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Abstract. Symbolic-numeric algorithm for solving the boundary-value
problems that describe the model of quantum tunneling of a diatomic
molecule through repulsive barriers is described. Two boundary-value
problems (BVPs) in Cartesian and polar coordinates are formulated and
reduced to 1D BVPs for different systems of coupled second-order dif-
ferential equations (SCSODEs) that contain potential matrix elements
with different asymptotic behavior. A symbolic algorithm implemented
in CAS Maple to calculate the required asymptotic behavior of adiabatic
basis, the potential matrix elements, and the fundamental solutions of the
SCSODEs is elaborated. Comparative analysis of the potential matrix el-
ements calculated in the Cartesian and polar coordinates is presented.
Benchmark calculations of quantum tunneling of a diatomic molecule
with the nuclei coupled by Morse potential through Gaussian barriers
below dissociation threshold are carried out in Cartesian and polar co-
ordinates using the finite element method, and the results are discussed.
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1 Introduction

The study of tunneling of coupled particles through repulsive barriers [11] has
revealed the effect of resonance quantum transparency: when the cluster size
is comparable with the spatial width of the barrier, there are mechanisms that
lead to greater transparency of the barrier. These mechanisms are related to
the formation of the barrier resonances, provided that the potential energy of
the composite system has local minima giving rise to metastable states of the
moving cluster [10]. Currently this effect and its possible applications are a
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subject of extensive study in relation with different quantum-physical problems,
e.g., quantum diffusion of molecules [12], exciton resonance passage through
a quantum heterostructure barrier [8], resonant formation of molecules from
individual atoms [13], controlling the direction of diffusion in solids [1], and
tunnelling of ions and clusters through repulsive barriers [7,6]. For the analysis
of these effects, it is useful to develop model approaches based on approximations
providing a realistic description of interactions between the atoms in the molecule
as well as with the barriers, and to elaborate symbolic-numeric algorithms and
software.

In this paper, we formulate and study the model of a diatomic molecule with
the nuclei coupled via the effective Morse potential that penetrates through a
Gaussian repulsive barrier, using Galerkin and Kantorovich expansion of the
desired solution in Cartesian and polar coordinates, respectively. We formulate
two boundary-value problems (BVP) and use different sets of basis functions to
reduce the original problem to 1D BVPs for different systems of coupled second-
order differential equations (SCSODEs) that contain potential matrix elements
with different asymptotic behavior. In the first case, the potential matrix ele-
ments decrease exponentially, and in the second case, they decrease as inverse
powers of the independent variable. In the second case, we must calculate the
asymptotic behavior of the potential matrix elements to solve the boundary
value problem. For this goal, we develop symbolic algorithms implemented in
CAS Maple to calculate the required asymptotic behavior of the potential ma-
trix elements as well as the fundamental solutions of SCSODEs. We present a
comparative analysis of the potential matrix elements calculated in the Cartesian
and polar coordinates, which are used to solve the quantum tunneling problem
below the dissociation threshold. The necessity for two statements of the prob-
lem follows from the important practical applications of further self-consistent
study of the system above the dissociation threshold, which is convenient in po-
lar coordinates. The effect of quantum transparency, i.e., the resonance behavior
of the transmission coefficient versus the energy of the molecule is analyzed.

The paper is organized as follows. In Sections 2 and 3, we formulate and solve
the BVPs in Cartesian and polar coordinates. In Section 4, the leading terms
of the asymptotic expressions of effective potentials and fundamental solutions
are calculated using the elaborated algorithms in CAS Maple. In Section 5, we
analyze the solution of the quantum tunneling problem below the dissociation
threshold. In Conclusion, the prospects of future studies are discussed.

2 Model I. Quantum Tunneling in Cartesian Coordinates

We consider a 2D model of two identical particles with the mass m coupled by
the pair potential Ṽ (x2−x1) and interacting with the external barrier potentials
Ṽ b(x1) and Ṽ b(x2). Using the change of variables x = x2 − x1, y = x2 + x1,
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Fig. 1. Gaussian-type barrier V b(xi) = D̂ exp
(
−x2

i
2σ

)
, at D̂ =

236.510003758401Å−2 = (m/h̄2)Ṽ0 = (m/h̄2)D, Ṽ0 = D = 1280K,
σ = 5.23 · 10−2Å2, and the two-particle interaction potential, V M (x) =
D̂{exp[−2(x− x̂eq)ρ̂]− 2 exp[−(x− x̂eq)ρ̂]}, x̂eq = 2.47Å, ρ̂ = 2.96812423381643Å−1

y ∈ (−∞,∞), x ∈ (−∞,∞), we arrive at the Schrödinger equation for the wave
function Ψ(x, y) in the s-wave approximation(

− h̄
2

m

1

f1(y)

∂

∂y
f2(y)

∂

∂y
− h̄

2

m

1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ Ṽ (x, y) − Ẽ

)
Ψ(y, x) = 0.(1)

where h̄ is the Planck constant, Ẽ is the total energy of the system, and the
potential function V (x, y) is defined by the formula

Ṽ (x, y) = ṼM (x) + Ṽ b(x1) + Ṽ b(x2). (2)

The equation describing the molecular subsystem has the form(
− h̄

2

m

1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ ṼM (x) − ε̃

)
φ(x) = 0. (3)

The molecular subsystem is assumed to possess the continuous energy spectrum
with the eigenvalues ε̃ ≥ 0 and eigenfunctions φε̃(x) and the discrete energy spec-
trum, consisting of the finite number n of bound states with the eigenfunctions
φj(x) and the eigenvalues ε̃j = −|ε̃j |, j = 1, n.

