNA like in Section 3, but for a perturbed 1D
oscillator with adiabatic frequency ωz,i. It was accomplished with the help of
a Taylor expansion up to z2κmax of effective potentials Uii(z) = Ei(z) +Hii(z)
from Eq. (37) for the harmonic (H) and anharmonic (A) terms, i.e., 2κmax = 2
and 2κmax = 10, respectively,

Uii(z) = Uii(0) + ω2
z,iz

2 +
∑κmax

κ=2
U

(2κ)
i z2κ. (48)

Moreover, in Table 1 we present also the results for the energies (47) in the
crude and adiabatic approximations obtained without and with the diagonal
potential Hii, respectively. One can see that the energies in crude adiabatic
and adiabatic approximations differ only in two last significant figures, i.e., are
the same within the accuracy of ∼ 10−8. One can see from Table 1 that the
adiabatic harmonic (H) diagonal approximation and the crude anharmonic (A)
one provide the upper and lower estimations of the energy values of low-excited
Rydberg states with j = 1, respectively.

Remark 2. In the expansions (47) and (48), the coefficients are calculated using

U
(0)
ii = Uii(0), ω

2
z,i = (d2Uii(z)/dz

2)z=0/2, U
(2κ)
i = (d2κUii(z)/dz

2κ)z=0/((2κ)!).
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In the harmonic approximation ω2
z,i =

∑kmax

k=1 ω
(k)
z,i,E+

∑kmax

k=2 ω
(k)
z,i,H , where ω

(k)
z,i,E =

(d2E
(k)
i (z)/dz2)z=0/2 and ω

(k)
z,i,H = (d2H

(k)
ii (z)/dz2)z=0/2, the leading terms are:

ω
(1)
z,i,E =

5q

2ρ3s
− 3q(2n+ |m|+ 1)

γρ5s
, ω

(2)
z,i,H =

9q2(2n2 + 2n|m|+ 2n+ |m|+1)

ρ10s γ4
,

ω
(2)
z,i,E =

15q

8ρ3s
− 15q(2n+ |m|+ 1)

2γρ5s
+

15q(6n2 + 6n|m|+ 6n+m2 + 3|m|+ 2)

2γ2ρ7s

+
6q2(2n+ |m|+ 1)

γ3ρ8s
.

The substitution of ρs =
√
2|m|/γ into the leading term ω2

z,i ≈ ω
(1)
z,i,E at n = 0

yields ω2
z,i ≈ (q

√
γγ(2|m| − 3))/(4m2

√
2|m|). At q = 1 we obtain the adiabatic

parameter (ωρ/ωz,i=1)
4/3 = |m|γ1/3, where ωρ = γ/2, in agreement with [13].

6 Conclusions

A new efficient method to calculate wave functions and decay rates of high-|m|
Rydberg states of a hydrogen atom in a magnetic field is developed. It is based
on the KM application to parametric eigenvalue problems in cylindrical coor-
dinates. The results are in a good agreement with the calculations executed in
spherical coordinates at fixed |m| > 140 for γ ∼ 2.553·10−5. The elaborated SNA
for calculation of the effective potentials, dipole moment matrix elements, and
the perturbation solutions in analytic form allows us to generate effective ap-
proximations for a finite set of longitudinal equations. This provides benchmark
calculations for the new version KANTBP3 of our earlier program KANTBP2 [1]
announced in [9]. The developed approach is a useful tool for calculating the
threshold phenomena in formation, decay, and ionization of (anti)hydrogen-like
atoms and ions in magneto-optical traps [11,12,13], and channelling of ions in
thin films [4].

The authors thank Prof. V.L. Derbov for valuable discussions.
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