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Abstract. The description of quantum transmission of composite sys-
tems of barriers or wells using the coupled-channel method is presented.
In this approach the multichannel scattering problem for the Schrödinger
equation is reduced to a set of coupled second-order ordinary differen-
tial equations with the boundary conditions of the third type and solved
using the finite element method. The efficiency of the proposed approach is
demonstrated by the example of analyzing metastable states that appear
in composite quantum systems tunnelling through barriers and wells and
give rise to the quantum transparency and total reflection effects.
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1 Introduction

Quantum tunnelling of composite systems through barriers is one of the prob-
lems most often occurring in nuclear physics, physics of solid state and semi-
conductor nanostructures. Usually the theory is based on considering the pen-
etration of a structureless particle through barriers within the effective mass
approximation [19]. However, the majority of important applications deal with
tunnelling of structured objects (clusters), e.g., atomic nuclei through Coulomb
barrier, where the effects of structure (multiple particles) manifest themselves
in anomalous behaviour of nuclear reaction cross-sections below the Coulomb
barrier [20]. Indeed, when the cluster size is comparable with the spatial width
of the barrier, the mechanisms arise that enhance the barrier transparency. The
effect of quantum barrier transparency depending on the internal structure of
the incident particles was revealed for a pair of coupled particles tunnelling
through a repulsive barrier [9]. The effect was shown to be due to the barrier
resonance formation under the condition that the potential energy of the com-
pound system (cluster + barriers) possesses local minima, thus providing the
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appearance of metastable states of the moving cluster [8]. The manifestations
and the underlying mechanisms of the effect were extensively studied in multiple
quantum phenomena [14–18,20–23], for example, near-surface quantum diffusion
of molecules [10], channelling and tunnelling of ions through multidimensional
barriers [2,5,11,22,24], and sub-barrier tunnelling of light nuclei [12], and the
collinear ternary fission [13]. A method and programs for solving the tunnelling
of a system of n identical particles coupled by oscillator-type potentials through
repulsive barriers has been presented in [1,3,4,6,7], while their application to
study of a transmission of composite systems of both barriers and wells is actual
problem in the field.

In present paper we consider the problem of a transmission of composite
systems of barriers or wells in the framework of the coupled-channel method
basing on the Galerkin-type and Kantorovich methods and discuss conditions of
their applicability. By the examples of particles with different coupling poten-
tials, transmission of composite systems as of Gaussian barriers or wells, the
transmission coefficients, and the metastable states are analyzed. The energy
dependencies of these coefficients demonstrate the phenomena of quantum trans-
parency and total reflection.

The structure of paper is following. In Sect. 2 the coupled-channel method
and the multichannel scattering problem are formulated. In Sect. 3 the trans-
mission of clusters comprising several identical particles coupled by oscillator
and double-well polynomial potentials are studied separately: tunneling through
barrier, transmission above barriers and wells. In Conclusion the results and
perspectives are discussed.

2 Problem Statement

2.1 Coupled-Channel Method

Consider the boundary-value problem (BVP) for the equation
(
Ĥf (xf ;xs) + Ĥs(xs) + V̌fs(xf , xs) − Et

)
Ψt(xf , xs) = 0 (1)

with fast xf and slow xs variables. The operators Ĥf (xf ;xs) and Ĥs(xs) describe
the fast and slow subsystem

Ĥf (xf ;xs) = − 1
g1f (xf )

∂

∂xf
g2f (xf )

∂

∂xf
+ V̌f (xf ;xs), (2)

Ĥs(xs) = − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs), (3)

V̌f (xf ;xs) and V̌s(xs) are the potentials of the fast and slow subsystem, and
V̌fs(xf , xs) is the interaction potential. The solution Ψt(xf , xs) of the problem (1)
with the appropriate boundary conditions is sought in the form of Kantorovich
expansion
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Ψt(xf , xs) =
jmax∑
j=1

Bj(xf ;xs)χjt(xs). (4)

The trial functions Bj(xf ;xs) are chosen to be eigenfunctions of the Hamil-
tonian Ĥf (xf ;xs) with the eigenvalues Êj(xs), parametrically depending on
xs ∈ Ω(xs):

Ĥf (xf ;xs)Bj(xf ;xs) = Êj(xs)Bj(xf ;xs). (5)

These functions satisfy the orthonormality conditions with the weighting func-
tion g1f (xf ) in the same interval xf ∈ Ωxf

(xs):
∫ xmax

f (xs)

xmin
f (xs)

Bi(xf ;xs)Bj(xf ;xs)g1f (xf )dxf = δij . (6)

