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Abstract. Symbolic-numeric algorithms for solving multichannel scat-
tering and eigenvalue problems of the waveguide or tunneling type for
systems of ODEs of the second order with continuous and piecewise con-
tinuous coefficients on an axis are presented. The boundary-value prob-
lems are formulated and discretized using the FEM on a finite interval
with interpolating Hermite polynomials that provide the required con-
tinuity of the derivatives of the approximated solutions. The accuracy
of the approximate solutions of the boundary-value problems, reduced
to a finite interval, is checked by comparing them with the solutions
of the original boundary-value problems on the entire axis, which are
calculated by matching the fundamental solutions of the ODE system.
The efficiency of the algorithms implemented in the computer algebra
system Maple is demonstrated by calculating the resonance states of a
multichannel scattering problem on the axis for clusters of a few identical
particles tunneling through Gaussian barriers.

Keywords: Eigenvalue problem · Multichannel scattering problem ·
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1 Introduction

At present, the physical processes of electromagnetic wave propagation in mul-
tilayered optical waveguide structures and metamaterials [8], near-surface quan-
tum diffusion of molecules and clusters [5,7], and transport of charge carriers
in quantum semiconductor structures [6] are a subject of growing interest and
intense studies. The mathematical formulation of these physical problems leads
to the boundary-value problems (BVPs) for partial differential equations, which
are reduced by the Kantorovich method to a system of ordinary differential
equations (ODEs) of the second order with continuous or piecewise continuous
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potentials in an infinite region (on axis or semiaxis). The asymptotic boundary
conditions depend upon the kind of the considered physical problem, e.g., multi-
channel scattering, eigenvalue problem, or calculation of metastable states.

There is a number of unresolved problems in constructing calculation schemes
and implementing them algorithmically. For example, the conventional calcula-
tion scheme for solving the scattering problem on axis was constructed only for
the same number of open channels in the left-hand and right-hand asymptotic
regions [1]. Generally, the lack of symmetry in the coefficient functions entering
the ODE system with respect to the sign of the independent variable makes it
necessary to construct more general calculation schemes. In the eigenvalue prob-
lem for bound or metastable states of the BVPs with piecewise constant poten-
tials, the desired set of real or complex eigenvalues is conventionally calculated
from the dispersion equation using the method of matching the general solutions
with the unknown coefficients calculated from a system of algebraic equations.
This method is quite a challenge, when the number of equations and/or the
number of discontinuities of the potentials is large [8]. The aim of this paper
is to present the construction of algorithms and programs implemented in the
computer algebra systems Maple that allow progress in solving these problems
and developing high-efficiency symbolic-numeric software.

In earlier papers [2,3], we developed symbolic-numeric algorithms of the finite
element method (FEM) with Hermite interpolation polynomials (IHP) to calcu-
late high-accuracy approximate solutions for a single ODE with piecewise con-
tinuous potentials and reduced boundary conditions on a finite interval. Here
this algorithm is generalized to a set of ODEs and implemented as KANTBP
4M in the computer algebra system Maple [4]. For the multichannel scattering
problem with piecewise constant potentials on the axis, the numerical estimates
of the accuracy of the approximate solution of the BVP reduced to finite interval
are presented using an auxiliary algorithm of matching the fundamental solu-
tions at each boundary between the adjacent axis subintervals. The efficiency of
the algorithms is demonstrated by the example of calculating the resonance and
metastable states of the multichannel scattering problem on the axis for clusters
formed by a few identical particles tunneling through Gaussian barriers.

The paper has the following structure. Section 2 formulates the eigenvalue
problem and the multichannel scattering problem of the waveguide type for a
system of ODEs with continuous and piecewise continuous coefficients on an axis.
Sections 3 and 4 present the algorithms for solving the multichannel scattering
problem and the eigenvalue problem. The comparative analysis of the solutions
of the ODE system with piecewise constant potentials is given. In Sect. 5 the
quantum transmittance induced by metastable states of clusters is analysed.
Finally, the summary is given, and the possible use of algorithms and programs
is outlined.

2 Formulation of the Boundary Value Problems

The symbolic-numeric algorithm realized in Maple is intended for solving the
BVP and the eigenvalue problem for the system of second-order ODEs with
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respect to the unknown functions Φ(z) = (Φ1(z), . . . , ΦN (z))T of the indepen-
dent variable z ∈ (zmin, zmax) numerically using the Finite Element Method:

(D − E I) Φ(i)(z) ≡
(

− 1
fB(z)

I
d

dz
fA(z)

d

dz
+ V(z)

+
fA(z)
fB(z)

Q(z)
d

dz
+

1
fB(z)

d fA(z)Q(z)
dz

− E I
)

Φ(z) = 0. (1)

Here fB(z) > 0 and fA(z) > 0 are continuous or piecewise continuous positive
functions, I is the identity matrix, V(z) is a symmetric matrix, Vij(z) = Vji(z),
and Q(z) is an antisymmetric matrix, Qij(z) = −Qji(z), of the effective poten-
tials having the dimension N×N . The elements of these matrices are continuous
or piecewise continuous real or complex-valued coefficients from the Sobolev
space Hs≥1

