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A B S T R A C T   

The relativistic Dirac equation for a bound electron in the field of two fixed positive charges is revisited. In 
contrast to the one center case this three dimensional equation is separable only partially around the azimuthal 
angle φ, because of the commutation of the Dirac Hamiltonian only with the z component of the total angular 
momentum Jz. In this work we determine the variational exact solution of this two center problem using a basis 
constructed by linear combinations of relativistic Slater type spinor wave functions with non integer powers of 
the radii r1 and r2 on the two centers. We present in some detail the determination of the two center integrations 
involved. The solutions are obtained by a minimax procedure, that we have developed with a new iterative 
scheme. We use independent large and small components of the Dirac spinor. This permits us to take control of 
the spurious solutions, and gives us the possibility to avoid them by the appropriate choice of the wave function 
parameters. We investigate the behavior of the electron in its 1sσg level of the diatomic homo-nuclear systems 

A(2Z− 1)+
2 , where A represents the heavy element and Z its atomic number. In the case of heavy ions we study the 

dependance of the electron energy on the internuclear distance, this gives us an indication for the conditions of 
atomic collapse, which can induce electron-positron pair production. Our approach has the advantage of needing 
small basis sets for a relative error of the of 10− 7 − 10− 8. It can also be extended easily to the excited level such as 
the 1sσu level.   

1. Introduction 

The relativistic Dirac equation for an electron in the field of two fixed 
positive charges is one of the basic problems of quantum mechanics. In 
contrast to the non relativistic case, which is separable in prolate 
spheroidal coordinates [1,2], owing to the existence of the Coulson 
constant of separation, which was obtained by Coulson [3] from the 
Runge-Lenz vector, the relativistic case is not separable. An equivalent 
relativistic constant of separation could not be obtained from the Lip
mann operator [4], which is the relativistic analogue of the Runge-Lenz 
vector. The only possible separation is that of the azimuthal angle φ 
which results from the commutation of the two-center Dirac Hamilto
nian with the z component of the total angular momentum Jz = Lz +

σz/2. 

Finding a reliable solution of the two-center Dirac equation is 
essential in many domains of relativistic studies of diatomic systems. 
The solutions of the Dirac equation characterize, in contrast to the 
relativistic Schrödinger or the Pauli equations, positive and negative 
energy states, which can be observed in collisions of heavy nuclei [5]. 
The spin and other relativistic aspects are also characterized by the so
lutions of the Dirac equation. The energy value ER = Ee +mec2 of an 
electron described by a Dirac hamiltonian, where Ee represent the 
binding or the kinetic energy of the electron, can be found in one of the 
following domains. It can be in the negative energy continuum 
ER < − mec2, in the the bound energy domain − mec2 < ER < mec2 and in 
the free electron energy region ER > mec2. As Ee of the diatomic system 
depends on the nuclear charges and the internuclear distance between 
the two nuclei, it will decrease, when the two nuclei are brought near to 
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each other in ion-ion collisions. In some extreme cases, when the charges 
of the nuclei are high enough, the energy can arrive to the negative 
continuum region. In this situation the system goes into a resonant state, 
where an electron-positron pair is produced, by the passage of the 
electron to the positive energy continuum [6,7]. 

This unusual atomic collapse situation can also be obtained, when 
highly charged impurities are introduced in graphene. Although our 
main aim in this work is to create a numerical tool to calculate reliable 
solutions for the Dirac equation of an individual electron in the field of 
two fixed positive charges, it would be useful to mention other relativ
istic studies concerned with atomic collapse. These studies employ two 
dimensional Dirac equation. In [8] the supercritical instability in gra
phene is studied when two charged impurities are introduced in it. In [9] 
the electric dipole effects for massive Dirac fermions in graphene and 
related materials is analyzed. In [10] a variational method is applied for 
the determination of the critical distance between two Coulomb centers 
in Graphene. In [11,12] the Dirac equation for quasiparticles in gapped 
graphene with two oppositely charged impurities is studied by using the 
technique of linear combination of atomic orbitals. In [13] the study 
goes on the scattering theory and ground-state energy determination of 
Dirac fermions in graphene with two Coulomb impurities. More details 
on the electronic states created by two impurities in Graphene and the 
application of the Dirac equation can be found in [14]. 