Substitution of (4) into (1) yields a BVP for a set of ODEs with respect to
the unknown vector functions χt(xs) = (χ1;t(xs), ..., χjmax;t(xs))T of the slow
subsystem, corresponding to the unknown eigenvalues 2Et ≡ Et,

(
D + E(xs) + W(xs) − IEt

)
χt(xs) = 0,

D = − 1
g1s(xs)

I
d

dxs
g2s(xs)

d

dxs
+ IV̌s(xs), (7)

W(xs) = V(xs) +
g2s(xs)
g1s(xs)

H(xs) +
1

g1s(xs)
dg2s(xs)Q(xs)

dxs
+

g2s(xs)
g1s(xs)

Q(xs)
d

dxs

with the effective potentials Hij(xs) and Qij(xs) defined as

Vij(xs)=Vji(xs)=
∫ xmax

f (xs)

xmin
f (xs)

Bi(xf ;xs)V̌fs(xf , xs)Bj(xf ;xs)g1f (xf )dxf ,

Hij(xs)=Hji(xs)=
∫ xmax

f (xs)

xmin
f (xs)

∂Bi(xf ;xs)
∂xs

∂Bj(xf ;xs)
∂xs

g1f (xf )dxf , (8)

Qij(xs)= − Qji(xs)= −
∫ xmax

f (xs)

xmin
f (xs)

Bi(xf ;xs)
∂Bj(xf ;xs)

∂xs
g1f (xf )dxf .

If the potential of the fast subsystem V̌f (xf ;xs) is independent of the slow vari-
able, then the expansion is referred to as Galerkin-type expansion. Its advantage
is that the eigenvalue problem (5) should be solved only once. However, if the
position of the potential well and, therefore, the localization of eigenfunctions
changes, the convergence of Galerkin-type expansions becomes very slow [5].
The example of the effective potentials of double-well potential (from Fig. 1)
for Galerkin-type and Kantorovich expansions are shown in Fig. 2. In consid-
ered case the Galerkin method is a more appropriate because effective potentials
have a smooth behavior, while in Kantorovich method effective potentials have
a sharp behavior with a large magnitude due to series of quasicrossing of the
potential curves.
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Fig. 1. Double-well interaction potential (a), the first even (solid lines) and odd (dashed
lines) eigenfunctions (b), and the corresponding 2D potential V (xf ) + V b(xf ; xs) (c).

Fig. 2. Even effective potentials for Galerkin-type (a, d) and Kantorovich (b, c, e, f)
expansions.

2.2 Scattering Problem

Consider the scattering problem with the homogeneous boundary conditions of
the third kind at xs = xmin

s � 0 and xs = xmax
s � 0:

dΦ(xs)
dxs

∣∣∣∣
xs=xmin

s

= R(xmin
s )Φ(xmin

s ),
dΦ(xs)

dxs

∣∣∣∣
xs=xmax

s

= R(xmax
s )Φ(xmax

s ), (9)

where R(xs) is an unknown N × N matrix function, Φ(xs) = {χ(j)(xs)}No
j=1 is

the desired N × No matrix solution and No is the number of open channels,
No = max2E≥εj j ≤ N .

The matrix solution Φv(xs) = Φ(xs), describing the incidence of the particle
and its scattering, with the asymptotic form “incident wave + outgoing waves”
(see Fig. 4a) is written as
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Fig. 3. The total probability of penetration through repulsive Gaussian potential bar-
riers |T|211 versus the energy E with the ground and excited initial states.

Fig. 4. Schematic diagrams of the wave functions Φv(z) at z ≡ xs having the asymp-
totic form: (a) “incident wave + outgoing waves”, (b) “incident waves + ingoing wave”.

Φv(xs → ±∞) =

⎧
⎪⎪⎨
⎪⎪⎩

{
X(+)(xs)Tv, xs > 0,
X(+)(xs) + X(−)(xs)Rv, xs < 0,

v =→,
{
X(−)(xs) + X(+)(xs)Rv, xs > 0,
X(−)(xs)Tv, xs < 0,

v =←,
(10)

where Rv and Tv are the reflection and transmission No × No matrices, v =→
and v =← denote the initial direction of the particle motion along the xs axis.
The leading term of the asymptotic rectangular matrix functions X(±)(xs) has
the form [5]

X
(±)
ij (xs) → p

−1/2
j exp

(
±ı

(
pjxs − Zj

pj
ln(2pj |xs|)