2 (Ω), providing the existence of nontrivial solutions subjected to
homogeneous mixed boundary conditions: Dirichlet and/or Neumann, and/or
third-kind at the boundary points of the interval z ∈ {zmin, zmax} at given val-
ues of the elements of the real or complex-valued matrix R(zt) of the dimension
N×N

(I) : Φ(zt) = 0, zt = zmin and/or zmax, (2)

(II) : lim
z→zt

fA(z)
(
I

d

dz
− Q(z)

)
= 0, zt = zmin and/or zmax, (3)

(III) :
(
I

d

dz
− Q(z)

) ∣∣∣∣
z=zt

= R(zt)Φ(zt), zt = zmin and/or zmax. (4)

One needs to note that the boundary conditions (2)–(4) can be applied to both
ends of the domain independently, e.g. the boundary condition (2) to zmin and, at
the same time, the boundary condition (4) to zmax. The solution Φ(z)∈Hs≥1

2 (Ω̄)
of the BPVs (1)–(4) is determined using the Finite Element Method(FEM) by
numerical calculation of stationary points for the symmetric quadratic func-
tional

Ξ(Φ, E, zmin, zmax) ≡
zmax∫

zmin

Φ•(z) (D−E I) Φ(z)dz=Π(Φ, E, zmin, zmax)+C,

C=−fA(zmax)Φ•(zmax)G(zmax)Φ(zmax)+fA(zmin)Φ•(zmin)G(zmin)Φ(zmin),

Π(Φ, E, zmin, zmax)=

zmax∫
zmin

[
fA(z)

dΦ•(z)
dz

dΦ(z)
dz

+fB(z)Φ•(z)V(z)Φ(z) (5)

+fA(z)Φ•(z)Q(z)
dΦ(z)

dz
−fA(z)

dΦ(z)•

dz
Q(z)Φ(z)−fB(z)EΦ•(z)Φ(z)

]
dz,

where G(z) = R(z) − Q(z) is a symmetric matrix of the dimension N×N , and
the symbol • denotes either the transposition T , or the Hermitian conjugation †.

Problem 1. For the multichannel scattering problem on the axis z∈(−∞,+∞)
at fixed energy E ≡ �E, the desired matrix solutions Φ(z) ≡ {Φ(i)

v (z)}N
i=1,
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Φ(i)
v (z) = (Φ(i)

1v (z), . . . , Φ(i)
Nv(z))T (the subscript v takes the values → or ← and

indicates the initial direction of the incident wave) of the BVP for the system
of N ordinary differential equations of the second order (1) in the interval z ∈
(zmin, zmax) are calculated by the code. These matrix solutions are to obey the
homogeneous third-kind boundary conditions (4) at the boundary points of the
interval z ∈ {zmin, zmax} with the asymptotes of the “incident wave + outgoing
waves” type in the open channels i = 1, ..., No:

Φv(z → ±∞) =

⎧⎪⎪⎨
⎪⎪⎩

{
X(+)(z)Tv, z ∈ [zmax,+∞),
X(+)(z) + X(−)(z)Rv, z ∈ (−∞, zmin],

v =→,{
X(−)(z) + X(+)(z)Rv, z ∈ [zmax,+∞),
X(−)(z)Tv, z ∈ (−∞, zmin],

v =←,
(6)

where Tv and Rv are unknown rectangular and square matrices of transmission
and reflection amplitudes, respectively, used to construct the scattering matrix
S of the dimension No×No:

S =
(

R→ T←
T→ R←

)
, (7)

which is symmetric and unitary in the case of real-valued potentials.
For the multichannel scattering problem on a semiaxis z ∈ (zmin,+∞) or

z ∈ (−∞, zmax), the desired matrix solution Φ(z) of the BVP for the system
of N ordinary differential equations of the second order (1) is calculated in the
interval z ∈ (zmin, zmax). This matrix solution is to obey the homogeneous third-
kind boundary conditions (4) at the boundary point zmax or zmin of the interval,
with the asymptotes of the “incident wave + outgoing waves” type in the open
channels i = 1, ..., No:

Φ←(z → +∞) = X(−)(z) + X(+)(z)R←, z ∈ [zmax,+∞) (8)
or Φ→(z → −∞) = X(+)(z) + X(−)(z)R→, z ∈ (−∞, zmin],

and obeying the homogeneous boundary conditions (Dirichlet and/or Neumann,
and/or third-kind (see (2)–(4))) at the boundary point zmin or zmax to construct
the scattering matrix S = R← or S = R→, which is symmetric and unitary in
the case of real-valued potentials.

In the solution of a multichannel scattering problem, the closed channels are
taken into account. In this case, the asymptotic conditions (6), (8) have the form

LR : Φ→(z→ ± ∞) =

{
X(→)

max(z)T→+X(c)
max(z)Tc

→, z→ + ∞,

X(→)
min (z)+X(←)

min (z)R→+X(c)
min(z)Rc

→, z→ − ∞ (9)

RL : Φ←(z→ ± ∞) =

{
X(←)

max(z)+X(→)
max(z)R←+X(c)

max(z)Rc
←, z→ + ∞,

X(←)
min (z)T←+X(c)

min(z)Tc
←, z→ − ∞.