Concerning the two center one electron original Dirac equation, 
many attempts have been made to find appropriate solutions of this 
problem. From the long list of publications on this subject, we can chose 
some typical ones. We begin by the application of the simple LCAO trial 
spinor wave function [15]. In this approximation the first component of 
the Dirac spinor was replaced by the nonrelativistic 1s function. In 
another attempt, a spinor was constructed in which the four components 
were represented each by a series of spheroidal functions borrowed from 
the non relativistic case [16]. The Gaussian lobe functions were 
employed in [17] to calculate the relativistic correction for the energy of 
H+

2 . The convergence of the solution in Gaussian linear expansion 
spinors was investigated numerically in [18]. For large internuclear 
distances the resonance between 1sσg and 1sσu levels was studied in 
[19]. The minimax variational principle was applied to solve the vari
ational problem in [20,21]. In [22] an analytic expansion applying an 
iterative variational method was applied. In [23], highly accurate finite 
element calculations were performed for the ground state of Th179+

2 . B- 
spline basis sets, constructed in Cassini coordinates were applied in [24]. 
In [25] Tupitsyn et al. developed a method for solving the stationary 
two-center Dirac equation using wave functions represented as series of 
atomic like Dirac-Sturm orbitals, localized on the ions. Here, the atomic 
orbitals are generated by solving numerically the one-center Dirac and 
Dirac-Sturm equations by means of a finite-difference approach. The 
problem is solved for many nuclear charges and compared to existing 
results H+

2 , Th179+
2 and U193+

2 at the “chemical” internuclear distance ρ =

2/Z. 
In all the above cited variational methods the main encountered 

difficulty is the appearance of spurious solutions. These correspond to 
solutions of the Dirac equation for which the energy value of the 
fundamental level is lower than the exact value. This violates the vari
ation principle, as the variational result should always be an upper limit 
of the exact value of the energy [26]. The origin of this difficulty is the 
existence of the negative energy continuum ER < − mec2 in the spectrum 
of the Dirac electron. In [27,28] the mechanism of the appearance of 
these solutions is analyzed and some judicious artificial numerical 
methods are proposed to avoid them. In our present approach, we have 
taken profit of the above cited experiences in the computational domain. 
We have identified the particular situations and the parameters of the 

trial wave function for which the undesired spurious solutions appear 
and have succeeded in avoiding them. 

In our present approach, we have applied Slater-type spinor orbitals 
with non-integer principal quantum numbers (NISTOs) [29,20,21] 
centered on the nuclei. This has necessitated the creation of an efficient 
algorithm for the determination of two-center integrals with high ac
curacy. We have imposed correct Coulomb asymptotic behavior for the 
cases of near and far nuclei. We have realized, with relatively smaller 
basis sets, the same precision as that obtained by past calculations using 
hundreds of Gaussian basis functions for heavy ions. We have also used 
trial spinors with independent large and small components. This im
poses the use of the minimax procedure instead of the habitual mini
mization methods. Many algorithms and methods are available to 
realize the calculation for the convex-concave minimax problem (or for 
Nash equilibrium). There are also several package programs for the 
discrete minimax problem, for example FSQP code [30], but there are no 
package programs for the continuous minimax problem. We have 
therefore developed a new iterative scheme based on Newton-type 
minimization method [31] and continuous minimax [32] problems in 
combination with negative curvature direction methods for non-convex- 
non-concave, convex-non-concave and non-convex-concave cases 
[31,33]. We have also used the optimal steps of the Newton-type method 
like in [34]. We intend to give these details in a separate paper. As it will 
be shown below, the comparison of the parameters used for the large 
and small components permitted us to identify the spurious solutions 
and make the right choice of the parameters to avoid these undesirable 
solutions. 

2. Theory 

The one-electron wave function Ψ( r→) is a solution of the stationary 
Dirac equation 

HDΨ( r→) = EΨ( r→), (1)  

where E = ER is the relativistic energy, and HD is the two-center Dirac 
hamiltonian in atomic units (e = me = ℏ = 1): 

HD = c α→ p→+ c2β+U
(

r→
)
I. (2)  

Here c is the speed of light, α→ and β are Dirac matrices: 

α→=

(
0 σ→
σ→ 0

)

, σ→=

(

σx, σy, σz

)

, β =

(
I 0
0 − I

)

,

σx =

(
0 1
1 0

)

, σy =

(
0 − ı
ı 0

)

, σz =

(
1 0
0 − 1

)

,

(3)  

I =
(

I 0
0 I

)

, I =
(

1 0
0 1

)

.