The asymptotic boundary conditions imposed on the solution for the 2D model
in the s-wave approximation Ψ(y, x) = {Ψj(y, x)}No

j=1 in the asymptotic region
Ωas

j = {(x, y)||x|/|y| 1 1} with the direction v =→ can be written in the obvious
form

Ψj(y → −∞, x) → φj(x)
exp(ıpjy)√
pjf2(y)

+

No∑
l=1

φl(x)
exp(−ıply)√
plf2(y)

Rlj ,

Ψj(y → +∞, x) →
No∑
l=1

φl(x)
exp(ıply)√
plf2(y)

Tlj , (4)

Ψj(y, x→ ±∞) → 0,
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Fig. 2. Sections of the total potential energy V (y;x) = V M (y;x) + V b(y;x) at y =
2.2, 2.3, 2.4, 2.6, 2.8, 3, 3.5, 4 (curves are noted by 1,...,8). The wave functions φj(r) of
the bound states j = 1, 5 (solid lines) and pseudostates j = 6, ..., 12 (dashed lines)
(corresponding energy eigenvalues given in K). The matrix elements Vjj(y) (solid lines)
and Vj1(y) (dashed lines) (in Å−2)

where f1(y) = f2(y) = 1, Rlj(Ẽ) and Tlj(Ẽ) are the reflection and transmission
amplitudes, No ≤ n is the number of open channels, pi is the wave number,

pi =
√

(m/h̄2)(Ẽ − ε̃i) > 0, below dissociation threshold Ẽ < 0 , φj(x) and

εj < 0 at j = 1, n are the eigenfunctions and eigenvalues of the BVP for Eq. (3).
The solution of Eq. (1) is sought for in the form of Galerkin expansion

Ψio(y, x) =

jmax∑
j=1

φj(x)χjio (y). (5)

Here χjio (y) are unknown functions and the orthonormalized basis functions
φj(x) in the interval 0 ≤ x ≤ xmax are defined as eigenfunctions of the BVP for
the equation (

− 1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ VM (x) − εj

)
φj(x) = 0, (6)
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with the boundary and orthonormalization conditions

φj(0) = φj(xmax) = 0,

∫ xmax

0

f3(x)drφi(x)φj(x) = δij , (7)

where f3(x) = f4(x) = 1, V (x) = (m/h̄2)Ṽ (x), εj = (m/h̄2)ε̃j . The desired
set of numerical solutions of this BVP is calculated with the given accuracy by
means of the program ODPEVP [4]. Hence, we calculate the set of n bound states
having the eigenfunctions φj(x) and the eigenvalues εj , j = 1, n and the desired
set of pseudostates with the eigenfunctions φj(x) and the eigenvalues εj ≥ 0,
j = n+1, jmax. The latter approximate the set of continuum eigensolutions ε ≥ 0
of the BVP for Eq. (3).

The set of closed-channel Galerkin equations has the form[
− 1

f1(y)

∂

∂y
f2(y)

∂

∂y
+ εi − E

]
χiio(y) +

jmax∑
j=1

V b
ij(y)χjio (y) = 0. (8)

Thus, the scattering problem (1)–(3) with the asymptotic boundary condi-
tions (4) is reduced to the boundary-value problem for the set of close-coupling
equations in the Galerkin form (8) for f1(y) = f2(y) = 1 with the boundary
conditions at y = ymin and y = ymax [6]:

dF (y)

dy

∣∣∣∣
y=yt

= R(yt)F (yt), t = min,max, (9)

where R(ymin) and R(ymax) are jmax × jmax symmetric matrix function of E,
F (y) = {χio(y)}No

io=1 = {{χjio(y)}jmax

j=1 }No

io=1 is the required jmax × No matrix
solution at the number of open channels No = max

E≥εj
j ≤ jmax. These matrices

and the sought-forNo×No matrices of the reflection and transmission amplitudes
R and T are calculated using the third version of the program KANTBP [3].

In Eq. (8), the effective potentials Vij(y) are expressed by the integrals

V b
ij(y) =

∫ xmax

0

f1(x)dxφi(x)(V b(
x+ y

2
) + V b(

x− y
2

))φj(x). (10)

For example, let us take the parameters of the molecule Be2, namely, the reduced
mass μ = m/2 = 4.506Da, the average distance between the nuclei 2.47Å, the
frequency of molecular vibrations expressed in temperature units h̄ω = 398.72K,
the ground state of molecule 1Σ+

u , the wave number of the order of 277.124cm−1

for the observable excited-to-ground state transitions (we use the relation 1K =
0.69503476 cm−1 from [5]). These values were used to determine the parameters
of the Morse potential ṼM (x) and VM (x) = (m/h̄2)ṼM (x) of Eqs. (3) and (6)

ṼM (x) = D{exp[−2(x− x̂eq)ρ̂] − 2 exp[−(x− x̂eq)ρ̂]}, (11)

where D is the depth of the interaction potential well and ρ̂ describes the poten-
tial well width. The values of D and ρ̂ are determined from the discrete spectrum
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of the BVP (6)–(7) which is approximated by the known discrete spectrum of
Eq. (3)