(10)

where X(→)
max(z) = X(+)(z), z ≥ zmax, X(→)

min (z) = X(+)(z), z ≤ zmin, X(←)
min (z) =

X(−)(z), z ≤ zmin in Eq. (9) and X(←)
max(z) = X(−)(z), z ≥ zmax X(→)

max(z) =
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X(+)(z), z ≥ zmax, X(←)
min (z) = X(−)(z), z ≤ zmin in Eq. (10). It is assumed that

the leading terms of the asymptotic solutions X(±)(z) of the BVP at z ≤ zmin

and/or z ≥ zmax have the following form:
in the open channels V t

ioio
<E are oscillating solutions j=1, . . ., N , io=1, . . ., No:

X
(±)
ioj (z) → exp

(±ıpt
io

z
)

√
fA(z)pt

i

δioj , pt
io =

√
fB(zt)
fA(zt)

√
E − V t

ioio
(11)

in the closed channels V t
icic

≥E are exponentially decreasing solutions j=1, . . ., N ,
ic=No+1, . . ., N

X
(c)
icj (z) → 1√

fA(z)
exp

(−pt
ic |z|) δicj , pt

ic =

√
fB(zt)
fA(zt)

√
V t

icic
− E. (12)

These relations are valid if the coefficients of the equations with z ≤ zmin and/or
z ≥ zmax satisfy the following conditions t = min,max:

fA(z)
fB(z)

=
fA(zt)
fB(zt)

+ o(1), Vij(z) = V t
iiδij + o(1), Qt

ij(z) = o(1). (13)

In the procedure of solving the BVP (1)–(4), the corresponding symmetric
quadratic functional (5) is used, where the symbol • denotes the transposition
and the complex conjugation † for real-valued potentials and the transposition T

for complex-valued potentials required for discretisation of the problem using
the FEM.

Problem 2. For the eigenvalue problem the code calculates a set of M energy
eigenvalues E: �E1 ≤ �E2 ≤ . . . ≤ �EM and the corresponding set of eigen-
functions Φ(z) ≡ {Φ(m)(z)}M

m=1, Φ(m)(z) = (Φ(m)
1 (z), . . . , Φ(m)

N (z))T from the
space H2

2 for the system of N ordinary differential equations of the second
order (1) subjected to the homogeneous boundary conditions of the first and/or
second, and/or third kind (see (2)–(4)) at the boundary points of the interval
z ∈ (zmin, zmax). In the case of real-valued potentials, the solutions are subjected
to the normalisation and orthogonality conditions

〈Φ(m)|Φ(m′)〉 =
∫ zmax

zmin
fB(z)(Φ(m)(z))•Φ(m′)(z)dz = δmm′ , (14)

and the corresponding symmetric quadratic functional (5) is used, in which •

denotes the Hermitian conjugation † needed for discretisation of the problem by
the FEM. In the case of complex valued potentials, the solutions are to obey the
normalisation and orthogonality conditions (14), and the corresponding sym-
metric quadratic functional (5) is used, in which • denotes the transposition T .

To solve the bound-state problem on the axis or on the semiaxis, the original
problem is approximated by the BVP (1)–(4) on a finite interval z∈(zmin, zmax)
under the boundary conditions of the third kind (4) with the given matrices
R(zt), which are independent of the unknown eigenvalue E, and the set of
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approximate eigenvalues and eigenfunctions is calculated. If the matrices R(zt)
depend on the unknown eigenvalue E, then R(zt, E) is determined by the known
asymptotic expansion of the desired solution. In this case, the Newtonian iter-
ation scheme is implemented to calculate the approximate eigenfunctions and
eigenvalues. The appropriate initial approximations are chosen from the solu-
tions calculated previously with the boundary conditions independent of E.

Problem 3. For the calculation of metastable states with unknown complex
eigenvalues E, the program solves the BVP for the set of equations (1) on a
finite interval with the homogeneous conditions of the third kind (4), depend-
ing on the unknown eigenvalue E, using the appropriate symmetric quadratic
functional (5). In this case, the symbol • denotes the transposition T , which
is necessary for the discretisation of the problem in the FEM. In contrast to
the scattering problem, the asymptotic solutions for metastable states contain
only outgoing waves, considered in the sufficiently large, but finite interval of
the spatial variable. For the metastable states on the axis z ∈ (−∞,+∞), the
eigenfunctions obey the boundary conditions of the third kind (4), where the
matrix R(zt) = diag(R(zt)) depends on the desired complex energy eigenvalue
E ≡ Em = �Em + ı�Em, �Em < 0 and is given by [9]

Rioio(z
t, Em) = ±

√
fB(zt)/fA(zt)

√
V t

ioio
− Em, t = min,max, (15)

where + or − corresponds to t = max or t = min, respectively, because the
asymptotic solution of this problem contains only outgoing waves in the open
channels V t

ioio
< �E, io = 1, . . . , No, while in the closed channels, there are only

decay waves V t
icic

> �E, ic = No + 1, . . . , N

Ricic(z
t, Em) = ∓

√
fB(zt)/fA(zt)

√
Em − V t

icic
, t = min,max, (16)

where + or − corresponds to t = min or t = max, respectively.
For the metastable states on the semiaxis z ∈ (zmin,+∞) or z ∈ (−∞, zmax),

the solution is to obey the boundary condition (4) at the boundary point zmax

or zmin and the boundary condition of the first, second, or third kind (see (2),
(3) or (4), respectively) at the boundary point zmin or zmax.