The two-center attractive Coulomb potential U( r→) is defined by 

U
(

r→
)

= V
(

r1

)

+V
(

r2

)

, V
(

r
)

= −
Z
r
,

where Z is the point charge of the centers 1 and 2, r→1 = r→ + ρ→/2, r→2 =

r→− ρ→/2, ρ→ = (0,0,ρ), and ρ is the internuclear distance. 
The Slater-type spinor orbitals centered on the nuclei are given as in 

[29] by 

ψnjlm

(

r→
)

≡ ψnκm

(

r→
)

=

{
ıPnκ(r)Ω+κm(θ,φ)
Qnκ(r)Ω− κm(θ,φ). (4)  

Here the spinor spherical harmonics 
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are eigenfunctions of the operator σ→ L→: 
(
− σ→L→− I

)
Ωκm

(
θ,φ
)
= κΩκm

(
θ,φ
)
, (6)  

where L→ is the orbital angular momentum, and Ylm(θ,φ) is the spherical 
harmonic, according to the Condon and Shortley phase convention [35]. 
The spinor spherical harmonics satisfy the following equations: 

σ→r̂ Ω+m(θ,φ) = − Ω− κm(θ,φ), r̂ = r→/r, (7)  

σ→ p→Ω+κm

(

θ,φ
)

= ı
(

∂
∂r

+
1 + κ

r

)

Ω− κm

(

θ,φ
)

. (8) 

When the potential U( r→) ≡ V(r) is spherically symmetrical, the large 
Pnκ(r) and small Qnκ(r) radial components satisfy the following coupled 
equations 

+c
[

∂
∂r

+
1 − κ

r

]

Qnκ

(

r
)

+
(
V
(
r
)
+ c2 − Enκ

)
Pnκ

(

r
)

= 0,

− c
[

∂
∂r

+
1 + κ

r

]

Pnκ

(

r
)

+
(
V
(
r
)
− c2 − Enκ

)
Qnκ

(

r
)

= 0.
(9)  

The particularity of our approach is that, for the two-center problem 
considered, the one center basis large Pnκ(r) and small Qnκ(r) radial 
components located on each center are chosen in the form 

Pnκ

(

r

)

= ( − 1)l
∑npmax

np=1
cnpκpnpκ

(

r

)

,

Qnκ

(

r

)

= ( − 1)l
∑nqmax

nq=1
dnqκqnqκ

(

r

)

,

(10)  

Here (− 1)l insures the the inversion symmetry for the Dirac wave 
function (see [36] for a detailed explanation of the relativistic molecular 
symmetry spinors for diatomics). pnpκ(r) and qnqκ(r) are the normalized 
Slater type orbitals with non-integer principal quantum numbers 
(NISTOs): 

pnpκ

(

r

)

=

(
2λpκ

)γκ+np − 1/2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ
(
2γκ + 2np − 1

)√ rγκ+np − 2exp

(

− λpκr

)

,

qnqκ

(

r

)

=

(
2λqκ

)γκ+nq − 1/2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ
(
2γκ + 2nq − 1

)√ rγκ+nq − 2exp

(

− λqκr

)

,

(11)  

λpκ > 0 and λqκ > 0 are variational parameters. These functions satisfy 
the following uncoupled system of equations 

[
∂
∂r

+
1 + κ

r

]

pnpκ

(

r
)

=

[

− λpκ +
γκ + np + κ − 1

r

]

pnpκ

(

r
)

,

[
∂
∂r

+
1 − κ

r

]

qnqκ

(

r
)

=

[

− λqκ +
γκ + nq − κ − 1

r

]

qnqκ

(

r
)

.

(12)  

The non-integer parameter γκ is chosen from the asymptotic behavior of 
the large Pnκ(r) and small Qnκ(r) components near the corresponding 
center 

γκ = γ− κ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

κ2 −
Z2

c2

√

. (13)  

The total Slater-type spinor function centered on a nucleus has the 
following compact form 

ψNmax

⎛

⎜
⎜
⎜
⎝

r→

⎞

⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ı
∑Nmax

n=1

∑n− 1

κ=− n, κ∕=0
Pnκ

(

r

)

Ω+κm

(

θ,φ

)

,

∑Nmax

n=1

∑n− 1

κ=− n, κ∕=0
Qnκ

(

r

)

Ω− κm

(

θ,φ

)

,

(14)  

where Nmax is a maximal principal quantum number, for which the 
highest powers of r npmax, nqmax given in Eq. (10) are chosen to avoid 
spurious solutions (described in the in the introduction) following [37]. 

npmax = n − |κ| + 1, nqmax =

{
npmax, κ < 0,
npmax + 1, κ > 0. (15)  

The total numbers of NISTOs depending on the Nmax = 2 − 5 are pre
sented in Table 1, where we can see that the total number of nonlinear 
parameters λpκ and λqκ is 2Nmax − 1, i.e. the one which brings the total 
number of nonlinear parameters to 4Nmax − 2. 

