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Abstract. A computational scheme for solving elliptic boundary value
problems with axially symmetric confining potentials using different sets
of one-parameter basis functions is presented. The efficiency of the pro-
posed symbolic-numerical algorithms implemented in Maple is shown
by examples of spheroidal quantum dot models, for which energy spec-
tra and eigenfunctions versus the spheroid aspect ratio were calculated
within the conventional effective mass approximation. Critical values of
the aspect ratio, at which the discrete spectrum of models with finite-
wall potentials is transformed into a continuous one in strong dimen-
sional quantization regime, were revealed using the exact and adiabatic
classifications.

1 Introduction

To analyze the geometrical, spectral and optical characteristics of quantum dots
in the effective mass approximation and in the regime of strong dimensional
quantization following [1], many methods and models were used, including the
exactly solvable model of a spherical impermeable well [2], the adiabatic ap-
proximation for a lens-shaped well confined to a narrow wetting layer [3] and
a hemispherical impermeable well [4], the model of strongly oblate or prolate
ellipsoidal impermeable well [5], as well as numerical solutions of the boundary
value problems (BVPs) with separable variables in the spheroidal coordinates for
wells with infinite and finite wall heights [6,7,8]. However, thorough comparative
analysis of spectral characteristics of models with different potentials, including
those with non-separable variables, remains to be a challenging problem. This
situation stimulates the study of a wider class of model well potentials with ap-
plication of symbolic-numerical algorithms (SNA) and problem-oriented software
developed by the authors of the present paper during years [9,10,11,12,13,14].

Here we analyse the spectral characteristics of the following models: a spherical
quantum dot (SQD), an oblate spheroidal quantum dot (OSQD), and a prolate
spheroidal quantum dot (PSQD). We make use of the Kantorovich method that
reduces the problem to a set of ordinary differential equations (ODE) [15]. In
contrast to the well-known method of adiabatic representation [16], this method
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implies neither adiabatic separation of fast and slow variables nor the presence of
a small parameter. We present a calculation scheme for solving elliptical BVPs
with axially-symmetric potentials in cylindrical coordinates (CC), spherical co-
ordinates (SC), oblate spheroidal coordinates (OSC), and prolate spheroidal co-
ordinates (PSC). Basing on the SNA developed for axially-symmetric potentials,
different sets of solutions are constructed for the parametric BVPs related to the
fast subsystem, namely, the eigenvalue problem solutions (the terms and the ba-
sis functions), depending upon the slow variable as a parameter, as well as the
matrix elements, i.e., the integrals of the products of basis functions and their
derivatives with respect to the parameter, which are calculated analytically by
means of elaborated SNA MATRA implemented in MAPLE, or numerically us-
ing the program ODPEVP [13] implementing the finite-element method (FEM).
These terms and matrix elements form the matrices of variable coefficients in the
set of second-order ODE with respect to the slow variable. The BVP for this set
of ODEs is solved by means of the program KANTBP [11], also implementing
the FEM. The efficiency of the calculation scheme and the SNA used is demon-
strated by comparison of the spectra versus the ellipticity of the prolate or oblate
spheroid in the models of quantum dots with different confining potentials, such
as the isotropic and anisotropic harmonic oscillator, the spherical and spheroidal
well with finite or infinite walls approximated by smooth short-range potentials
as well as by constructing the adiabatic classification of the states.

The paper is organized as follows. In Section 2, the calculation scheme for
solving elliptic BVPs with axially-symmetric confining potentials is presented. In
Section 3, SNA MATRA for solving parametric BVP and corresponding integrals
implemented in Maple is described. Section 4 is devoted to the analysis of the
spectra of quantum dot models with three types of axially-symmetric potentials,
including the benchmark exactly solvable models. In Conclusion we summarize
the results and discuss the future applications of our calculation scheme and the
SNA project presented.

2 Problem Statement

Within the effective mass approximation under the conditions of strong dimen-
sional quantization, the Schrödinger equation for the slow envelope of the wave
function Ψ̃(r̃) of a charge carrier (electron e or hole h) in the models of a spher-
ical, prolate or oblate spheroidal quantum dot (SQD, PSQD or OSQD) has the
form

{ ˜̂
H − Ẽ}Ψ̃(r̃) = {(2μp)−1 ˜̂

P
2

+ Ũ(r̃) − Ẽ}Ψ̃(r̃) = 0, (1)

where r̃ ∈ R3 is the position vector of the particle having the effective mass
μp = μe (or μp = μh), ˜̂

P = −i�∇r̃ is the momentum operator, Ẽ is the energy of
the particle, Ũ(r̃) is the axially-symmetric potential confining the particle motion
in SQD, PSQD or OSQD. In Model A, Ũ(r̃) is chosen to be the potential of an
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isotropic or anisotropic axially-symmetric harmonic oscillator with the angular
frequency ω̃ = γr̃0�/(μpr̃

2
0), γr̃0 ∼ π2/3 being an adjustable parameter:

ŨL(r̃) = μpω̃
2(ζ1(x̃2 + ỹ2) + ζ3z̃

2)/2, (2)

r0 =
√

ζ1(x̃2
0 + ỹ2

0) + ζ3z̃2
0 is the radius of a spherical QD (ζ1 = 1, ζ3 = 1) or that

of a spheroidal QD (ζ1 = (r̃0/ã)4, ζ3 = (r̃0/c̃)4), inscribed into a spherical one,
where ã and c̃ are the semiaxes of the ellipse which transforms into a sphere at
ã = c̃ = r̃0. For Model B, Ũ(r̃) is the potential of a spherical or axially-symmetric
well

ŨB(r̃) = {0, 0 ≤ (x̃2 + ỹ2)/ã2 + z̃2/c̃2 < 1; Ũ0, (x̃2 + ỹ2)/ã2 + z̃2/c̃2 ≥ 1}, (3)

with walls of finite or infinite height 1 � Ũ0 < ∞. For Model C, Ũ(r̃) is taken
to be a spherical or axially-symmetric diffuse potential

ŨC(r̃) = Ũ0

[
1 + exp(((x̃2 + ỹ2)/ã2 + z̃2/c̃2 − 1)/s)

]−1
, (4)

where s is the edge diffusiveness parameter of the function smoothly approximat-
ing the vertical walls of finite height Ũ0. Below we restrict ourselves by consider-
ing Model B with infinite walls Ũ0 → ∞ and Model C with walls of finite height
Ũ0. We make use of the reduced atomic units: a∗

B = κ�
2/μpe

2 is the reduced
Bohr radius, κ is the DC permittivity, ER ≡ Ry∗ = �

2/(2μpa
∗
B

2) is the reduced
Rydberg unit of energy, and the following dimensionless quantities are intro-
duced: Ψ̃(r̃) = a∗

B
−3/2Ψ(r), 2Ĥ = ˜̂

H/Ry∗, 2E = Ẽ/Ry∗, 2U(r) = Ũ(r̃)/Ry∗,
r = r̃/a∗

B, a = ã/a∗
B, c̃ = c/a∗

B, r0 = r̃0/a∗
B, ω = γr0/r2

0 = �ω̃/(2Ry∗). For
an electron with the reduced mass μp ≡ μe = 0.067m0 at κ = 13.18 in GaAs:
a∗

B = 102Å= 10.2 nm, Ry∗ = ER = 5.2 meV.
Since the Hamiltonian Ĥ in (1)–(4) commutes with the z-parity operator

(z → −z or η → −η), the solutions are divided into even (σ = +1) and odd
(σ = −1) ones. The solution of Eq. (1), periodical with respect to the azimuthal
angle ϕ, is sought in the form of a product Ψ(xf , xs, ϕ) = Ψmσ(xf , xs)eimϕ/

√
2π,

where m = 0,±1,±2, ... is the magnetic quantum number. Then the function
Ψmσ(xf , xs) satisfies the following equation in the two-dimensional domain Ω =
Ωxf

(xs) ∪ Ωxs ⊂ R2\{0}, Ωxf
(xs) = (xmin

f (xs), xmax
f (xs)), Ωxs = (xmin

s , xmax
s ):

(
Ĥ1(xf ; xs) + Ĥ2(xs) + V (xf , xs) − 2E

)
Ψmσ(xf , xs) = 0. (5)

The Hamiltonian of the slow subsystem Ĥ2(xs) is expressed as

Ĥ2(xs) = Ȟ2(xs) = − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs), (6)

and the Hamiltonian of the fast subsystem Ĥ1(xf ; xs) is expressed via the re-
duced Hamiltonian Ȟf (xf ; xs) and the weighting factor g3s(xs):

Ĥ1(xf ; xs) = g−1
3s (xs)Ȟf (xf ; xs), (7)

Ȟf (xf ; xs) = − 1
g1f(xf )

∂

∂xf
g2f (xf )

∂

∂xf
+ V̌f (xf ) + V̌fs(xf , xs).
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Table 1. The values of conditionally fast xf and slow xs independent variables, the
coefficients gis(xs), gjf (xf ), and the potentials V̌f (xf ), V̌s(xs), V̌fs(xf , xs), in Eqs.(5)–
(7) for SQD, OSQD and PSQD in cylindrical (CC), spherical (SC), and oblate & prolate
spheroidal (OSC & PSC) coordinates with (d/2)2 = ±(a2−c2), + for OSC, − for PSC.

CC SC OSC &PSC
OSQD PSQD SQD OSQD & PSQD

xf z ρ η η

xs ρ z r ξ

g1f 1 ρ 1 1

g2f 1 ρ 1 − η2 1 − η2

g1s ρ 1 r2 1

g2s ρ 1 r2 ξ2 ± 1

g3s 1 1 r2 1

V̌f (xf ) ω2ζ3z
2 m2/ρ2 + ω2ζ1ρ

2 m2/g2f m2/g2f ± (d/2)2g2f2E

V̌s(xs) m2/ρ2 + ω2ζ1ρ
2 ω2ζ3z

2 0 ∓m2/g2s − ((d/2)2g2s − 1)2E

V̌fs(xf , xs) 0 0 V̌ (r, η) V̌ (ξ, η)