In this case, the eigenfunctions obey the orthogonality and normalisation
conditions

(Φ(m′)|Φ(m))=(Em−Em′)

⎡
⎣

zmax∫
zmin

(Φ(m′)(z))T Φ(m)(z)fB(z)dz−δm′m

⎤
⎦+Cm′m=0, (17)

Cm′m=
∑

t=min,max

∓fA(zt)(Φ(m′)(zt))T [Rioio(z
t,Em)−Rioio(z

t,Em′)−2Q(zt)]Φ(m)(zt),

where + or − corresponds to t = min or t = max, respectively. Note that the
orthogonality condition is derived by calculating the difference of two function-
als (5) with the substitution of eigenvalues Em, Em′ , eigenfunctions Φ(m)(z),
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Φ(m′)(z), and elements of matrices R(zmax, Em), R(zmin, Em′) from Eq. (16).
The calculation of the complex eigenvalues and eigenfunctions of metastable
states is performed using the Newton iteration method. The appropriate ini-
tial approximations are chosen from the solutions calculated previously with the
boundary conditions at fixed E.

3 The Algorithm for Solving the Scattering Problem

We consider a discrete representation of the solutions Φ(z) of the problem (1)–(4)
reduced by means of the FEM to the variational functional (5), on the finite-
element grid, Ωp

hj(z)
[zmin, zmax] = [z0 = zmin, zl, l = 1, . . . , np − 1, znp = zmax],

with the mesh points zl = zjp = zmax
j ≡ zmin

j+1 of the grid Ωhj(z)[zmin, zmax] and

the nodal points zl = z(j−1)p+r, r = 0, . . . , p of the sub-grids Ω
hj(z)
j [zmin

j , zmax
j ],

j = 1, . . . , n.
The solution Φh(z) ≈ Φ(z) is sought in the form of a finite sum over the basis

of local functions Ng
μ(z) at each nodal point z = zl of the grid Ωp

hj(z)
[zmin, zmax]

of the interval z ∈ Δ = [zmin, zmax] (see [2]):

Φh(z) =
L−1∑
μ=0

Φh
μNg

μ(z), Φh(zl) = Φh
lκmax ,

dκΦh(z)
dzκ

∣∣∣∣∣
z=zl

= Φh
lκmax+κ, (18)

where L = (pn+1)κmax is the number of basis functions and Φh
μ (matrices of the

dimension N×1) at μ = lκmax +κ are the nodal values of the κ-th derivatives of
the function Φh(z) (including the function Φh(z) itself for κ=0) at the points zl.

The substitution of the expansion (18) into the variational functional (5)
reduces the solution of the problem (1)–(4) to the solution of the algebraic
problem with respect to the matrix functions, Φh ≡ ((χ(1))h, . . . , (χ(No))h)
at E = Eh,

GpΦh ≡ (Ap − Eh Bp)Φh = MΦh, M = Mmax − Mmin, (19)

with the matrices Ap and Bp of the dimension NL×NL obtained by integration
in the variational functional (5) (see, e.g., [2]). The matrices Mmax and Mmin

arise due to the approximation of the boundary conditions of the third kind at
the left-hand and right-hand boundaries of the interval z ∈ (zmin, zmax)

dΦh(z)
dz

= (G(z) + Q(z))Φh(z), z = zmin, z = zmax. (20)

The elements of the matrix M = {Ml′1,l′2}NL
l′1,l′2=1 equal zero except those, for

which both indexes l′1 = (l1 −1)N +ν1, l′2 = (l2 −1)N +ν2 belong to the interval
1, ..., N or to the interval (L − κmax)N + 1, ..., (L − κmax)N + N , where N is the
number of equations (1) and L is the number of basis functions Ng

μ(z) in the
expansion of the desired solutions (18) in the interval z ∈ Δ = [zmin, zmax].
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Input. We present the matrix Φh of the dimension NL×1 in the form of three
submatrices: matrix Φa of the dimension N×1, such that (Φa)i1 = (Φh)i1,
matrix Φc of the dimension N×1, such that (Φc)i1 = (Φh)(L−κmax)N+i,1, and the
matrix Φb of the dimension (L − 2)N×1 is derived by omitting the submatrices
Φa and Φc from the solution matrix. Then the matrices in l.h.s. and r.h.s. of
Eq. (19) take the form

(Ap − E Bp) =

⎛
⎝Gp

aa Gp
ab 0

Gp
ba Gp

bb Gp
bc

0 Gp
cb Gp

cc

⎞
⎠ , M =

⎛
⎝−Gp

min 0 0
0 0 0
0 0 Gp

max

⎞
⎠ . (21)