ε̃j = −D
[
1 − ς(j − 1/2)

]2
, j = 1, ..., n =

[
ς−1+

1

2

]
. (12)

The discrete spectrum eigenfunctions φj(x) of the BVP (6)–(7) are approximated

by the solutions φ̃j(ζ) of equation (3) in the new variable ζ:

d2φ̃j(ζ)

dζ2
+

1

ζ

dφ̃j(ζ)

dζ
+

(
−1

4
+
j + sj − 1/2

ζ
−
s2j
ζ2

)
φ̃j(ζ) = 0,

where sj =
√−εj/ρ̂ =

√
D̂/ρ̂ − j + 1/2 and ζ = 2

√
D̂ exp[−(x − x̂eq)ρ̂]/ρ̂, at

ζ ∈ (0,+∞) corresponding to the extended interval x ∈ (−∞,+∞) and have
the form

φ̃j(ζ)=Nj exp(−ζ
2

)ζsj 1F1(1−j, 2sj+1, ζ), N2
j =

ρ̂Γ (2sj+j)

(j−1)!Γ (2sj)Γ (2sj+1)
. (13)

Having the average size of the molecule and the separation between the energy
levels taken into account, one can parameterize the molecular potential to fit the
observable quantities, namely, D = 1280K, x̂eq = 2.47Å, ρ̂ = 2.968Å−1 is deter-

mined from the condition (ε̃2 − ε̃1)/(2πh̄c) = 277.124 cm−1, ς = ρ̂h̄√
mD

= 0.193

is the dimensionless constant of the problem, and D̂ = (
√
mD
h̄ )2 = (ρ̂/0.193)2 =

(2.968Å−1/0.193)2 = 236.5Å−2. In accordance with (12), the ground state en-
ergy of the molecule Be2 is equal to −ε̃1 = −1044.88K.

The set of pseudostates with the eigenfunctions φj(x) and the eigenvalues
εj ≥ 0, j = n+1, jmax, approximated by the set of continuous spectrum solutions

φ̃k(ζ) with fixed k =
√
ε > 0 that satisfy Eq. (3) written in the new variable ζ,

i.e., the equation

d2φ̃k(ζ)

dζ2
+

1

ζ

dφ̃k(ζ)

dζ
+

(
−1

4
+

√
D̂/ρ̂

ζ
+
s2k
ζ2

)
φ̃k(ζ) = 0.

At fixed sk = k
ρ̂ , these solutions take the form

φ̃k(ζ) =
Nk exp(−ζ/2)

2i
(exp(iw)ζ−ik/ρ̂

1F1(−
√
D

ρ̂
+

1

2
− ik
ρ̂
, 1 − 2ik

ρ̂
, ζ)

− exp(−iw)ζik/ρ̂1F1(−
√
D

ρ̂
+

1

2
+
ik

ρ̂
, 1 +

2ik

ρ̂
, ζ)), (14)

w = arg(Γ (1 +
2ik

ρ̂
)) + arg(Γ (−

√
D

ρ̂
+

1

2
− ik
ρ̂

))).

Asymptotically φ̃ask (x→ ∞) = sin(kx+δ(k)), δ(k) = −kxeq−sk ln(2
√
D̂/ρ̂)+w

corresponds to the scattering phase.
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Fig. 3. Sections of the total potential energy V (ρ;ϕ) = V M (ρ;ϕ) + V b(ρ;ϕ) in polar
coordinates at ρ = 2.2, 2.3, 2.4, 2.6, 2.8, 3, 5, 10 (curves are noted by 1,...,8). Straight
lines are energy levels at ρ = 10.

Since the bond in the molecule Be2 is of the Van der Waals type, one can
consider each constituent atom independently interacting with the external bar-
rier potential. The latter should be chosen to have the height and the width
typical of barriers in a real crystal lattice. Moreover, this potential should be a
smooth function having the second derivative to apply high-accuracy numerical
methods, like the Numerov method or the finite element method, for solving the
BVP for the systems of second-order ordinary differential equations. We choose
the repulsive barrier potential to be Gaussian:

Ṽ b(xi) = Ṽ0 exp

(
− x

2
i

2σ

)
, V b(xi) =

m

h̄2
Ṽ b(xi) = D̂ exp

(
− x

2
i

2σ

)
. (15)

Here the parameters Ṽ0 = 1280K, D̂ = 236.510003758401Å−2 = (m/h̄2)Ṽ0,
σ = 5.23 · 10−2Å2 are determined by the model requirement that the width of
the repulsive potential at the kinetic energy equal to that of the ground state is
1Å, so that the average distance 2.47Å between the atoms of Be is smaller than
the distance 2.56Å between Cu atoms in the plane (111) of the crystal lattice
cell. The potential barrier height Ṽ0 of the order of 200 meV was estimated
following the experimental observation of quantum diffusion of hydrogen atoms
[9]. Fig. 1 illustrates the Gaussian and Morse potentials.