The one-electron wave function Ψ( r→) for Eq. (1) has the form 

Ψ( r→) = ψNmax
( r→1)+ψNmax

( r→2), (16)  

for the Ψ( r→) = Ψ( − r→) gerade case and 

Ψ( r→) = ψNmax
( r→1) − ψNmax

( r→2). (17)  

for the Ψ( r→) = − Ψ( − r→) ungerade case with the condition 〈Ψ( r→)|Ψ( r→)

〉 = 1. Finally, the minimax formulation [20] of the Dirac Eq. (1) is 

− c2⩽ER = min
Pnκ(r)∕=0

max
Qnκ (r)

〈

HD

〉

= min
λpκ

max
λqκ

〈

HD

〉

⩽c2.
(18)  

Making the Rayleigh quotient (18) stationary with respect to the vari
ations in cnpκ and dnqκ, leads to the generalized eigenvalue problem 

A
(

c
d

)

= ERB
(

c
d

)

. (19) 

Ωjlm

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ,φ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≡ Ωκm

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ,φ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
l + m + 1/2

2l + 1

√

Ylm− 1/2

(

θ,φ

)

,

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
l − m + 1/2

2l + 1

√

Ylm+1/2

(

θ,φ

)

,

κ < 0, l = − κ − 1,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
l − m + 1/2

2l + 1

√

Ylm− 1/2

(

θ,φ

)

,

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
l + m + 1/2

2l + 1

√

Ylm+1/2

(

θ,φ

)

,

κ > 0, l = κ,

j = |κ| − 1

/

2, (5)   
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The determination of the matrix elements of 〈Ψ( r→)|Ψ( r→)〉 and the 
hamiltonian needs the determination of two center integrals such as 

Qm1m2
l1 l2

(
a, ν, ρ

)
=

∫
d r→r− 1

1 rν− 1
2 e− ar2 Y*

l1m1

(

r→2

)

Yl2m2

(

r→2

)

= ( − 1)l1 − l2
∫

d r→r− 1
2 rν− 1

1 e− ar1 Y*
l1m1

(

r→1

)

Yl2m2

(

r→1

)

,

(20)  

and  

Here a, a1, a2 are positive numbers; ν, ν1, ν2 are non-integer numbers; 
ν > − 1,max(ν1,ν2) > 0,min(ν1,ν2) > − 1. Similar integrals are considered 
in [38–40], and evaluated in ellipsoidal coordinates in terms of the well- 
known auxiliary functions [41]. This approach requires many summa
tions for high accuracy calculations, which depends on l1, l2, ν, ν1 and ν2. 
In the appendix we present our approach to the determination of these 
integrals. 

3. Results 

In all our calculations the mass of the electron me = 1, and the speed 
of light c = 137.0359895 both in atomic units. We determine, first of all, 
the relativistic energy ER of the 1σg state of the lightest ion H+

2 . As, for 
light ions,the binding energy Ee = ER − c2 and the non-relativistic energy 
are close, we have chosen the initial estimates of the nonlinear param
eters λpκ, λqκ (11) for all κ 

λpκ = λqκ = c− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

c4 − E2
R

√

≡ c− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− Ee(2c2 + Ee)

√
≈

̅̅̅̅̅̅̅̅̅̅̅
− 2Ee

√
. (22)  

We have then calculated step-by-step the relativistic 1σg state energy ER 
of the other ions, using the calculated λpκ, λqκ during the previous step 
multiplied by the factor Z/Zold as initial estimates. Here Zold is the value 
of the charge in the previous step. 

In Tables 2 and 3 are presented, the calculated relativistic 1σg state 
energy Ee for different ions at “chemical” internuclear distance ρ = 2/Z 
versus the number Nmax and compared to the results given in [25]. For 
the cases Nmax = 2 and Nmax = 3, we obtained the same relativistic 

energies with charge step 1 (i.e. Z = 1,2,3,4,…) and with difference of 
charges presented in the Tables 2 and 3 (i.e. Z = 1,2,10,20,…). For the 
case Nmax = 4 and Nmax = 5, there are many minimax solutions, so we 
calculated, first, the relativistic energies with the charge of step 1, then 
we recalculated it with different corrections of the nonlinear parameters 
λpκ and λqκ. 

From the results presented in Tables 2 and 3, we see that our 
calculated energies give the upper bounds of the exact energies with 
monotonic convergence with increasing Nmax. For Nmax = 5 our results 
are comparable to those [25] with a relative error of 10− 7 − 10− 8. 