The matrices Gp
bb of the dimension (L− 2)N×(L− 2)N , Gp

ba and Gp
bc of the

dimension (L−2)N×N , Gp
ab and Gp

cb of the dimension N×(L−2)N , Gp
aa, Gp

cc,
of the dimension N×N are determined from the finite element approximation
and considered as known. The existence of zero submatrices is related to the
band structure of the matrix Gp from Eq. (19). The matrices Gmin and Gmax

of the dimension N×N correspond to nonzero blocks of the matrix M, and
the matrices Φa and Φc of the dimension N×1, are given by the asymptotic
values (9), (10) and will be considered below, the matrix Φb of the dimension
(L−2)N×1 is derived by omitting the submatrices Φa and Φc from the solution
matrix. We rewrite problem (19) in the following form

Gp
aaΦa + Gp

abΦb = −Gp
minΦa,

Gp
baΦa + Gp

bbΦb + Gp
bcΦc = 0, (22)

Gp
cbΦb + Gp

ccΦc = Gp
maxΦc.

Step 1. Let us eliminate Φb from the problem. From the second equation, the
explicit expression follows

Φb = −(Gp
bb)

−1Gp
baΦa − (Gp

bb)
−1Gp

bcΦc, (23)

however, it requires the inversion of a large-dimension matrix. To avoid it, we
consider the auxiliary problems

Gp
bbF ba = Gp

ba, Gp
bbF bc = Gp

bc. (24)

Since Gp
bb is a non-degenerate matrix, each of the matrix equations (24) has a

unique solution

F ba = (Gp
bb)

−1Gp
ba, F bc = (Gp

bb)
−1Gp

bc. (25)

Step 2. Then for the function Φb we have the expression

Φb = −F baΦa − F bcΦc, (26)

and the problem (19) with the matrix of the dimension NL×NL is reduced to
two algebraic problems with the matrices of the dimension N×N

Yp
aaΦa + Yp

acΦc = −Gp
minΦa, (27)

Yp
caΦa + Yp

ccΦc = Gp
maxΦc,
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where Yp
∗∗ is expressed in terms of the solutions F ba and F bc of the prob-

lems (24)

Yp
aa = Gp

aa − Gp
abF ba, Yp

ac = −Gp
abF bc, (28)

Yp
ca = −Gp

cbF ba, Yp
cc = Gp

cc − Gp
cbF bc.

Note that the system of equations (28) is solved at step 4 for each of NL
o + NR

o

incident waves.

Step 3. Consider the solution (9) for the incident wave travelling from left to
right (LR) and the solution (10) for the incident wave travelling from right to
left (RL). Φ→(z→±∞) and Φ←(z→±∞) are matrix solutions of the dimension
1×NL

o and 1×NR
o . In other words, there are NL

o linearly independent solu-
tions, describing the incident wave traveling from left to right and NR

o linearly
independent solution, describing the incident wave traveling from right to left,
respectively. The matrices X(→)

min (z), X(←)
min (z) of the dimension 1×NL

o and the
matrices X(→)

max(z), X(←)
max(z) of the dimension 1×NR

o represent the fundamental
asymptotic solution at the left and right boundaries of the interval, describing the
motion of the wave in the arrow direction. The matrices X(c)

min(z) of the dimen-
sion 1×(N − NL

o ) and X(c)
max(z) of the dimension 1×(N − NR

o ) are fundamental
asymptotically decreasing solutions at the left and right boundaries of the inter-
val. The elements of these matrices are column matrices of the dimension N×1.
It follows that the matrices of reflection amplitudes R→ and R← are square
matrices of the dimension NL

o ×NL
o and NR

o ×NR
o , while the matrices of trans-

mission amplitudes T→, T← are rectangular matrices of the dimension NR
o ×NL

o

and NL
o ×NR

o . The auxiliary matrices Rc
→, Tc

→, Rc
← and Tc

← are rectangular
matrices of the dimension (N−NL

o )×NL
o , (N−NR

o )×NL
o , (N−NR

o )×NR
o and

(N−NL
o )×NR

o . Then the components of the wave functions (9) and (10) take
the form for LR and RL waves:

(Φa)ioiLo
=X

(→)

ioiLo
(zmin)+

NL
o∑

i′
o=1

X
(←)
ioi′

o
(zmin)R(→)

i′
oiLo

+
N−NL

o∑
i′
c=1

X
(c)
ioi′

c
(zmin)R(c→)

i′
ciLo

,

(Φc)ioiLo
=

NR
o∑

i′
o=1

X
(←)
ioi′

o
(zmax)T (→)

i′
oiLo

+
N−NR

o∑
i′
c=1

X
(c)
ioi′

c
(zmax)T (c→)

i′
ciLo

,

(Φa)ioiRo
=

NL
o∑

i′
o=1

X
(→)
ioi′

o
(zmin)T (←)

i′
oiRo

+
N−NL

o∑
i′
c=1

X
(c)
ioi′

c
(zmin)T (c←)

i′
ciRo

, (29)

(Φc)ioiRo
=X

(←)

ioiRo
(zmax)+

NR
o∑

i′
o=1

X
(→)
ioi′

o
(zmax)R(←)

i′
oiRo

+
N−NR

o∑
i′
c=1

X
(c)
ioi′

c
(zmax)R(c←)

i′
ciRo

,

where the asymptotic solutions X(→)(z)≡X(+)(z), X(←)(z)≡X(−)(z) of the BVP
at z≤zmin and/or z≥zmax are given by Eqs. (11)–(12). RL: The products in
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the r.h.s. of Eq. (27) in accordance with (4) and (20) are calculated via the

first derivatives of the asymptotic solutions X ′(∗)
∗∗ (zt) = dX(∗)

∗∗ (z)
dz

∣∣∣
z=zt

for LR:

(Gp
minΦa)ioiLo

, (Gp
maxΦc)ioiLo

and RL: (Gp
minΦa)ioiRo

, (Gp
maxΦc)ioiRo

.