Table 1 contains the values of conditionally fast xf and slow xs independent
variables, the coefficients g1s(xs), g2s(xs), g3s(xs), g1f(xf ), g2f(xf ), and the
reduced potentials V̌f (xf ), V̌s(xs), V̌fs(xf , xs), entering Eqs. (5)–(7) for SQD,
OSQD, and PSQD in cylindrical (x = (z, ρ, ϕ)), spherical (x = (r, η = cos θ, ϕ)),
and oblate/prolate spheroidal (x = (ξ, η, ϕ)) coordinates [17]. In spherical co-
ordinates, the potential V̌ (r, η) in Table 1 using the definitions (2), (4) in the
reduced atomic units, for Model A is expressed as

V̌ (r, η) = 2r2V (r, η) = ω2r4(ζ1(1 − η2) + ζ3η
2),

and for Model C as

V̌ (r, η) = 2r2V (r, η) = 2r2U0

[
1 + exp((r2((1 − η2)/a2 + ζ3η

2/c2) − 1)/s)
]−1

,

both having zero first derivatives in the vicinity of the origin r = 0 (equlibrium
point). For Model B. the potentials V̌fs are zero, since the potential (3) is refor-
mulated below in the form of boundary conditions with respect to the variables
xf and xs. The solution Ψmσ

i (xf , xs) ≡ ΨEmσ
i (xf , xs) of the problem (5)–(7) is

sought in the form of Kantorovich expansion [15]

ΨEmσ
i (xf , xs) =

jmax∑

j=1

Φmσ
j (xf ; xs)χ

(mσi)
j (E, xs), (8)

using as a set of trial functions the eigenfunctions Φmσ
j (xf ; xs) of the Hamiltonian

Ȟf (xf ; xs) from (7), i.e., the solutions of the parametric BVP
{
Ȟf (xf ; xs) − λ̌i(xs)

}
Φmσ

i (xf ; xs) = 0, (9)
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in the interval xf ∈ Ωxf
(xs) depending on the conditionally slow variable xs ∈

Ωxs as on a parameter. These solutions obey the boundary conditions

lim
xf→xt

f (xs)

(
N

(mσ)
f (xs)g2f (xf )

dΦmσ
j (xf ; xs)

dxf
+ D

(mσ)
f (xs)Φmσ

j (xf ; xs)
)

=0 (10)

at the boundary points {xmin
f (xs), xmax

f (xs)} = ∂Ωxf
(xs), of the interval Ωxf

(xs).
In Eq. (10), N

(mσ)
f (xs) ≡ N

(mσ)
f , D

(mσ)
f (xs) ≡ D

(mσ)
f , unless specially declared,

are determined by the relations N
(mσ)
f = 1, D

(mσ)
f = 0 at m = 0, σ = +1 (or at

σ = 0, i.e., without parity separation), N
(mσ)
f = 0, D

(mσ)
f = 1 at m = 0, σ = −1

or at m �= 0. The eigenfunctions satisfy the orthonormality condition with the
weighting function g1f (xf ) in the same interval xf ∈ Ωxf

(xs):

〈
Φmσ

i |Φmσ
j

〉
=

∫ xmax
f (xs)

xmin
f (xs)

Φmσ
i (xf ; xs)Φmσ

j (xf ; xs)g1f (xf )dxf = δij . (11)

Here λ̌1(xs) < ... < λ̌jmax(xs) < ... is the desired set of real eigenvalues. The
corresponding set of potential curves 2E1(xs) < ... < 2Ejmax(xs) < ... of Eqs.
(7) is determined by 2Ej(xs) = g−1

3s (xs)λ̌j(xs). Note that for OSC and PSC, the
desired set of real eigenvalues λ̌j(xs) depends on a combined parameter, xs →
p2 = (d/2)22E, the product of spectral 2E and geometrical (d/2)2 parameters
of the problem (5). The solutions of the problem (9)–(11) for Models A and B
are calculated in the analytical form, while for Model C this is done using the
program ODPEVP [13].

Substituting the expansion (8) into Eq. (5) in consideration of (9) and (11),
we get a set of ODEs for the slow subsystem with respect to the unknown vector
functions χ(mσi)(xs, E) ≡ χ(i)(xs) = (χ(i)

1 (xs), ..., χ
(i)
jmax

(xs))T :
(
− 1

g1s(xs)
I

d

dxs
g2s(xs)

d

dxs
+ 2E(xs) + IV̌s(xs) − 2IE

)
χ(i)(xs) = (12)

=−
(

g2s(xs)
g1s(xs)

W(xs) +
1

g1s(xs)
dg2s(xs)Q(xs)

dxs
+

g2s(xs)
g1s(xs)

Q(xs)
d

dxs

)
χ(i)(xs).