This verifies the validity of the approach given in [37] for the one- 
sided convergence of the minimax optimization under the condition 
(15). For Nmax = 5 we could identify the reason of having an spurious 
case. In fact checking the coefficients cnpκ and dnqκ in Eq. (10) we 
observed that, in some calculations cnqκ ∕= 0 and dnqκ = 0 at np = nq = 5,
κ = − 1. This means that the highest power of r in the large component is 
bigger than that of the small component. By correcting this anomaly we 
could avoid the spurious result. 

Fig. 1 shows the scaled binding energy Z− 2Ee in terms of the charge Z 
at the internuclear distance ρ = 2/Z. This shows how the electron is 
more and more bound to the nuclei. Note that the scaled non-relativistic 
binding energy Z− 2Ee does not depend on the charge Z at the internu
clear distance ρ = 2/Z. 

In Fig. 2 we present the scaled relativistic energy − 1 < c− 2ER < 1 
depending on the internuclear distance ρ and the charge Z⩾80. Here the 
basis functions with Nmax = 2 are used. Also note that, for too small 
internuclear distances ρ, we can not calculate the relativistic energy, as 
we come very near to the one-center basis functions for which the fixed 

parameter γ′ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (2Z)2/c2
√

for given Z (compare with (13)). 

4. Conclusion 

We have developed a new iterative scheme to obtain reliable solu
tions of the Dirac two center equation constructed by linear combina
tions of relativistic (non-integer) Slater type wave functions. We have 
used independent large and small components of the Dirac spinor. We 
present here the details of our original calculation of the two center 

Table 1 
Total numbers of NISTO depending on the maximal principal quantum number Nmax.  

κ  States Nmax = 2  Nmax = 3  Nmax = 4  Nmax = 5    

npmax  nqmax  npmax  nqmax  npmax  nqmax  npmax  nqmax  

- 1 s1/2  2 2 3 3 4 4 5 5 
1 p1/2  2 3 3 4 4 5 5 6 

- 2 p3/2  1 1 2 2 3 3 4 4 
2 d3/2    2 3 3 4 4 5 

- 3 d5/2    1 1 2 2 3 3 
3 f5/2      2 3 3 4 

- 4 f7/2      1 1 2 2 
4 g7/2        2 3 

- 5 g9/2        1 1  

Total number 11 24 41 62  

Fm1m2
l1 l2

(
a1, ν1, a2, ν2, ρ

)
=

∫
d r→rν1 − 1

1 e− a1r1 Y*
l1m1

(

r→1

)

rν2 − 1
2 e− a2r2 Yl2m2

(

r→2

)

= ( − 1)l1 − l2
∫

d r→rν1 − 1
2 e− a1r2 Y*

l1m1

(

r→2

)

rν2 − 1
1 e− a2r1 Yl2m2

(

r→1

)

.

(21)   
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integrals with non-integer powers of the position variables. Our 
approach permits to take control of the spurious solutions and avoid 
them by the appropriate choice of the wave function parameters. We 
investigate the electronic energy of 1σg orbitals with the nuclear charge 
Z. Our method can produce the solution for 1σu and higher levels which 
can be needed in the case of large internuclear distances to study the 
resonances between 1sσg and 1sσu close levels. 
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Table 3 
The relativistic 1σg state energy Ee = ER − c2 at ρ = 2/Z. Continuation of Table 2.  

Z Ion Nmax  Energy Energy [25]   

2 − 5593.251 717 146  
70 Yb139+

2  3 − 5596.462 436 297    

4 − 5596.746 534 092    
5 − 5596.754 858 416 − 5596.754 864 752    

2 − 7393.964 617 394  
80 Hg159+

2  3 − 7398.751 717 018    

4 − 7399.218 916 979    
5 − 7399.228 761 754 − 7399.228 805 892    

2 − 9497.103 757 814  
90 Th179+

2  3 − 9504.013 069 800    

4 − 9504.748 342 655    
5 − 9504.756 578 763 − 9504.756 746 927    

2 − 9957.149 867 657  
92 U183+

2  3 − 9964.557 040 570    

4 − 9965.357 892 685    
5 − 9965.365 278 947 − 9965.365 468 058    

2 − 11942.178 005 611  
100 Fm199+

2  3 − 11951.832 987 584    

4 − 11952.939 381 324    
5 − 11952.941 727 610 − 11952.941 940 110    

2 − 14796.324 879 456  
110 Ds219+

2  3 − 14809.322 202 267    

4 − 14810.852 901 248    
5 − 14810.898 911 675     

2 − 17461.232 762 069  
118 Og235+

2  3 − 17477.122 912 713    

4 − 17479.073 413 320    
5 − 17479.125 249 624     

2 − 18577.427 339 685  
121 241+

2  
3 − 18594.349 381 894    

4 − 18596.454 717 052    
5 − 18596.509 996 585   

Table 2 
The relativistic 1σg state energy Ee = ER − c2 at ρ = 2/Z.  