))
δij , (11)
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Fig. 5. The total transmission probability |T|211 versus the energy E (in oscillator
units). Two (a), three (b) and four (c) identical particles, coupled by the oscillator
potential, penetrate through the repulsive Gaussian barrier with σ = 0.1 and α =
2, 5, 10, 20. The system is initially in the ground state.

pj =
√

2E − εj i = 1, . . . , N, j = 1, . . . , No,

where Zj = Z+
j at xs > 0 and Zj = Z−

j at xs < 0. The matrix solution Φv(xs, E)
is normalized by the condition

∫ ∞

−∞
Φ†

v′(xs, E
′)Φv(xs, E)dxs = 2πδ(E′ − E)δv′vIoo, (12)

where Ioo is the unit No × No matrix.
Let us rewrite Eq. (10) in the matrix form at x+

s → +∞ and x−
s → −∞ as

(
Φ→(x+

s ) Φ←(x+
s )

Φ→(x−
s ) Φ←(x−

s )

)
=

(
0 X(−)(x+

s )
X(+)(x−

s )0

)
+

(
0 X(+)(x+

s )
X(−)(x−

s ) 0

)
S,(13)

where the unitary and symmetric scattering matrix S

S =
(
R→ T←
T→ R←

)
, S†S = SS† = I (14)

is composed of the reflection and transmission matrices. Detailed calculation of
the matrix solution Φv(xs) is presented in Reference [4].

3 Transmission of Clusters Comprised by Several
Identical Particles

Consider a cluster of two or three identical particles with the masses m coupled
via the pair potentials Ũpair(xtt′), xtt′ = xt − xt′ propagated the barrier or well
Ṽ (xt). The wave function of this system satisfies the Schrödinger equation

⎡
⎣−

n∑
t=1

∂2

∂x2
t

+
n∑

t,t′=1;t<t′

(xtt′)2

n
+

n∑
t,t′=1;t<t′

Upair(xtt′)+
n∑

t=1

V (xt)−E

⎤
⎦ Ψ(x)=0. (15)
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Here E is the total energy of n particles, V (xt)=Ṽ (xtxosc)/Eosc is the
barrier or the well potential, V hosc(xtt′) =Ṽ hosc(xtt′xosc)/Eosc= 1

n (xtt′)2

is the harmonic oscillator potential, V pair(xtt′)=Ṽ pair(xtt′xosc)/Eosc and
Upair(xtt′)=V pair(xtt′) −V hosc(xtt′) is the effective pair potential given in the
oscillator units. In the symmetric coordinates [4,6]:

ξ0=
1√
n

n∑
t=1

xt, ξt′=
1√
n

(
x1+

n∑
t=2

a0xt +
√

nxt′+1

)
, t′=1, ..., n − 1, (16)

where a0 = 1/(1 − √
n) < 0, a1 = a0 +

√
n, Eq. (15) takes the form

[
− ∂2

∂ξ20
+

n−1∑
i=1

(
− ∂2

∂ξ2i
+ (ξi)2

)
+ U(ξ0, ..., ξn−1) − E

]
Ψ(ξ0, ..., ξn−1) = 0,

U(ξ0, ..., ξn−1) =
n∑

i,j=1;i<j

Upair(xij(ξ1, ..., ξn−1)) +
n∑

i=1

V (xi(ξ0, ..., ξn−1)). (17)

Here xs = ξ0 in the center-of-mass variable and xf = {ξ1, ..., ξn−1} is the set of
relative variables, such that at n = 2 they correspond to the Jacobi coordinates
(Fig. 8).

Double-Well Interaction Potential. Now consider a pair of particles, cou-
pled by the double-well interaction potential V (xf ) = x4

f/4 − 4x2
f (see Fig. 1a)

tunnelling through the repulsive Gaussian barriers Vi(xi) = α exp(−x2
i /2σ) with

α = 16, 32, 48, 64, σ = 1/20. In this case Eq. (15) takes the form
(

− ∂2

∂x2
s

− ∂2

∂x2
f

+ V (xf ) + V b(xf ;xs) − 2E

)
Ψ(xf , xs) = 0, (18)

where V b(xf ;xs) = V1(x1) + V2(x2).
The first even and odd eigenfunctions are presented in Fig. 1b. The typical

behaviour of symmetric double-well potential eigenfunctions is seen, namely, for
E < 0 there are pairs of even and odd eigenfunctions localized in the potential
wells, with closely spaced energy levels. For E > 0 the energy levels of even and
odd states alternate. The corresponding 2D potential is demonstrated in Fig. 1c.