Step 4. Substituting the expressions (29) and their derivatives into Eq. (27), we
form and solve the system of inhomogeneous equations for LR at iLo = 1, ..., NL

o

NL
o∑

i′
o=1

⎛
⎝X ′(←)

ioi′
o
(zmin) +

N∑
jo=1

(Yp
aa)iojoX

(←)
joi′

o
(zmin)

⎞
⎠ R

(→)

i′
oiLo

+
N−NL

o∑
i′
c=1

⎛
⎝X ′(c)

ioi′
c
(zmin) +

N∑
jo=1

(Yp
aa)iojoX

(c)
joi′

c
(zmin)

⎞
⎠ R

(c→)

i′
ciLo

+
NR

o∑
i′
o=1

N∑
jo=1

(Yp
ac)iojoX

(←)
joi′

o
(zmax)T (→)

i′
oiLo

+
N−NR

o∑
i′
c=1

N∑
jo=1

(Yp
ac)iojoX

(c)
joi′

c
(zmax)T (c→)

i′
ciLo

= −X ′(→)

ioiLo
(zmin) −

N∑
jo=1

(Yp
aa)iojoX

(→)

joiLo
(zmin),

+
NL

o∑
i′
o=1

N∑
jo=1

(Yp
ca)iojoX

(←)
joi′

o
(zmin)R(→)

i′
oiLo

+
N−NL

o∑
i′
c=1

N∑
jo=1

(Yp
ca)iojoX

(c)
joi′

c
(zmin)R(c→)

i′
ciLo

+
NR

o∑
i′
o=1

⎛
⎝−X ′(←)

ioi′
o
(zmax) +

N∑
jo=1

(Yp
cc)iojoX

(←)
joi′

o
(zmax)

⎞
⎠ T

(→)

i′
oiLo

+
N−NR

o∑
i′
c=1

⎛
⎝−X ′(c)

ioi′
c
(zmax) +

N∑
jo=1

(Yp
cc)iojoX

(c)
joi′

c
(zmax)

⎞
⎠ T

(c→)

i′
ciLo

)

= −
N∑

jo=1

(Yp
ca)iojoX

(→)

joiLo
(zmin),

or a similar one for RL at iRo = 1, ..., NR
o that has a unique solution.

Remark. When solving the problem on a semiaxis with the Neumann or the
third-kind boundary conditions at the boundary zmin or zmax of the semiaxis, the
role of unknowns is played by the elements of the matrices Φa or Φc, instead of R
and T, while for the Dirichlet boundary conditions, we have Φa = 0 or Φc = 0,
so that in this case the corresponding equation is not taken into account.

4 The BVP with Piecewise Constant Potentials

The accuracy of the approximate solutions of the reduced BVPs on the finite
interval calculated by FEM is checked by comparison with the solutions of the
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BVPs for the system of Eq. (1) at fA(z) = fA, fB(z) = fB , Qij(z) = 0 on the
entire axis with the matrix of piecewise constant potentials

Vij(z) = Vji(z) = {Vij;1, z ≤ z1; . . . ;Vij;k−1, z ≤ zk−1;Vij;k, z > zk−1}. (30)

Algorithm for solving the BVP by matching the fundamental solu-
tions. In the algorithm, the following series of steps are implemented in two
cycles io = iLo = 1, ..., NL

o and io = iRo = 1, ..., NR
o :

Step 1. In the intervals z ∈ (−∞, z1), z ∈ (zk−1,+∞), one of the asymp-
totic states of the multichannel scattering problem is constructed, Φ0 ≡ Φa =
{(Φa)i ≡ (Φa)iiLo

or (Φa)iiRo
} and Φk ≡ Φc = {(Φc)i ≡ (Φc)iiLo

or (Φc)iiRo
}, cor-

responding to Eq. (9) or (10), its explicit form given in Eq. (29).

Step 2. In the cycle by l for each of the internal subintervals z ∈ [zl−1, zl],
l = 2, . . . , k−1, the general solution is calculated that depends on 2N parameters
C2N(l−2)+1, . . . , C2N(l−1), Φl = Xl;1C2N(l−2)+1+...+Xl;2NC2N(l−1), of the ODE
system (1) with constant coefficients Vij;l from (30), the spectral parameter E
being fixed, and the first derivative of the obtained solution is calculated.