Z Ion Nmax  Energy Energy [25]   

2 − 1.102 248 990  
1 H+

2  3 − 1.102 624 606    

4 − 1.102 640 853    
5 − 1.102 641 574 − 1.102 641 581    

2 − 4.409 083 664  
2 He3+

2  3 − 4.410 586 724    

4 − 4.410 651 814    
5 − 4.410 654 700 − 4.410 654 728    

2 − 110.297 363 139  
10 Ne19+

2  3 − 110.335 418 709    

4 − 110.337 130 064    
5 − 110.337 203 677 − 110.337 204 410    

2 − 442.073 489 140  
20 Ca39+

2  3 − 442.231 839 925    

4 − 442.239 683 071    
5 − 442.239 984 905 − 442.239 997 265    

2 − 998.024 713 682  
30 Zn59+

2  3 − 998.404 961 752    

4 − 998.426 014 019    
5 − 998.426 773 718 − 998.426 763 032    

2 − 1782.802 217 068  
40 Zr79+

2  3 − 1783.539 606 894    

4 − 1783.585 615 512    
5 − 1783.587 315 610 − 1783.587 355 445    

2 − 2803.286 356 845  
50 Sn99+

2  3 − 2804.566 122 743    

4 − 2804.656 452 590    
5 − 2804.659 770 918 − 2804.659 807 931    

2 − 4069.063 950 398  
60 Nd119+

2  3 − 4071.139 360 212    

4 − 4071.304 123 628    
5 − 4071.309 804 433 − 4071.309 830 161  

Fig. 1. The scaled binding energy Z− 2Ee versus the charge Z at the internuclear 
distance ρ = 2/Z. 
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Appendix A. Determination of the two-center integrals 

Qm1m2
l1 l2

(
a, ν, ρ

)
=

∫
d r→r− 1

1 rν− 1
2 e− ar2 Y*

l1m1

(

r→2

)

Yl2m2

(

r→2

)

= ( − 1)l1 − l2
∫

d r→r− 1
2 rν− 1

1 e− ar1 Y*
l1m1

(

r→1

)

Yl2m2

(

r→1

)

,

(A.1)  

and 

Fm1m2
l1 l2

(
a1, ν1, a2, ν2, ρ

)
=

∫
d r→rν1 − 1

1 e− a1r1 Y*
l1m1

(

r→1

)

rν2 − 1
2 e− a2r2 Yl2m2

(

r→2

)

= ( − 1)l1 − l2
∫

d r→rν1 − 1
2 e− a1r2 Y*

l1m1

(

r→2

)

rν2 − 1
1 e− a2r1 Yl2m2

(

r→1

)

.

(A.2)  

Here a, a1, a2 are positive numbers; ν, ν1, ν2 are non-integer numbers; ν > − 1,max(ν1,ν2) > 0,min(ν1,ν2) > − 1. We use the Fourier transform 

Qm1m2
l1 l2

(

a, ν, ρ
)

= 8
∑l1+l2

l=|l1 − l2 |,2

( − 1)lYl0

(

ρ→
)

ϒ0m1m2
ll1 l2

∫ ∞

0
dpjl

(

pρ
)

gl

(

a, ν, p
)

, (A.3)  

Fm1m2
l1 l2

⎛

⎝a1, ν1, a2, ν2, ρ

⎞

⎠ = 8
∑l1+l2

l=|l1 − l2 |,2

( − 1)
3l+l1 − l2

2 Yl0

⎛

⎝ ρ→
⎞

⎠ϒ0m1m2
ll1 l2

×

∫ ∞

0
dpp2jl

(

ρp
)

gl1

(

a1, ν1, p
)

gl2

(

a2, ν2, p
)

,

(A.4)  

where 

ϒmm1m2
ll1 l2 =

∫

dΩpYlm

(

p→
)

Y*
l1m1

(

p→
)

Yl2m2

(

p→
)

, (A.5)  

which has a non-zero value for 

m = m2 − m1, l = |l1 − l2|, |l1 − l2| + 2,…, l1 + l2. (A.6)  