In this case we have two possibilities to construct the fast, slow, and inter-
action potential, corresponding either to the Galerkin-type expansion

V̌f (xf ;xs)=V (xf ), V̌s(xs)=0, V̌fs(xf , xs)=V b(xf ;xs),

or the Kantorovich expansion

V̌f (xf ;xs)=V (xf )+V b(xf ;xs), V̌s(xs)=0, V̌fs(xf , xs)=0.

The effective potentials (8) are presented in Fig. 2. It is seen that the non-
diagonal matrix elements in the case of Kantorovich expansion are small as com-
pared to the case of Galerkin-type expansion, except some areas, corresponding
to quasi-crossing of the energy levels in the problem (5) (see Fig. 2b).
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Figure 3 shows the energy dependence of the total transmission probability
|T|2ii =

∑No

j=1 |Tji(E)|2. This is the probability of a transition from a chosen
state i into any of No states, found by solving the boundary-value problem
in the Galerkin form. The behaviour of the probability versus the energy is
non-monotonic, and the observed resonances are manifestations of the quantum
transparency effect. This effect is caused by the existence of barrier metastable
states, embedded in the continuum.

Parabolic Interaction Potential. Two, three or four identical particles
(n=2,3,4) are coupled by the harmonic oscillator potential V (xt − xt′) =
(xt − xt′)2, t′, t = 1, ..., n and the Gaussian barrier (α > 0) or well (α < 0):
V (xt) = α/(

√
2πσ) exp(−x2

t /σ2).
Figure 5 shows the energy dependence of the total transmission probability

|T|2ii =
∑No

j=1 |Tji(E)|2. This is the probability of a transition from the ground
state i to any of No eigenstates of the BVP in the Galerkin form solved using
the program KANTBP [1,3]. The dependence of the probability upon the energy
is non-monotonic, and the observed resonance peaks are manifestations of the
quantum transparency effect. The multiplet structure of the peaks for symmetric
and antisymmetric states is similar. Due to the symmetry of the potential in the
case of two identical particles, the position of the maxima for symmetric and
antisymmetric states coincide. In the case of three particles peak positions for
symmetric and antisymmetric states are different, but due to the symmetry with
respect to the plane ξ0 = 0, explain the presence of doublets.

Figure 6 shows the profiles of |Ψ |2 ≡ |Ψ (−)
Em→|2 with α = 20, σ = 1/10 at the

resonance energies of the first three maxima and the second maximum and the
first minimum of the transmission coefficient, illustrating the resonance trans-
mission. It is seen that in the case of resonance transmission the energy is trans-
ferred from the centre-of-mass degree of freedom, described by the coordinate
ξ0, to the internal (transverse) one, described by ξ1 i.e., the transverse oscillator
undergoes a transition from the ground state to the excited state. On the con-
trary, in the case of total reflection the energy transfer is extremely small, and
the transverse oscillator returns to infinity in the initial state. In Fig. 7 the first
three metastable states are presented. The wave function amplitudes for these
states are seen to differ from the amplitudes of the states, corresponding to the
first three maxima in the vicinity of wells.

Figure 9 shows the profiles of probability density |Ψ(ξ0, ξ1)|2 for the sym-
metric states of A = 2 particles transmitting above Gaussian barrier α = 2,
σ = 1/10, revealing total reflection at resonance energies. In Table 1 the val-
ues of energies EM

m = �EM
m + ı�EM

m of corresponding metastable states for a
transmission of A = 2 particles above the Gaussian barrier α = 2, σ = 1/10 are
presented. One can see that the series of resonances in the transmission |T|211
from the ground state 1 are induced by metastable states from second, third,
fourth and seventh closed channels, respectively from left to right panels.

In Fig. 10 the total transmission probability |T|211 versus the energy E (in
oscillator units) for systems of the A = 2, 3, 4 particles, coupled by the oscillator
potential, propagating above the Gaussian well with σ = 0.1 and α = −1,−2
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Fig. 6. Profiles of probability densities |Ψ(ξ0, ξ1)|2 for symmetric (top panel) and anti-
symmetric (bottom panel) states of two particles, revealing resonance transmission and
total reflection at resonance energies, shown in Fig. 5.

Fig. 7. The first three metastable states corresponding to ED
i = 5.76, 9.12, 9.53.

ES
i |T|211 |T|233 EM

m

5.8228 0.3794
9.6479 0.3779 9.614−ı0.217

13.5548 0.4765 13.505−ı0.144
13.9648 0.8536 14.018−ı0.286
17.4512 0.4874 17.445−ı0.103

Fig. 8. The 2D potential for propagation of two particles (n = 2) above the Gaussian
barrier α = 2, σ = 1/10 and the values of energies EM

m = �EM
m + ı�EM

m of metastable
states corresponding to the peaks of |T|211 shown in Fig. 5a.
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Fig. 9. Profiles of probability densities |Ψ(ξ0, ξ1)|2 for symmetric states of two par-
ticles transmitted above the Gaussian barrier α = 2, σ = 1/10, revealing resonance
transmission and total reflection at resonance energies.