Step 3: In the cycle by l, the differences Φl(zl) − Φl−1(zl) and (d/dz)(Φl(z) −
Φl−1(z))|zl

, l = 1, . . . , k are calculated and set equal to zero. As a result, the
system of 2N(k−1) inhomogeneous equations with respect to 2N(k−1) unknown
expansion coefficients C1, . . . , C2N(k−2), as well as the corresponding elements of
the matrices T∗, R∗ listed in Eq. (29) are obtained and solved.

Remark. For solving the bound state problem or calculating metastable states,
the algorithm is modified as follows.

Fig. 1. A screenshot of the FEM algorithm run showing the components of five solu-
tions Φh

m(z), m = 1, ..., 5, of the bound state problem.
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Fig. 2. The screenshot of the FEM algorithm run, showing the real (solid lines) and
the imaginary (dotted lines) components of the solution of the scattering problem for
the wave incident from the left, LR(1), and the waves incident from the right from the
first, RL(1), and the second RL(2) open channels.

1. The sequence of steps 1–3 is performed only once.
2. At Step 1, instead of the asymptotic expressions (9) and (10), one uses

Φ(z → ±∞) =
{

X(c)
max(z)C+, z → +∞, X(c)

min(z)C−, z → −∞,
}

(31)

where C± is a column matrix with the dimension 1×N , and X(c)
∗ (z) is the

specially selected fundamental solution that for bound states should decrease
exponentially at z → ±∞, while for metastable states must describe diverging
waves in open channels and decrease exponentially in closed channels.

3. In step 3, a system of 2N(k − 1) linear homogeneous algebraic equations for
2N(k − 1) + 1 unknown coefficients C1, . . . , C2N(k−2) and the corresponding
elements of the matrices C±, which is nonlinear and transcendent with respect
to the spectral parameter E, is obtained and solved.

Benchmark Calculations. We solved the BVP for the system of equations (1)
with the effective potentials (30) and the third-kind boundary conditions (4) on
a finite interval, which is determined from the asymptotic solutions (9), (10),
(11), (12) of the multichannel scattering problem on the axis

V(z)=

⎧
⎨

⎩

⎛

⎝
0 0 0
0 5 0
0 0 10

⎞

⎠ , z < −2;

⎛

⎝
−5 4 4
4 0 4
4 4 10

⎞

⎠ , −2 ≤ z ≤ 2;

⎛

⎝
0 0 0
0 0 0
0 0 10

⎞

⎠ , z > 2

⎫
⎬

⎭
.

For solving the BVP the uniform finite-element grid zmin= − 6, hj=1,...,30=0.4,
zmax=6 with seventh-order Hermitian elements (κmax, p)=(2, 3), p′=7 preserving
the continuity of the first derivative in the approximate solutions was chosen.
The calculations were performed with 16 significant digits. Given E=3.8, for the
wave incident from the left there is one open channel, NL

o =1, and for the wave
incident from the right, there are two open channels, NR

o =2. The comparison
of FEM results with those of solving the system of algebraic equations yields
the error estimate accuracy = San − Smatr ∼ 10−13. for the computation of
the square matrices of reflection amplitudes R→ and R←, having the dimension
1×1 and 2×2, and the rectangular matrices of transmission amplitudes T→ and
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Fig. 3. The total probability |T|211 of transmission through the repulsive Gaussian
barrier versus the energy E (in oscillator units) at σ=1/10, α=20 for the cluster of
three (n=3, left panel) and four (n=4, right panel) identical particles initially being in
the in the ground symmetric (solid lines) and antisymmetric (dashed lines) state.

T← having the dimension 2×1 and 1×2. With the error of the same order, the
conditions of symmetry, S − ST and S-matrix unitarity SSdag − I are satisfied.
For five eigenvalues, the differences δEm = |Eh

m − Eex
m | between the results of

two above methods appeared to be of the order of 10−9 in the calculations
performed with 12 significant figures. The components Φm of the bound state
solutions and the solutions Φv of the scattering problem on a finite-element grid
are shown in Figs. 1 and 2. The running time for this example using KANTBP
4M implemented in Maple 16 is 232 s for the PC Intel Pentium CPU 1.50 GHz
4 GB 64 bit Windows 8.

5 Quantum Transmittance Induced by Metastable States

In Ref. [5], the problem of tunneling of a cluster of n identical particles, coupled
by pair harmonic oscillator potentials, through the Gaussian barriers V (xi) =
α/(2πσ2)1/2 exp(−x2

i /σ2), i = 1, ..., n, with averaging over the basis of the
cluster eigenfunctions was formulated as a multichannel scattering problem for
the system of ODEs (1) with the center-of-mass independent variable z = (x1 +
... + xn)/

√
n and the boundary conditions (4) that follow from the asymptotic

conditions (6) at fA(z) = 1, fB(z) = 1, Qij(z) = 0. The elements Vij(z) of the
effective potentials matrix were calculated analytically and plotted in [5].

Let us apply the technique developed in the present paper and implemented
as KANTBP 4M to the tunneling problem for the cluster comprising three and
four identical particles in symmetric (S) and antisymmetric (A) states.