Here the sign * denotes the complex conjugate, and jl(p) is a spherical Bessel function [42]. The integral (A.5) is calculated analytically using the 
Clebsch-Gordan coefficients. It can also be calculated directly using MAPLE without loss of precision. The function gl(a, ν, p) has the form 

Fig. 2. The scaled relativistic energy c− 2ER versus the internuclear distance ρ and the charge Z⩾80.  
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gl

(

a, ν, p
)

=

∫ ∞

0
drrν+1exp

(

− ar
)

jl

(

pr
)

, ν > − 2. (A.7) 

Using the following relation for the integral of the product of two spherical Bessel functions [43] 
∫ ∞

0
dpjl

(

pρ
)

jl

(

pr
)

=
π

2(2l + 1)

{
ρ− l− 1rl, ρ⩾r,
ρlr− l− 1, ρ < r,

(A.8)  

we obtain 
∫ ∞

0
dpjl

(

pρ
)

gl

(

a, ν, p
)

=

∫ ∞

0
drrν+1exp

(

− ar
)∫ ∞

0
dpjl

(

pρ
)

jl

(

pr
)

=
π

2(2l + 1)

(
1

ρl+1

∫ ρ

0
drrν+l+1exp

(

− ar
)

+ ρl
∫ ∞

ρ
drrν− lexp

(

− ar
))

=
π

2(2l + 1)aν+1

(
1

(aρ)l+1 γ
(

ν + l + 2, aρ
)

+ (aρ)lΓ
(

ν − l + 1, aρ
))

,

(A.9)  

where Γ(a, x) and γ(a, x) are respectively the upper and lower incomplete gamma functions [42]. This permits the analytical calculation of the integral 
in (A.3). 

Now let us consider the integral (A.4), which will be calculated numerically. Using the following recurrence relations of the spherical Bessel 
function [42] 

jl

(

pr
)

=
(2l − 1)

pr
jl− 1

(

pr
)

− jl− 2

(

pr
)

=
l − 1

pr
jl− 1

(

pr
)

−
1
p

d
dr

jl− 1

(

pr
)

, (A.10)  

we obtain the following recurrence relations for the integral (A.7) 

gl(a, ν, p) =
(2l − 1)

p
gl− 1

(

a, ν − 1, p
)

− gl− 2

(

a, ν, p
)

=
l + ν

p
gl− 1

(

a, ν − 1, p
)

−
a
p

gl− 1

(

a, ν, p
)

=
a
p

2l − 1
ν − l + 1

gl− 1

(

a, ν, p
)

−
l + ν

ν − l + 1
gl− 2

(

a, ν, p
)

(A.11)  

with 

g0

⎛

⎜
⎝a, ν, p

⎞

⎟
⎠ =

Γ(ν + 1)
p

I

(
1

(a − ıp)ν+1

)

=
Γ(ν + 1)

p
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α2 + p2)
ν+1

√ sin

((

ν + 1

)

arcsin

(
p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + p2

√

))

. (A.12)  

Also the integral (A.7) can be expressed analytically using the relation between the spherical and cylindrical Bessel functions, and the formula 6.621.1 
in [43] 

gl

⎛

⎜
⎝a, ν, p

⎞

⎟
⎠ =

pl
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a2 + p2)
l+ν+2

√
Γ(l + ν + 2)
(2l + 1)!! 2F1

(
l + ν + 2

2
,
l − ν

2
; l +

3
2

;
p2

a2 + p2

)

, (A.13)  

where 2F1(a, b; c; z) is a hypergeometric function [42]. From here, we can obtain the following asymptotic behaviors for the small and large values of p 

gl
(
a, ν, p

)
∼ pl, p→0; gl

(
a, ν, p

)
∼ p− ν− 2, p→∞. (A.14)  

Taking into account (A.14), the integrand in the p integration (A.4) behaves like 

p2jl

⎛

⎜
⎝ρp

⎞

⎟
⎠gl1

⎛

⎜
⎝a1, ν1, p

⎞

⎟
⎠gl2

⎛

⎜
⎝a2, ν2, p

⎞

⎟
⎠ ∼

⎧
⎪⎨

⎪⎩

pl+l1+l2+2, r→0,

p− ssin
(

ρp −
lπ
2

)

, r→∞,
(A.15)  

with s = ν1 + ν2 + 3 > 2. 
The following Algorithm is used to calculate the integral (A.4) numerically with high accuracy.  