Here 2E(xs) = diag(g−1
3s (xs)λ̌j(xs)), W(xs), and Q(xs) are matrices of the di-

mension jmax × jmax,

Wij(xs) = Wji(xs) =
∫ xmax

f (xs)

xmin
f (xs)

g1f (xf )
∂Φi(xf ; xs)

∂xs

∂Φj(xf ; xs)
∂xs

dxf , (13)

Qij(xs) = −Qji(xs) = −
∫ xmax

f (xs)

xmin
f

(xs)

g1f(xf )Φi(xf ; xs)
∂Φj(xf ; xs)

∂xs
dxf ,
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calculated analytically for Model B and by means of the program ODPEVP [13]
for Model C. Note that for Model A in SC or CC and Model B in OSC or PSC,
the variables xf and xs are separated so that the matrix elements Wij(xs) =
Qij(xs) ≡ 0 are put into the r.h.s. of Eq. (12), and V̌s(xs) are substituted from
Table 1. The discrete spectrum solutions 2E : 2E1 < 2E2 < ... < 2Et < ... that
obey the boundary conditions at points xt

s = {xmin
s , xmax

s } = ∂Ωxs bounding the
interval Ωxs :

lim
xs→xt

s

(
N (mσ)

s g2s(xs)
dχ(mσp)(xs)

dxs
+ D(mσ)

s χ(mσp)(xs)
)

= 0, (14)

where N
(mσ)
s = 1, D

(mσ)
s = 0 at m = 0, σ = +1 (or at σ = 0, i.e without parity

separation), N
(mσ)
s = 0, D

(mσ)
s = 1 at m = 0, σ = −1 or at m �= 0, and the

orthonormality conditions
∫ xmax

s

xmin
s

(χ(i)(xs))T χ(j)(xs)g1s(xs)dxs = δij , (15)

are calculated by means of the program KANTBP [11]. To ensure the prescribed
accuracy of calculation of the lower part of the spectrum discussed below with
eight significant digits we used jmax = 16 basis functions in the expansion (8) and
the discrete approximation of the desired solution by Lagrange finite elements
of the fourth order with respect to the grid pitch Ωp

hs(xs) = [xs
min, xs

k = xs
k−1 +

hs
k, xs

max].

3 SNA MATRA for Calculation of the BVP
and Integrals

To calculate the effective potentials of the problem (12)–(15) for each value xs =
xs

k of the FEM grid Ωp
hs(xs)

= [xs
min, xs

max] we consider a discrete representation
of solutions Φ(xf ; xs) ≡ Φmσ(xf ; xs) of the problem (9) by means of the FEM
on the grid, Ωp

hf (xf )
(xs) = [xf

0 =xf
min(xs), xf

k = xf
k−1 + hf

k , xf
n̄ =xf

max(xs)], in a
finite sum:

Φ(xf ; xs) =
n̄p∑

μ=0

Φh
μ(xs)Np

μ(xf ) =
n̄∑

k=1

p∑

r=0

Φh
r+p(k−1)(xs)N

p
r+p(k−1)(xf ), (16)

where Np
μ(xf ) are local functions, and Φh

μ(xs) are node values of Φ(xf
μ; xs). The

local functions Np
μ(xf ) are piece-wise polynomials of the given order, p equals

one only in the node xf
μ and equals zero in all other nodes xf

ν �= xf
μ of the

grid Ωp
hf (xf )

(xs), i.e., Np
ν (xf

μ) = δνμ, μ, ν = 0, 1, . . . , n̄p. The coefficients Φν(xs)

are formally connected with the solution Φ(xfp
k,r ; xs) in a node xf

ν = xfp
k,r , k =

1, . . . , n̄, r = 0, . . . , p:

Φh
ν (xs) = Φh

r+p(k−1)(xs) ≈ Φ(xfp
k,r ; xs), xfp

k,r = xf
k−1 +

hf
k

p
r.
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The theoretical estimate for the H0 norm between the exact and numerical
solution has the order of

|λ̌j(xs) −λ̌h
j (xs)|≤c1h

2p,
∥
∥
∥Φj(xf ; xs)− Φh

j (xs)
∥
∥
∥

0
≤c2h

p+1, (17)

where hf = max1<j<n̄ hf
j is the maximal step of the grid, and the constants

c1 > 0, c2 > 0 do not depend on the step hf [19]. It has been shown possible
to construct schemes for solving the BVPs and integrals with high order of
accuracy comparable with that of the computer in accordance with the following
estimations [13]

∣
∣
∣
∣
∣
∂λ̌j(xs)

∂xs
− ∂λ̌h

j (xs)
∂xs

∣
∣
∣
∣
∣
≤ c3h

2p,

∥
∥
∥
∥
∥

∂Φj(xf ; xs)
∂xs

− ∂Φh
j (xs)
∂xs

∥
∥
∥
∥
∥

0

≤ c4h
p+1, (18)

∣
∣Qij(xs) − Qh

ij(xs)
∣
∣ ≤ c5h

2p,
∣
∣Wij(xs) − Wh

ij(xs)
∣
∣ ≤ c6h

2p, (19)

where hf is the grid step, p is the order of finite elements, i, j are the numbers of
the corresponding solutions, and the constants c3, c4, c5, and c6 do not depend
on the step hf . The proof is straightforward following the scheme of the proof of
estimations (17) in accordance with [19,20]. Verification of the above estimations
is provided by numerical analysis on condensed grids and by comparison with
examples of exact solvable models A and B.