At first we solve the scattering problem with fixed energy E = �E. The solu-
tions of the BVP were discretised on the finite-element grid Ωh = (−11(11)11)
for n = 3 and Ωh = (−13(13)13) for n = 4, with the number of Lagrange
elements of the twelfth order p′ = 12 shown in brackets. The boundary points
of the interval zt were chosen in accordance with the required accuracy of the
approximate solution max{|Vij(zt)/α|; i, j = 1, ..., jmax} < 10−8. The number N
of the cluster basis functions in the expansion of solutions of the original problem
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[5] and, correspondingly, the number of equations for S-states for n = 3, 4 was
chosen equal to N = 21, 39 and for A-states N = 16, 15. The results of the calcu-
lations for three and four particles are presented in Fig. 3. The resonance values
of energy E = E

S(A)
l and the corresponding maximal values of the transmission

coefficient |T|211 clearly visible in Fig. 3 are presented in Table 1.

Table 1. The first resonance energy values E
S(A)
l , at which the maximum of the

transmission coefficient |T|211 is achieved, and the complex energy eigenvalues EM
m =

�EM
m + ı�EM

m of the metastable states for symmetric S (antisymmetric A) states of
n = 3 and n = 4 particles at σ = 1/10, α = 20.

l ES
l |T |211 m EM

m

1 8.175 0.775 1 8.175−ı5.1(–3)
8.306 0.737 2 8.306−ı5.0(–3)

2 11.111 0.495 3 11.110−ı5.6(–3)
11.229 0.476 4 11.229−ı5.5(–3)

3 12.598 0.013 5 12.598−ı6.4(–3)
6 12.599−ı6.3(–3)

4 13.929 0.331 7 13.929−ı4.5(–3)
14.003 0.328 8 14.004−ı4.6(–3)

5 14.841 0.014 9 14.841−ı3.5(–3)
14.877 0.008 10 14.878−ı3.5(–3)

l EA
l |T |211 m EM

m

1 11.551 1.000 1 11.551−ı1.8(–3)
11.610 1.000 2 11.610−ı2.0(–3)

2 14.459 0.553 3 14.459−ı2.9(–3)
14.564 0.480 4 14.565−ı2.7(–3)

l ES
l |T |211 m EM

m

1 10.121 0.321 1 10.119−ı4.0(–3)
2 10.123−ı4.0(–3)

2 11.896 0.349 3 11.896−ı6.3(–5)

3 12.713 0.538 4 12.710−ı4.5(–3)
12.717 0.538 5 12.720−ı4.5(–3)

4 14.858 0.017 6 14.857−ı4.3(–3)
7 14.859−ı4.3(–3)

5 15.188 0.476 8 15.185−ı3.9(–3)
9 15.191−ı3.9(–3)

6 15.405 0.160 10 15.405−ı1.4(–5)

7 15.863 0.389 11 15.863−ı5.3(–5)

l EA
l |T |211 m EM

m

1 19.224 0.177 1 19.224−ı4.0(–4)
2 19.224−ı4.0(–4)

2 20.029 0.970 3 20.029−ı3.3(–7)

For metastable states, the eigenfunctions obey the boundary conditions of the
third kind (4), where the matrices R(zt) = diag(R(zt)) depend on the desired
complex energy eigenvalue, E ≡ EM

m = �EM
m + ı�EM

m , �EM
m < 0, are given by

(15), (16), since the asymptotic solutions of this problem contain only outgoing
waves in the open channels. In this case, the eigenfunctions obey the orthogonal-
ity and normalisation conditions (17). The discretisation of the solutions of the
BVP was implemented on the above finite-element grid. The algebraic eigenvalue
problem was solved using the Newton method with the optimal choice of the
iteration step [3] using the additional condition Ξh(Φ(m), Em, zmin, zmax) = 0
obtained as a result of the discretisation of the functional (5) and providing
the upper estimates for the approximate eigenvalue. As the initial approxima-
tion we used the real eigenvalues and the eigenfunctions orthonormalised by the
condition that the expression in square brackets in Eq. (17) is zero. They were
found as a result of solving the bound-state problem with the functional (5) at
R(zt) = 0 on the grid Ωh = (−5(5)5) for n = 3 and n = 4. The results of the
calculations performed with the variational functional (5), (17), defined in the
interval [zmin, zmax], for the complex values of energy of the metastable states
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EM
m ≡ Em = �EM

m + ı�EM
m for n = 3 and n = 4 are presented in Table 1.

The resonance values of energy corresponding to these metastable states are
responsible for the peaks of the transmission coefficient, i.e., the quantum trans-
parency of the barriers. The position of peaks presented in Fig. 3 is seen to be
in quantitative agreement with the real part �EM

m , and the half-width of the
|T|211(El) peaks agrees with the imaginary part Γ = −2�EM

m of the complex
energy eigenvalues EM

m = �EM
m + ı�EM

m of the metastable states by the order
of magnitude.

6 Summary and Perspectives

The developed approach, algorithms, and programs can be adapted and applied
to study the waveguide modes in a planar optical waveguide, the quantum dif-
fusion of molecules and micro-clusters through surfaces, and the fragmentation
mechanism in producing very neutron-rich light nuclei.

The work was partially supported by the Russian Foundation for Basic
Research, grant No. 14-01-00420, and the Bogoliubov-Infeld JINR-Poland
program.
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