Figure 2 presents the sections of the total potential energy, the calculated
eigenfunctions of the BVP (6) and the effective potentials Vij(y) of Eq. (10)
calculated using these functions. Note that the wave functions φj(x) and the
eigenvalues εj(x) of the bound states j = 1, 5 (solid lines) approximate the known
analytical ones of the BVP for Eq. (3) with the Morse potential (11) with four
and seven significant digits, respectively. The states are localized in the well,
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Fig. 4. Even and odd eigenfunctions of the parametric eigenvalue problem for the fast
subsystem at ρ = 3 and ρ = 10 (corresponding energy eigenvalues given in K)

while the pseudostates j = 6, ..., 12 are approximated with the same accuracy
and localized outside the well. The matrix elements between the bound states
are localized in the vicinity of the barriers and the matrix elements between the
pseudostates are localized beyond the barriers. The matrix elements between the
bound states and pseudostates are small. The solution of the BVP (6), (7) was
performed on the finite-element grids Ωx = {0(Nelem = 800)12}, with Nelem

fourth-order Lagrange elements p = 4 between the nodes, using the program
ODPEVP [4].

3 Model II. Quantum Tunneling in Polar Coordinates

Using the change of variables x = ρ sinϕ, y = ρ cosϕ, we can rewrite Eq. (1)
in polar coordinates (ρ, ϕ) Ωρ,ϕ = (ρ ∈ (0,∞), ϕ ∈ [0, π]) in the dimensionless
form (

−1

ρ

d

dρ
ρ
d

dρ
− 1

ρ2
∂2

∂ϕ2
+ V (ρ, ϕ) − E

)
Ψ(ρ, ϕ) = 0, (16)
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where the potential function V (ρ, ϕ) = VM (ρ, ϕ) + V b(ρ, ϕ) is defined by the
formula in term of potentials (11) and (15)

VM (ρ, ϕ)=V (ρ sinϕ), V b(ρ, ϕ)=V b(ρ
sin(ϕ+π/4)√

2
)+V b(ρ

sin(ϕ−π/4)√
2

).(17)

Sections of the potential function V (ρ, ϕ) at a set of slow variable values ρ
are shown in Fig. 3. One can see that at large ρ, the width of the potential
wells decreases as ρ increases. Therefore, at large ρ, the potential of two-center
problem, symmetric with respect to ϕ = π/2, transforms into two one-center
Morse potentials.

The asymptotic boundary conditions imposed on the solution for the 2D model
in the s-wave approximation Ψ(ρ, ϕ) = {Ψj(ρ, ϕ)}No

j=1 in the asymptotic region
Ωas

j = {(ϕ, ρ)|ϕ/ρ1 1} can be written in the obvious form

Ψ(ρ, ϕ, ϕ0) =

No∑
io=1

Ψjio (ρ, φ)φio (−ϕ0; ρ→ +∞) (18)

Ψio(ρ→ +∞, ϕ) →
√

2

π

No∑
j=1

φj(ϕ; ρ)
[
χ∗jio(ρ)δjio − χjio (ρ)Sjio (E)

]
, (19)

Ψio(ρ, φ→ 0) → 0, Ψio(ρ, φ→ π) → 0, χjio(ρ) =
exp(ı(pjρ− π

4 ))

2
√
pjρ

,

where the angle ϕ0 determines the direction of the incident wave propagation,
in particular, ϕ0 = 0 corresponds to v =→ and ϕ0 = π corresponds to v =←.
Sjio (E) are the elements of the No × No S-matrix, No is the number of open

channels, pi is the wave number, pi =
√

(m/h̄2)(Ẽ − ε̃i(ρ→ +∞)) > 0, below

the dissociation threshold Ẽ < 0 , φi(ϕ, ρ → +∞) =
√
ρφi(x), and εi(ρ →

∞)/ρ2 = ε
(0)
i < 0 are the eigenfunctions localized in the asymptotic region Ωas

j ,
and the eigenvalues of the BVP for Eq. (21).

The solution of Eq. (16) is sought for in the form of Kantorovich expansion

Ψio(ρ, ϕ) =

jmax∑
j=1

φj(ϕ; ρ)χjio (ρ). (20)

Here χjio (ρ) are unknown functions and the orthonormalized basis functions
φj(ϕ; ρ) in the interval ϕ ∈ [0, π] are defined as eigenfunctions of the BVP for
the equation(

− ∂2

∂ϕ2
+ ρ2(VM (ρ sinϕ) + V b(ρ, φ)) − εj(ρ)

)
φj(ϕ; ρ) = 0, (21)

with orthonormalization conditions∫ π

0

dϕφi(ϕ; ρ)φj(ϕ; ρ) = δij . (22)
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Fig. 5. Potential curves εj(ρ) and even diagonal effective potentials Hjj(ρ) and V b
jj(ρ)

vs ρ (Å)

The solution of the BVPs (21), (22) was performed on the finite-element grids
Ωϕ = {ϕ1(Nelem = 800)π/2}, if ϕ3 = (8+ϕxeq)/(ϕρ) > π/4,Ωϕ = {ϕ1(Nelem =
300)ϕ2(Nelem = 60)ϕ4(Nelem = 40)ϕ5(Nelem = 100)π/2} with Nelem fourth-
order Lagrange elements p = 4 between the nodes, using the program ODPEVP
[4]. Here angles ϕ1 = (−3 + ϕxeq)/(ϕρ) and ϕ2 = (4 + ϕxeq)/(ϕρ) are marked
left and right bounds of well (17) and angles ϕ4 = π/4 − 4

√
σ/ρ and ϕ5 =

π/4 + 4
√
σ/ρ are marked left and right bounds of potential barrier (17).