Let us consider the reduction of BVP (9), (11) in the interval Δ : xf
min(xs) <

xf <xf
max(xs) with the boundary conditions (10) at points xf

min(xs) and xf
max(xs)

rewritten in the form

A(xs)Φj(xf ; xs) = λ̌j(xs)B(xs)Φj(xf ; xs), (20)

where A(xs) is a differential operator, and B(xs) is a multiplication opera-
tor, differentiable with respect to the parameter xs ∈ Ωxs . Substituting the
expansion (16) into (20) and performing integration with respect to xf by
parts in the interval Δ = ∪n̄

k=1Δk, we arrive at a set of linear algebraic
equations

ap
μν(xs)Φh

j,μ(xs) = λ̌h
j (xs)bp

μν(xs)Φh
j,μ(xs), (21)

in the framework of the briefly described FEM. Using the p-order Lagrange ele-
ments [19], we present below Algorithm 1 for constructing the algebraic problem
(21) by the FEM in the form of conventional pseudocode. Its MAPLE realization
allows us to show explicitly the recalculation of indices μ, ν and to test the cor-
responding modules of the parametric matrix problems, derivatives of solutions
by parameter, and calculation of integrals.
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Algorithm 1. Generation of parametric algebraic problems

Input:
Δ = ∪n̄

k=1Δk = [xf
min(xs), xf

max(xs)] is the interval of changing of the indepen-
dent variable xf , whose boundaries depend on the parameter xs = xs

k′ ;
hf

k = xf
k − xf

k−1 is the grid step;
n̄ is the number of subintervals Δk = [xf

k−1, x
f
k ];

p is the order of finite elements;
A(xs),B(xs) are the differential operators in Eq. (20);
Output:
Np

μ(xf ) are the basis functions in (16);
ap

μν(xs), bp
μν(xs) are the matrix elements in the system of algebraic equations

(21);
Local:
xfp

k,r are the nodes; φp
k,r(xf ) are the Lagrange elements; μ, ν = 0, 1, . . . , n̄p ;

1: for k:=1 to n̄ do
for r:=0 to p do

xfp
k,r = xf

k−1 + hf
k

p r
end for;

end for;
2: φp

k,r(xf ) =
∏

r′ �=r[(xf − xfp
k,r′)(xfp

k,r − xfp
k,r′)−1]

3: Np
0 (xf ):= if xf ∈ Δ1 then φp

1,0(xf ) else 0;
for k:=1 to n̄ do

for r:=1 to p − 1 do
Np

r+p(k−1)(xf ): = if xf ∈ Δk then φp
k,r(xf ) else 0;

end for;
Np

kp(xf ):= if xf ∈ Δk then φp
k,p(xf )

else if xf ∈ Δk+1 then φp
k+1,0(xf ) else 0;

end for;
Np

n̄p(xf ):= if xf ∈ Δn̄ then φp
n̄,p(xf ) else 0;

4: for μ, ν:=0 to n̄p do
ap

μν(xs) :=
∫

Δ

g1(xf )Np
μ(xf )A(xs)Np

ν (xf )dxf ;

bp
μν(xs) :=

∫

Δ

g1(xf )Np
μ(xf )B(xs)Np

ν (xf )dxf ;

end for;

Remarks:

1. For equation (9), the matrix elements of the operator (7), and V (xf ; xs) =
V̌fs(xf , xs) + V̌f (xf ) between the local functions Nμ(xf ) and Nν(xf ) defined in
the same interval Δj calculated by formula using xf = xf

k−1 + 0.5hf
k(1 + ηf ),

q, r = 0, p:
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(a(xs))μ,ν =
+1∫

−1

{
4

(hf
k)2

g2f (xf )(φp
k,q)

′(φp
k,r)

′ + g1f (xf )V (xf ; xs)φ
p
k,qφ

p
k,r

}
hf

k

2 dηf ,

(b(xs))μ,ν =
+1∫

−1

g1f(xf )φp
k,qφ

p
k,r

hf
k

2 dηf , μ = q + p(k − 1), ν = r + p(k − 1).

2. If the integrals can not be calculated analytically (see, e.g., section 4), then
they are calculated by numerical methods [19], namely, by means of the Gauss
quadrature formulae of the order p + 1.

3. For OSQD&PSQD model C, the problem (9)–(11) has been solved using
the grid Ωp

hf (xf )
(xs)[x

f
min, xf

max] = −1(20)1 (the number in parentheses denotes
the number of finite elements of order p = 4 in each interval).

Generally, 10-16 iterations are required for the subspace iterations to converge
the subspace to within the prescribed tolerance. If the matrix ap ≡ ap(xs) in
Eq. (21) is not positively defined, the problem (21) is replaced by the following
problem:

ãp Φh = λ̃h bp Φh, ãp = ap − αbp. (22)

The number α (the shift of the energy spectrum) is chosen in such a way that
the matrix ãp is positive. The eigenvector of the problem (22) is the same, and
λ̌h = λ̃h + α, where the shift α is evaluated by Algorithm 2.