Fig. 10. The total transmission probability |T|211 versus the energy E (in oscillator
units). The cluster of n = 2, 3, 4 particles, coupled by the oscillator potential, propa-
gates above the Gaussian well with σ = 0.1 and α = −1, −2. The system is initially in
the ground state. The vertical lines on the epures denote the threshold energies.

are presented. In Table 1 the values of energies EM
m = �EM

m + ı�EM
m of the

corresponding metastable states for the transmission of A = 2, 3 and 4 particles
above the Gaussian well α = −2, σ = 1/10 are shown. The energies EB

m < Eth
1 of

bound states below first threshold Eth
1 shown in last row. One can see that the

resonance structure becomes enriched with increasing the number of transmitted
particles. So, in the case of A = 2 we see double-resonance structures, similar
to the double-well case. In the case of A = 3 and 4 the double structure can
appear with increasing the depth of wells |α|. Figure 11 presents the profiles of
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Table 1. The values of energies EM
m = �EM

m + ı�EM
m of metastable states for a

transmission of a cluster of A = 2, 3 and 4 particles above the Gaussian well α = −2,
σ = 1/10 shown in Figs. 10 and 11. The energies EB

m < Eth
1 of bound states below the

first threshold Eth
1 are shown in last row.

Eth
i EM

m (A = 2) Eth
i EM

m (A = 3) Eth
i EM

m (A = 4)

1 4.4348−ı0.2572 2 5.3307−ı0.0620 3 5.7747−ı0.0742

4.6764−ı0.0058 5.7911−ı0.0621 6.4441−ı0.1050

5 8.5158−ı0.0506 6 6.9922−ı0.0751 6.7934−ı0.0033

8.7675−ı0.1261 7.9457−ı0.0565 7 8.3668−ı0.0651

9 12.6009−ı0.1215 8 8.9601−ı0.0588 8.7797−ı0.0080

12.7330−ı0.0142 9.4950−ı0.2251 9 9.4050−ı0.1995

13 16.6841−ı0.0364 9.8617−ı0.0852 9.9926−ı0.1225

16.7050−ı0.0914 10 11.4173−ı0.1678 10.0755−ı0.0676

Bound states: −0.3588 {−0.2605, 1.5082} {−0.1938, 1.7084 2.7046}

Fig. 11. Profiles of probability density |Ψ(ξ0, ξ1)|2 for symmetric states of two particles
transmitted above the Gaussian well α = 2, σ = 1/10, revealing total reflection and
resonance transmission at the resonance energies.

probability density |Ψ(ξ0, ξ1)|2 for the symmetric states of two particles trans-
mitted above the Gaussian well α = 2, σ = 1/10, revealing the resonance trans-
mission and total reflection at resonance energies. One can see that the series
of resonances in the transmission |T|211 from the ground state 1 are induced by
Feshbach metastable states from second and the fifth closed channels, respec-
tively, from left to right panels. In contrast to the case of barrier in the vicinity
of the well resonance, we see both the resonance reflection and the transmission
(see two middle panels in Fig. 11).
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4 Conclusion

We considered the application of the coupled-channel methods to the problem
of quantum tunnelling of a cluster of particles coupled by the oscillator-type
interactions, through Gaussian potential barriers and above wells. The initial
boundary problem is reduced to that for a set ordinary differential equations
of the second order. By a few examples we demonstrate the efficiency of the
proposed approach for the cluster tunnelling problem and the capability of the
method to provide correct description of the cluster tunnelling specific features,
including the quantum transparency and total reflection phenomena induced by
the shape and Feshbach metastable states. The Kantorovich method finds a more
general application in solving multichannel scattering problems with long-range
interactions [5,11] and the break-up processes in few-body systems in hyper-
spherical adiabatic representation [25]. An important advantage of the approach
is the possibility of efficient use of symbolic-numeric software packages that con-
siderably simplify the calculations as compared to direct numerical approaches.

The work was supported by the Russian Foundation for Basic Research (grant
14-01-00420) the Bogoliubov-Infeld JINR program, and was funded within the
Agreement N 02.03.21.0008 dated 24.04.2016 between the Ministry of Education
and Science of the Russian Federation and RUDN University.
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