First, let us put V b(ρ, ϕ) = 0 in Eq. (21). In this case, we calculate the set of
n bound states having the eigenfunctions φj(ϕ; ρ) and the eigenvalues εj(ρ) < 0
at j,= 1, 2, ..., n, and the desired set of pseudostates with the eigenfunctions
φj(ϕ; ρ) and the eigenvalues εj(ρ) ≥ 0 at j = n+ 1, ..., jmax. The latter approxi-
mate the set of continuum eigensolutions ε(ρ) ≥ 0 of the BVP for Eq. (3). The
eigenvalues have the following asymptotes: εj(ρ→ ∞)/ρ2 = εj at j,= 1, 2, ..., n
and εj(ρ→ ∞)/ρ2 = (j − n)2/ρ2 +O(1/ρ3) at j = n+ 1, ..., jmax.

The eigenfunctions φj(ϕ; ρ), j = 1, 20 are shown in Fig. 4 at ρ = 3 and ρ = 10.
Taking the above symmetry V (ϕ, ρ) = V (π−ϕ, ρ) of the potential into account,
the eigenfunctions are separated into two subsets, namely, the even φσ=1

j (ϕ; ρ)

and odd φσ=−1
j (ϕ; ρ) ones. The linear combinations

φ→←
j (ϕ; ρ) = (φσ=1

j (ϕ; ρ) ± φσ=−1
j (ϕ; ρ))/

√
2
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Fig. 6. Even effective potentials Qij(ρ) vs ρ (Å)

Fig. 7. Even effective potentials Hij(ρ) vs ρ (Å)

at large ρ have maxima in the vicinity of ϕ = 0 and ϕ = π, respectively, such
that they correspond to the functions presented in Fig. 2. Taking this property
into account, we arrive at the expressions [2]

Ť = (−Š+1 + Š−1)/2, Ř = (−Š+1 − Š−1)/2, (23)

which relate the even Š+1 and odd Š−1 elements of the matrix Š = eıπ/4Seıπ/4

from Eq. (19) to the transmission Ť and reflection Ř amplitudes from Eq. (4).
The set of closed-channel Kantorovich self-adjoint equations has the form[

−1

ρ

d

dρ
ρ
d

dρ
+
εi(ρ)

ρ2
− E

]
χiio (ρ) +

jmax∑
j=1

Wij(ρ)χjio (ρ) = 0. (24)

where the potential matrix operator Wij(ρ) has the form

Wij(ρ) = V b
ij(ρ) +Hji(ρ) +

1

ρ

d

dρ
ρQji(ρ) +Qji(ρ)

d

dρ
. (25)
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Fig. 8. Even effective potentials Vij(ρ) vs ρ (Å)

The potential curves εj(ρ) (see Fig. 5) and the effective potentials Qij(ρ) =
−Qji(ρ), Hij(ρ) = Hji(ρ) and V b

ij(ρ) (see Figs. 6–8) are determined by the
integrals calculated using the program ODPEVP

Qij(ρ) = −
∫ π

0

dϕφi(ϕ; ρ)
dφj(ϕ; ρ)

dρ
,Hij(ρ) =

∫ π

0

dϕ
dφi(ϕ; ρ)

dρ

dφj(ϕ; ρ)

dρ
,(26)

V b
ij(ρ) =

∫ π

0

dϕφi(ϕ; ρ)(V b(ρ
sin(ϕ + π/4)√

2
) + V b(ρ

sin(ϕ− π/4)√
2

))φj(ϕ; ρ).

If we take the potential V b(ρ, φ) in Eq. (21) into account by using the matrix
elements V b

ij(ρ) from Eq.(26), then we put V b
ij(ρ) = 0 in Eq.(25). Thus, the

scattering problem for Eq. (16) with the asymptotic boundary conditions (19)
is reduced to the boundary-value problem for the set of close-coupling equations
in the Kantorovich form (18) with the boundary conditions at ρ = ρmin and
ρ = ρmax [6]:

dF (ρ)

dρ

∣∣∣∣
ρ=ρt

= (R(ρt) + Q(ρt))F (ρt), t = min,max, (27)

where R(ρ) is an unknown jmax × jmax symmetric matrix function, F (ρ) =
{χio(ρ)}No

io=1 = {{χjio(ρ)}jmax

j=1 }No

io=1 is the required jmax × No matrix solution,
and No is the number of open channels, No = max

E≥εj
j ≤ jmax, calculated using

the program KANTBP 3.0 [3].