Algorithm 2. Evaluating the lower bound for the lowest eigenvalue of the gen-
eralized eigenvalue problem

Generally it is impossible to define the lower bound for the lowest eigenvalue
of Eq. (22) because the eigenvalues λ̌h

1 (xs) < ... < λ̌h
i (xs) < ... < λ̌h

jmax
(xs)

depend upon the parameter xs. However, we can use the following algorithm to
find the lower bound for the lowest eigenvalue λ̌h

1 (xs) at a fixed value of xs:

Step 1. Calculate LDLT factorization of Ap − αBp.
Step 2. If some elements of the diagonal matrix D are less than zero

then put α = α − 1 and go to Step 3, else go to Step 5.
Step 3. Calculate LDLT factorization of Ap − αBp.
Step 4. If some elements of the diagonal matrix D are less than zero

then put α = α − 1 and go to Step 3, else put α = α − 0.5
and go to Step 8.

Step 5. Put α = α + 1 and calculate LDLT factorization of Ap − αBp.
Step 6. If all elements of the diagonal matrix D are greater than zero

then go to Step 5.
Step 7. Put α = α − 1.5.
Step 8. End.

After using the above algorithm one should find the lower bound for the lowest
eigenvalue, and always λ̌h

1 (xs) − α ≤ 1.5.
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a) b)

Fig. 1. The energies 2E = Ẽ/ER of even σ = +1 lower states for OSQD versus the
minor c, ζca = c/a ∈ (1/5, 1) being the spheroid aspect ratio: a) well with impermeable
walls, b) diffusion potential with 2U0 = 36, s = 0.1, the major semiaxis a = 2.5 and
m = 0. Tine lines are minimal values 2Emin

i ≡ 2Ei(xs = 0) of potential curves.

4 Spectral Characteristics of Spheroidal QDs

Models B and C for Oblate Spheroidal QD. At fixed coordinate xs of the
slow subsystem, the motion of the particle in the fast degree of freedom xf is
localized within the potential well having the effective width

L̃ (xs) = 2c
√

1 − x2
s/a2, (23)

where L = L̃/a∗
B. The parametric BVP (9)–(11) at fixed values of the coor-

dinate xs, xs ∈ (0, a), is solved in the interval xf ∈ (−L (xs) /2, L (xs) /2)
for Model C using the program ODPEVP, and for Model B the eigenvalues
Ẽno (xs) /ER ≡ 2Ei (xs), no = i = 1, 2, ..., and the corresponding parametric
eigenfunctions Φσ

i (xf ; xs), obeying the boundary conditions (10) and the nor-
malization condition (11), are expressed in the analytical form:

2Ei (xs)=
π2n2

o

L2 (xs)
, Φσ

i (xf ; xs)=

√
2

L (xs)
sin

(
πno

2

(
xf

L (xs) /2
− 1

))
, (24)

where the even solutions σ = +1 are labelled with odd no = nzo +1 = 2i−1, and
the odd ones σ = −1 with even no = nzo + 1 = 2i, i = 1, 2, 3, ... . The effective
potentials (13) in Eq. (12) for the slow subsystem are expressed analytically
via the integrals over the fast variable xf of the basis functions (24) and their
derivatives with respect to the parameter xs including states with both parities
σ = ±1:

2Ei(xs) =
a2π2n2

o

4c2(a2 − x2
s)

, Wii(xs) =
3 + π2n2

o

12
x2

s

(a2 − x2
s)2

, (25)

Wij(xs) =
2non

′
o(n

2
o + n′

o
2)(1 + (−1)no+n′

o)
(n2

o − n′
o
2)2

x2
s

(a2 − x2
s)2

,
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Fig. 2. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model B of OSQD for the major semiaxis a = 2.5 and different values of the minor
semiaxis c (ζca = c/a ∈ (1/5, 1))

Qij(xs) =
non

′
o(1 + (−1)no+n′

o)
(n2

o − n′
o
2)2

xs

a2 − x2
s

, n′
o �= no.

For Model B at c = a = r0 the OSQD turns into SQD with known analytically
expressed energy levels Et ≡ Esp

nlm and the corresponding eigenfunctions

2Esp
nlm =

α2
nr+1,l+1/2

r2
0

, Φsp
nlm(r, θ, ϕ)=

√
2Jl+1/2(

√
2Esp

nlmr)
r0
√

r|Jl+3/2(αnr+1,l+1/2)|
Ylm(θ, ϕ), (26)

where αnr+1,l+1/2 are zeros of the Bessel function of semi-integer index l +
1/2, numbered in ascending order 0 < α11 < α12 < ... < αiv < ... by the
integer i, v = 1, 2, 3, .... Otherwise one can use equivalent pairs iv ↔ {nr, l} with
nr = 0, 1, 2, ... numbering the zeros of Bessel function and l = 0, 1, 2, ... being
the orbital quantum number that determines the parity of states σ̂ = (−1)l =
(−1)mσ, σ = (−1)l−m = ±1. At fixed l, the energy levels Ẽnlm/ER = 2Et

degenerate with respect to the magnetic quantum number m, are labelled with
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Fig. 3. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model C of OSQD with 2U0 = 36 and s = 0.1 for the major semiaxis a = 2.5 and
different values of the minor semiaxis c (ζca = c/a ∈ (1/5, 1))