1. In most cases, the integral over p is calculated for each l, and summed over. We represent (A.4) in the form 
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Fm1m2
l1 l2

(

a1, ν1, a2, ν2, ρ
)

= 8
∫ ∞

0
dpp2gl1

(

a1, ν1, p
)

gl2

(

a2, ν2, p
)

f
(

p, ρ
)

,

f

⎛

⎝p, ρ

⎞

⎠ =
∑l1+l2

l=|l1 − l2 |,2
( − 1)

3l+l1 − l2
2 Yl0

⎛

⎝ ρ→
⎞

⎠ϒ0m1m2
ll1 l2 jl

⎛

⎝ρp

⎞

⎠,

(A.16) 

i.e., first sum over l, then integrate over p. This avoids multiple recalculations of the functions gl1 (a1, ν1, p), gl2 (a2, ν2, p) for each value l.  
2. We divide the integration interval into two parts [0, b] and [b,∞], where b⩾π/ρ is a first zero of j|l1 − l2 |(ρp). The first integral can be calculated using 

high-order Gauss-Kronrod or Gauss-Legendre quadrature formulas. To calculate the second integral we use the explicit definition of the spherical 
Bessel functions 

jl

(

z

)

= sin
(

z −
πl
2

)
∑⌊l/2⌋

k=0
( − 1)k h2k

z2k+1 + cos
(

z −
πl
2

)
∑⌊.(l− 1)/2⌋

k=0
( − 1)kh2k+1

z2k+2 , (A.17)  

where ⌊x⌋ is the integer part of x, and hj are independent numbers from z. In this case we can represent the second integral in the form 
∫ ∞

b
dpp2gl1

(

a1, ν1, p
)

gl2

(

a2, ν2, p
)[

s
(

p, ρ
)

sin
(

ρp
)

+ c
(

p, ρ
)

cos
(

ρp
)]

. (A.18)  

To calculate the above integral we use the algorithm, which is described in [44] and the routine QAWFE [45]. Note that the routine QAWFE 
evaluates the above integral separately with the factors sin(ρp) and cos(ρp). To avoid recalculation of the functions gl1 (a1, ν1,p), gl2 (a2, ν2, p), we 
modified the routine QAWFE to evaluate the integral with both factors sin(ρp) and cos(ρp).  

3. Many functions, like gli (ai, νi, pi) are needed for the same combination of input arguments. Since the nature of the parameters (their range and 
distribution) were not clear in advance, we have created a structure of a linked list of trees based on an AVL-tree [46], where each tree represents 
one set of parameters. We begin by searching for the first parameter (e.g., ai) going through the first tree starting from the head li. After finding the 
leaf containing the parameter ai, we move to the next tree to which it points, searching for the parameter νi. After finding the parameter νi, we move 
to the next level and start to search for the last parameter pi. Finding the last parameter pi we have found the node containing the function for this 
combination of parameters. It takes O (logn) operations to find one parameter in a tree, n being number of unique values of a given parameter. In 
our case, since the number of combinations for each set of parameters is rather small about 1 to 2 comparisons are sufficient to find given 
parameter. As this approach resulted in a significant speedup of the calculation, it was employed also for other functions. 

We have the generalized eigenvalue problem (19) with an ill-conditioned mass matrix B (for example the condition number is ∼ 108 at Nmax = 5), so 
all integrals are calculated with an accuracy of 10− 20, and used quadruple precision arithmetic. 

The efficiency of the above Algorithm is confirmed by numerical experiments. For example if Nmax = 5, the total calculation time of all matrix 
elements using Steps 1 and 2 is approximately 4.5 times less than directly by formula (A.4) (i.e., the integral over p is first calculated for fixed l, and 
then summed over l) using only Step 2, with separate calculations for the part with sin(ρp) and cos(ρp). With the additional use of Step 3, the total 
calculation time is approximately 5 times less than when only Steps 1 and 2 are used. For Nmax = 5, the computational time for one iteration (including 
calculations of the energy, the corresponding gradient and the Hessian) on the supercomputer “Govorun” (Intel® Xeon® Platinum 8268, 24 cores, 
2.9 GHz) is approximately 12 min. 
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[9] A. De Martino, D. Klöpfer, D. Matrasulov, R. Egger, Phys. Rev. Lett. 112 (2014) 

186603-1–186603-5. 
[10] O.O. Sobol, Ukrainian J. Phys. 59 (5) (2014) 531–540. 
[11] E.V. Gorbar, V.P. Gusynin, O.O. Sobol, EPL 111 (2015) 37003-1–37003-6. 
[12] O.O. Sobol, Ukrainian J. Phys. 61 (5) (2016) 759–773. 
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