4 Asymptotic Form of Effective Potentials and Solutions

Algorithm 1. At large ρ, the width of the potential well is decreasing with
increasing ρ (see Fig. 3). This allows linearization of the argument ρ sinϕ−x̂eq →
ρ(ϕ−arcsin(x̂eq/ρ)) at |x−x̂eq|/ρ1 1 in the expression of the potential function
VM (ρ sinϕ) and reformulation of Eq. (21) on the interval ϕ = (0, π)(

− ∂2

∂ϕ2
+ ρ2VM (ρ(ϕ − arcsin(x̂eq/ρ))) − εj(ρ)

)
φj(ϕ; ρ) = 0. (28)
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Table 1. The calculated coefficients Q
(1)
ij H

(2)
ij of expansions (31) (up rows) and cor-

responding numerical values Qij and Hij at ρ = 100(down rows)

Q
(1)
ij

Qij 1 2 3 4 5

1 0 55.852657 –20.662584 9.913235 –4.888752
0 0.55 863277 –0.20 664572 0.09 914008 –0.04 891971

2 –55.852657 0 66.253422 –30.004416 14.557626
–0.55 863277 0 0.66 270932 –0.30 010937 0.14 568965

3 20.662584 –66.253422 0 62.290358 –28.724086
0.20 664572 –0.66 270932 0 0.62 317875 –0.28 751980

4 –9.913235 30.004416 62.290358 0 43.265811
–0.09 914008 0.30 010937 0.62 317875 0 0.43 320993

5 4.888752 –14.557626 28.724086 –43.265811 0
0.04 891971 –0.14 568966 0.28 751983 –0.43 321006 0

H
(2)
ij

Hij 1 2 3 4 5

1 692.635 –364.132 –462.085 397.196 –240.775
0.0692 859 –0.0364 209 –0.0462 371 0.0397 441 –0.0241 084

2 –364.132 1718.621 –873.970 –219.292 253.669
–0.0364 209 0.1719 273 –0.0874 195 –0.0219 721 0.0254 209

3 –462.085 –873.970 2210.843 –1250.672 244.905
–0.0462 371 –0.0874 195 0.2211 927 –0.1251 191 0.0244 755

4 397.196 –219.292 –1250.672 2088.603 –1167.908
0.0397 441 –0.0219 721 –0.1251 191 0.2090 243 –0.1169 414

5 –240.775 253.669 244.905 –1167.908 1209.648
–0.0241 084 0.0254 209 0.0244 755 –0.1169 414 0.1212 568

This equation coincides with Eq. (6), (11), taking the notations

D̂ → D̂ρ2, ρ̂→ ρ̂ρ, x̂eq → arcsin(x̂eq/ρ) (29)

into account.
As a result, we obtain the approximate eigenvalues εj(ρ) that depend on ρ as

a parameter, expressed as

εj(ρ)=ρ2ε
(0)
j , ε

(0)
j =−D̂

[
1−
ρ̂(j − 1

2 )√
D̂

]2
, j = 1, ..., n =

[√
D̂

ρ̂
+

1

2

]
. (30)

These eigenvalues demonstrate correct asymptotic behavior ε̃j(ρ)/ρ
2 = ε̃j de-

scribing the lower part of the discrete spectrum of problem (3). In the consid-
ered case, they correspond to the first five (n = 5) eigenvalues ε̃1, ..., ε̃5. The
corresponding eigenfunctions φj(ϕ; ρ) at j = 1, ..., n, parametrically depending
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on the slow variable ρ via the new independent variable ζ = ζ(ϕ; ρ) =

2ρ
√
D̂ exp[−ρ̂ρ(ϕ− arcsin(x̂eq/ρ))]/ρ̂, ζ ∈ [0,+∞) have the form

φ̃j(ζ; ρ)=Nj(ρ) exp(−ζ
2

)ζsj 1F1(1−j, 2sj+1, ζ),

N2
j (ρ) =

ρρ̂Γ (2sj+j)

(j−1)!Γ (2sj)Γ (2sj+1)
,

where sj =
√
D̂/ρ̂ − j + 1/2 is a positive parameter. In the considered case,

the wave function outside the well at |x − x̂eq |/ρ 3 1 is exponentially decreas-

ing. This makes it possible to integrate the product of functions ψ̃j(ζ(ϕ; ρ); ρ)

and/or ∂ψ̃j(ζ(ϕ; ρ); ρ)/∂ρ|φ=const by ζ in the interval ζ ∈ (0,+∞). The calcu-
lated eigenfunctions with ρ = 10 for j = 1, ..., 5 shown in Fig. 4 qualitatively
agree with the bound states in Fig. 2. The matrix elements between the states
of the lower part of the discrete spectrum i, j = 1, ..., n = 5 with the eigenvalues

εj(ρ)/ρ
2 = ε

(0)
j are expanded in inverse powers of ρ:

Qij(ρ) =

kmax∑
k=1

Q
(2k−1)
ij

ρ2k−1
, Hij(ρ) =

kmax∑
k=1

H
(2k)
ij

ρ2k
, Vij(ρ) = O(exp(−ρ)), (31)

and calculated up to the desired order kmax in CAS MAPLE. As an example, the

calculated coefficients Q
(1)
ij and H

(2)
ij of expansions (31) are presented in Table 1.

For comparison, the numerical values of matrix elements Qij and Hij at ρ = 100
are also given in Table 1. One can see that with the first nonzero coefficients of
these expansions, one gets the numerical approximation of the matrix elements
with three significant digits.