the quantum number n = nr + 1 = i = 1, 2, 3, ... , in contrast to the spectrum
of a spherical oscillator, degenerate with respect to the quantum number λ =
2nr + l. Figures 1, 2, and 3 show the lower part of non-equidistant spectrum
Ẽ(ζca)/ER = 2Et and the eigenfunctions Ψmσ

t from Eq. (8) for even states
OSQD Models B and C at m = 0. There is a one-to-one correspondence rule
no = nzo + 1 = 2n − (1 + σ)/2, n = 1, 2, 3, ..., nρ = (l − |m| − (1 − σ)/2)/2,
between the sets of spherical quantum numbers (n, l, m, σ̂) of SQD with radius
r0 = a = c and spheroidal ones (nξ = nr, nη = l − |m|, m, σ) of OSQD with the
major a and the minor c semiaxes, and the adiabatic set of cylindrical quantum
numbers (nzo, nρ, m, σ) at continuous variation of the parameter ζca = c/a.
The presence of crossing points of the energy levels of similar parity under the
symmetry change from spherical ζca = 1 to axial, i.e., under the variation of the
parameter 0 < ζca < 1, in the BVP with two variables at fixed m for Model B
is caused by the possibility of variable separation in the OSC [17], i.e., the r.h.s.
of Eq. (12) equals zero. The transformation of eigenfunctions occurring in the
course of a transition through the crossing points (marked by circles) in Fig. 1, is
shown in Fig. 2 for model B and in Fig. 3 for model C (marked by arrows). From
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a) b)

Fig. 4. The energies 2E = Ẽ/ER of even σ = +1 lowest states for PSQD depending
on the minor semiaxis a (ζac = a/c ∈ (1/5, 1) is the spheroid aspect ratio): a) well with
impermeable walls, b) diffusion potential, 2U0 = 36, s = 0.1, for the major semiaxis
c = 2.5 and m = 0. Tine lines are minimal values 2Emin

i ≡ 2Ei(xs = 0) of potential
curves.

comparison of these Figures one can see that if the eigenfunctions are ordered
according to increasing eigenvalues of the BVPs, then for both Models B and C,
the number of nodes [18] is invariant under the variation of parameter c from
c = a = 2.5 to c = 0.5 of potentials (3) and (4). For Model B, such a behavior
follows from the fact of separation of variables of the BVP with potential (3)
in the OSC (see Table 1), while for Model C, further investigation is needed
because the coordinate system, where the variables of the BVP with potential
(4) are separated, is unknown. So, at small value of deformation parameter (ζca

for OSQD or ζac for PSQD) there are nodes only along corresponding major
axis. For Model C, at each value of the parameter a their is a finite number of
discrete energy levels limited by the value 2U0 of the well walls height. As shown
in Fig. 1b, the number of levels of OSQD, equal to that of SQD at a = c = r0,
is reduced with the decrease of the parameter c (or ζca), in contrast to Models
A and B that have countable spectra, and avoided crossings appear just below
the threshold.

Models B and C for Prolate Spheroidal QD. In contrast to OSQD, for
PSQD at fixed coordinate xs of the slow subsystem the motion of the particle is
confined to a 2D potential well with the effective variable radius

ρ0 (xs) = a
√

1 − x2
s/c2, (27)

where ρ0 (xs) = ρ̃0 (xs) /aB. The parametric BVP (9)–(11) at fixed values of
the coordinate xs from the interval xs ∈ (−c, c) is solved in the interval xf ∈
(0, ρ0 (xs)) for Model C using the program ODPEVP, while for Model B the
eigenvalues Ẽnρp+1 (xs) /ER ≡ 2Ei (xs), nρp + 1 = i = 1, 2, ..., and the cor-
responding parametric basis functions Φmσ=0

i (xf ; xs) ≡ Φm
i (xf ; xs) without
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Fig. 5. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model B of PSQD for the major semiaxis c = 2.5 and different values of the minor
semiaxis a (ζac = a/c ∈ (1/5, 1))

parity separation obeying the boundary conditions (10) and the normalization
condition (11) are expressed in the analytical form:

2Ei (xs) =
α2

nρp+1,|m|
ρ2
0 (xs)

, Φm
nρp

(xs) =
√

2
ρ0 (xs)

J|m|(
√

2Enρp+1,|m| (xs)xf )

|J|m|+1(αnρp+1,|m|)|
, (28)

where αnρp+1,|m| = J̄
nρp+1

|m| are positive zeros of the Bessel function of the first
kind J|m|(xf ) labeled in the ascending order with the quantum number nρp+1 =
i = 1, 2, .... The effective potentials (13) in Eq.(12) for the slow subsystem are
calculated numerically in quadratures via the integrals over the fast variable xf

of the basis functions(28) and their derivatives with respect to the parameter
xs using SNA MATRA from Section 2. Figures 4 and 5 illustrate the lower
part of the non-equidistant spectrum E(ζac)/ER = 2Ẽt and the eigenfunctions
Ψmσ