For the states i, j = n+1, ..., jmax with the eigenvalues εj(ρ→ ∞) = (j−n)2+
O(1/ρ) = ε(2) + O(1/ρ) = k2 + O(1/ρ) corresponding to pseudo states of the
BVP (6), (7) we consider the approximation by the eigenfunctions of continuous
spectrum (see Eq. (14) with the notations (29)) reduced to the finite interval
ϕ ∈ (0, π/2) by means of the procedure implemented in CAS MAPLE. The
energy spectrum of even and odd states is evaluated basing on the conditions

dφ̃k(ϕ; ρ)

dϕ

∣∣
ϕ=π/2

= 0 and φ̃k(π/2; ρ) = 0

for even and odd states, respectively. The calculated eigenfunctions at ρ = 10
for i = 6, ..., 10 are in quantitative agreement with the numerical ones shown in
Fig. 4 and in qualitative agreement with pseudo-states displayed in Fig. 2. Thus,
the basis eigenfunctions of Galerkin expansion (5) correspond to the asymptotic
ones for Kantorovich expansion (20) at large values of the parameter ρ.

The diagonal and nondiagonal barrier matrix elements Vij(ρ) shown in Figs.
5 and 8 should be compared with the corresponding ones displayed in Fig. 2.
From this comparison, one can see that the matrix elements Vij(ρ) from (26)
between discrete-spectrum states of BVP (21), (22) and the matrix elements
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Vij(y) from (10) between a discrete spectrum state and a pseudo-state (6), (7)
demonstrate qualitatively similar behavior in the coordinates y and ρ. Since
ρ =

√
x2 + y2 > y, the potentials Vij(ρ) are delocalized with respect to Vij(y).

Due to slowly decreasing kinematic behavior of the potentials Qij(ρ) and Hij(ρ)
as ρ−1 and ρ−2, respectively, compared to the exponentially decreasing Vij(y),
one should take into account the leading terms of their asymptotic expressions
in solving the BVP (24)-(26) generated by the Kantorovich expansion (18) in
the calculation of scattering with five open channels.

Algorithm 2. Evaluation of the Asymptotic Solutions

Input. We calculate the asymptotic solution of the set of N ODEs at high values
of the independent variable ρ3 1[

−1

ρ

d

dρ
ρ
d

dρ
+
εi(ρ)

ρ2
+ Hii(ρ) − 2E

]
χii′(ρ) (32)

=

N∑
j=1,j �=i

[
−Qij(ρ)

d

dρ
− 1

ρ

d

dρ
ρQij(ρ) − Hij(ρ)

]
χji′ (ρ).

The coefficients of Eqs. (32), where Hij = V b
ij +Hij are presented in the form

of the inverse power series (31). In particular, εi(ρ)/ρ
2 = ε

(0)
i + ε

(2)
i /ρ

2.

Step 1. We construct the solution of Eqs. (32) in the form:

χji′ (ρ) =

(
φji′ (ρ) + ψji′ (ρ)

d

dρ

)
Ri′(ρ), (33)

where φji′ (ρ) and ψji′ (ρ) are unknown functions, Ri′(ρ) is a known function.
We choose Ri′(ρ) as solutions of the auxiliary problem treated like an etalon
equation: [

−1

ρ

d

dρ
ρ
d

dρ
+
Z

(2)
i′

ρ2
− p2i′

]
Ri′(ρ) = 0, (34)

where Z
(2)
i′ = ε

(2)
i′ .

Step 2. At this step, we compute the coefficients φi′ (ρ) and ψi′(ρ) of the ex-
pansion (33) in the form of truncated expansion in inverse powers of ρ

(φ
(k′<0)
ji′ =ψ

(k′<0)
ji′ =0):

φji′ (ρ) = φ
(0)
ji′ +

kmax∑
k′=1

φ
(k′)
ji′

ρk′ , ψji′ (ρ) = ψ
(0)
ji′ +

kmax∑
k′=1

ψ
(k′)
ji′

ρk′ . (35)

After the substitution of Eqs.(33)–(35) into Eq. (32) with the use of Eq.(34), we
arrive at the set of recurrence relations at k′ ≤ kmax:(

ε
(0)
i − 2E + p2i′

)
φ
(k′)
ii′ − 2p2i′(k

′ − 1)ψ
(k′−1)
ii′ = −f (k

′)
ii′ , (36)(

ε
(0)
i − 2E + p2i′

)
ψ
(k′)
ii′ + 2(k′ − 1)φ

(k′−1)
ii′ = −g(k

′)
ii′ ,
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where the right-hand sides f
(k)
ii′ and g

(k)
ii′ are defined by the relations

f
(k′)
ii′ = (−(k′ − 2)2 − Z(2)

i′ )φ
(k′−2)
ii′ +

k′∑
k=2

H(k)
ii φ

(k′−k)
ii′

+Z
(2)
i′ (2k′ − 4)ψ

(k′−3)
ii′ +

k′∑
k=1

N∑
j=1,j �=i

(
2Q

(k)
ij Z

(2)
i′ ψ

(k′−k−2)
ji′

−2p2i′Q
(k)
ij ψ

(k′−k)
ji′ +Q

(k)
ij (−2k′ + k + 3)φ

(k′−k−1)
ji′ + H(k)

ij φ
(k′−k)
ji′

)
; (37)

g
(k)
ii′ = (−(k′ − 1)2 − Z(2)

i′ )ψ
(k′−2)
ii′ +

k′∑
k=2

H(k)
ii ψ

(k′−k)
ii′

+

N∑
j=1,j �=i

k′∑
k=1

(
2Q

(k)
ij φ

(k′−k)
ji′ −Q(k)

ij (2k′ − 1 − k)ψ
(k′−k−1)
ji′ + H(k)

ij ψ
(k′−k)
ji′

)

with the initial conditions p2i′ = 2E − ε(0)i′ , φ
(0)
ii′ = δii′ , ψ

(0)
ii′ = 0.