t from Eq. (8) of even states of PSQD Models B and C. There is a one-
to-one correspondence rule nρp + 1 = np = i = n = nr + 1, i = 1, 2, ... and
nzp = l− |m| between the sets of quantum numbers (n, l, m, σ̂) of SQD with the
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radius r0 = a = c and spheroidal ones (nξ = nr, nη = l − |m|, m, σ) of PSQD
with the major c and the minor a semiaxes, and the adiabatic set of quantum
numbers (n = nρp+1, nzp, m, σ) under the continuous variation of the parameter
ζac = a/c. The presence of crossing points of similar-parity energy levels in
Fig. 4 under the change of symmetry from spherical ζac = 1 to axial, i.e., under
the variation of the parameter 0 < ζac < 1, in the BVP with two variables at
fixed m for Model B is caused by the possibility of variable separation in the
PSC [17], i.e., r.h.s. of Eq. (12) equals zero. For Model C, at each value of the
parameter c there is also only a finite number of discrete energy levels limited by
the value 2U0 of the well walls height. As shown in Fig. 4b, the number of energy
levels of PSQD, equal to that of SQD at a = c = r0, which is determined by
the product of mass μe of the particle, the well depth Ũ0, and the square of the
radius r̃0, is reduced with the decrease of the parameter ã (or ζac) because of the
promotion of the potential curve (lower bound) into the continuous spectrum, in
contrast to Models A and B having countable spectra. Note that the spectrum
of Model C for PSQD or OSQD should approach that of Model B with the
growth of the walls height U0 of the spheroidal well. However, at critical values
of the ellipsoid aspect ratio it is shown that in the effective mass approximation,
both the terms (lower bound) and the discrete energy eigenvalues in models of
the B type move into the continuum. Therefore, when approaching the critical
aspect ratio values, it is necessary to use models such as the lens-shaped self-
assembled QDs with a quantum well confined to a narrow wetting layer [3] or
if a minor semiaxis becomes comparable with the lattice constant to consider
models (see,e.g.[21]), different from the effective mass approximation.

5 Conclusion

By examples of the analysis of energy spectra of SQD, PSQD, and OSQD mod-
els with thee types of axially symmetric potentials, the efficiency of the developed
computational scheme and SNA is demonstrated. Only Model A (anisotropic har-
monic oscillator potential) is shown to have an equidistant spectrum, while Models
B and C (wells with infinite and finite walls height) possess non-equidistant spec-
tra. In Model C, there is a finite number of energy levels. This number becomes
smaller as the parameter a or c (ζac or ζca) is reduced because the potential curve
(lower bound) moves into the continuum. Models A and B have countable discrete
spectra. This difference in spectra allows verification of SQD, PSQD, and OSQD
models using experimental data [2], e.g., photoabsorption, from which not only
the energy level spacing, but also the mean geometric dimensions of QD may be
derived [5,7,8]. It is shown that there are critical values of the ellipsoid aspect ra-
tio, atwhich in the approximation of effective mass the discrete spectrum ofmodels
with finite-wall potentials turns into a continuous one. Hence, using experimental
data, it is possible to verify different QD models like the lens-shaped self-assembled
QDs with a quantum well confined to a narrow wetting layer [3], or to determine
the validity domain of the effective mass approximation, if a minor semiaxis be-
comes comparable with the lattice constant and to proceed opportunely to more
adequate models such as [21].
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Note a posteriori that the diagonal approximation of the slow-variable ODE
(12) without the diagonal matrix element Wii (so-called rude adiabatic approxi-
mation) provides the lower estimate of the calculated energy levels. With this ma-
trix element taken into account (adiabatic approximation), the upper estimate of
energy is provided, unless in the domain of the energy level crossing points. There-
fore, the Born–Oppenheimer (BO) approximation is generally applicable only for
estimating the ground state at an appropriate value of the small parameter. For
Model B in the first BO approximation 2Ei ≈ E

(0)
i + E

(1)
i is given by the mini-

mal value of the slow subsystem energy Emin
1 (xs) at the equilibrium points xs = 0

(namely, E
(0)
i = π2n2

o/(2c)2 from Eq. (24) for OSQD and E
(0)
i = α2

nρp+1/a2 from

Eq. (28) for PSQD), and by the corresponding energy values E
(1)
i =π(ac)−1no(2nρ

+ |m|+1) and E
(1)
i =2(ac)−1αnρp+1,|m|(nz +1/2) of the 2D and 1D harmonic os-

cillator, respectively. It is shown in [4] that the terms Ei(xs) allow high-precision
approximation by the Hulten potential. This can be accomplished by means of
computer algebra software, e.g., Maple, Mathematica, which allows (in the rude
adiabatic approximation) to obtain the lower bound of the spectrum by solving
transcendental equations expressed analytically in terms of known special func-
tions, and to use this approach for further development of our SNA project.

The software package developed is applicable to the investigation of impurity
and exciton states in semiconductor nanostructure models. Further development
of the method and the software package is planned for solving the quasi-2D
and quasi-1D BVPs with both discrete and continuous spectrum, which are
necessary for calculating the optical transition rates, channeling and transport
characteristics in the models like quantum wells and quantum wires.
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