Step 3. Here we calculate the coefficients φ
(k′)
ii′ and ψ

(k′)
ii′ using the step-by-step

procedure of solving Eqs. (36) for 2E �= ε(0)i′ , i �= i′ and k′ = 2, . . . , kmax:

φ
(k′)
ii′ =

[
ε
(0)
i − ε(0)i′

]−1 [
−f (k

′)
ii′ + 2p2i′(k

′ − 1)ψ
(k′−1)
ii′

]
,

ψ
(k′)
ii′ =

[
ε
(0)
i − ε(0)i′

]−1 [
−g(k

′)
ii′ − 2(k′ − 1)φ

(k′−1)
ii′

]
,

φ
(k′−1)
i′i′ = − [2(k′ − 1)]

−1
g
(k)
i′i′ , (38)

ψ
(k′−1)
i′i′ =

[
2(k′ − 1)

(
2E − ε(0)i′

)]−1

f
(k)
i′i′ .

The above described algorithm was implemented in MAPLE and FORTRAN to

calculate the desired φ
(k′)
ii′ and ψ

(k′)
ii′ in the output up to needed order of kmax.

The choice of appropriate values ρmin and ρmax for the constructed expansions
of the linearly independent solutions for pio > 0 is controlled by the fulfilment
of the Wronskian condition to the prescribed precision εWr:

Wr(Q(ρ);χ∗(ρ),χ(ρ)) =
2ı

π
Ioo, (39)

W (Q,χ∗,χ) ≡ ρ
(
χ∗T

(
dχ

dρ
− Qχ

)
− χT

(
dχ∗

dρ
− Qχ∗

))
.

5 Analysis of Quantum Tunneling Problem

The solutions of the BVPs (8)–(15) and (24)–(27) were performed on the finite-
element grids Ωy = {−12(Nelem = 120)12} and Ωρ = {0(Nelem = 1200)120},
respectively, with Nelem fourth-order Lagrange elements p = 4 between the
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Fig. 9. The total probability of penetration from the first channels with the energies
E1 = −1044.879649, E2 = −646.1570935, E3 = −342.7919791, E4 = −134.7843058,
E5 = −22.13407384 (in K) to all five open channels simulated by the Galerkin and
Kantorovich expansions

nodes using the program KANTBP 3.0. The expansion of the desirable solution
(5) over such orthogonal basis at (jmax = 15) with only ten closed channels taken
into account allows the calculation of approximate solutions of the original 2D
problem (1) at E < 0 with the required accuracy. Fig. 9 shows the resonance
behavior of the total penetration probability with the transition from the first
channels having the energies E1 = −1044.879649, E2 = −646.1570935, E3 =
−342.7919791, E4 = −134.7843058, E5 = −22.13407384 (in K) to all five open
channels, simulated using the Galerkin expansion (5) as well as the Katorovich
one (18). The total transmission probability is seen to demonstrate the resonance
behavior, i.e., effect of quantum transparency. Some peaks are high and narrow,
and the positions of peaks corresponding to transitions from different bound
states are similar.

As the energy of the initial excited state increases, the transmission peaks
demonstrate a shift towards higher energies, the set of peak positions keeping
approximately the same as for the transitions from the ground state and the
peaks just replacing each other. For example, the left epure shows that the
positions of the 13th and 14th peaks for transitions from the first state coincide
with the positions of the 1st and 2nd peaks for the transitions from the second
state, while the right epure shows that the positions of the 25th and 26th peaks
for transitions from the first state coincide with the positions of the 13th and
14th peaks for transitions from the second state and with the positions of the
1st and 2nd peaks for the transitions from the third state.

As one can see from Fig. 2, the diagonal matrix elements of the potential
V b
jj(y) have the shapes of double barriers, and the nondiagonal matrix elements
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V b
ij(y) are by more than four times smaller than V b

jj(ρ) and V b
ij(ρ) in Figs. 5 and

8. It means that the position of peaks corresponds to the real part of energy of
the metastable states embedded in the continuum, which are mainly localized
between double barriers.

6 Conclusions

We have demonstrated efficiency of symbolic-numeric algorithms for solving the
boundary-value problems that describe the quantum tunneling of diatomic low-
dimensional model systems, coupled via realistic molecular potentials, through
repulsive barriers below a dissociation threshold. We presented a comparative
analysis of the potential matrix elements and solutions with different asymptotic
behavior calculated in the Cartesian and polar coordinates. The necessity for
two statements of the problem follows from the important practical applications
of further self-consistent study of the system above the dissociation threshold,
which is convenient in polar coordinates. The effect of quantum transparency in
resonance tunneling of diatomic molecules through repulsive potential barriers
was revealed that produced by metastable states imbedded in continuum. The
proposed models and elaborated symbolic-numerical algorithms, the quantum
transparency effect itself, and the developed software can find further appli-
cations in barrier heavy-ion reactions and molecular quantum diffusion. The
authors thank Prof. F.M. Penkov for collaboration. The work was supported
partially by grants RFBR 14-01-00420 and 13-01-00668 and 0602/GF MES RK.
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