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Effects of photon momentum in nonrelativistic (γ,2e) processes
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We study the effects of nonzero photon momentum on the triply differential cross section (TDCS) for (γ,2e)
processes. Due to the low value of the photon momentum, these effects are weak and manifest only in special
kinematical conditions such as the back-to-back emission of the electrons with equal energy sharing. Helium and
a few light heliumlike ions are treated in detail. Quite unexpectedly, the magnitude of these effects is maximal for
relatively small photon energies. However, although this effect on the TDCS remains rather small, of the order
of a few mb eV−1 sr−2, it is sufficient to be observed experimentally.
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I. INTRODUCTION

At present, most of the theoretical studies of the interaction
of atoms and molecules with oscillating electric fields assume
that the dipole approximation is valid. This means that the
vector potential �A(�r,t) hardly varies over the characteristic
atomic distances, allowing us to neglect the dependence on
�r of �A. In fact, this approximation amounts to neglecting
retardation across the atom. This approximation is usually
extremely good. However, for very high frequencies, the vector
potential may vary significantly over typical atomic distances.
In these conditions, it is important to take explicitly into
account the dependence of �A on the position vector �r . This can
be achieved by decomposing �A(�r,t) in a basis of plane waves
exp[±i(ωt − �k · �r)], where ω is the photon frequency and �k is
its momentum. Note that even for very high frequencies, the
photon momentum, the norm of which is given by |�k| = ω/c,
where c is the speed of light, is usually very small. We therefore
expect its effects to be rather weak.

To our knowledge, Amusia et al. were the first to con-
sider theoretically one-photon double ionization of helium at
nonrelativistic electron energies while taking into account the
nonzero photon momentum in their perturbative calculations
[1]. They found one more process, the so-called seagull
diagram, which contributes to the amplitude. This process does
occur only if k �= 0. In addition, their calculations suggest
that the amplitude of the effects is sensitive to the way the
helium initial- and final-state wave functions behave in the
cusp region where the interelectron distance tends to zero.
Unfortunately, at the time their paper was published, the
authors could only treat the electron-electron interaction in the
final state as a perturbation. Recently, Ludlow et al. [2], using
their time-dependent close-coupling method, found a peak in
the quadrupole energy distribution of the escaping electrons
at 800-eV photon energy. This peak, which corresponds to
equal energy sharing, is a signature of the above process
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and disappears completely when the photon momentum is
zero. Later, evidence of this effect was found experimentally
[3]. Note that rigorously speaking, the photon momentum is
never equal to zero. Mathematically, however, k = 0 simply
means that the dipole approximation is exact within the
present scheme. In the following discussions, k = 0 has to
be understood in this sense.

In this paper, we use the time-independent perturbation
theory to analyze Amusia’s process in the case of lin-
early and elliptically polarized fields. Contrary to Ludlow
et al., all multipole interactions are taken into account.
In addition, our helium initial- and final-state wave func-
tions satisfy the Kato cusp condition. We calculate the
triply differential cross section (TDCS) and try to eval-
uate accurately the relative importance of the multipole
transitions when compared to the dipole ones. Atomic
units h̄ = e = me = 1 are used throughout unless otherwise
specified.

II. THEORY

A. Linear polarization

We have to calculate the following matrix element [4]:

M(�k) =
∫

�−∗
f (�r1,�r2)[ei�k·�r1 (�ε · �̂p1) + ei�k·�r2 (�ε · �̂p2)]

×�i(�r1,�r2)d3r1d
3r2. (1)

Here �̂pj ≡ −i �∇j , j = 1,2. The functions � are the wave-
function solution of the field-free helium Hamiltonian. For
clarity, we define the coordinates of all vectors as follows:
�ε = (0,0,1) is the unit vector along the polarization axis
that coincides with the z axis; the outgoing electron mo-
menta are �p1 = p1(sin θ1 cos ϕ1, sin θ1 sin ϕ1, cos θ1) and �p2 =
p2(sin θ2 cos ϕ2, sin θ2 sin ϕ2, cos θ2), and the photon momen-
tum �k = (ω/c)(cos φ; sin φ; 0). The energy conservation can
be written ω + εHe

0 = p2
1/2 + p2

2/2, where εHe
0 is the helium
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ground-state energy. The TDCS is given by (α = c−1 =
1/137):

d3σ

d�1d�2dE1
= 2

αp1p2

(2π )4ω

[
1

2π

∫ 2π

0
|M(�k)|2dφ

]
. (2)

In most of the experimental geometries and kinematical
conditions, k is rather small compared to the electron momenta.
As a result, it is straightforward to show that in very good
approximation,

M(�k) = M(0) + [(�k · �p1)g1 + (�k · �p2)g2] + O(k2). (3)

Equation (3) shows that an effect of the nonzero photon
momentum can be seen in the angular domain where M(0) ∼
0. It is well known [5] that, for equal energy sharing, i.e., when
p1 = p2, the matrix element M(0) = 0 if �p1 = − �p2 (back-to-
back emission, θ2 = π − θ1, ϕ2 = π + ϕ1). Let us consider
the coplanar case, when both momenta are disposed in the
plane (x,z): �p1 = p1(sin θ,0, cos θ ) and �p2 = p1(− sin θ,0,

− cos θ ). In this geometry, it is now possible to separate the φ

and θ dependence and write

M(�k) ≈ k cos φG(θ ), (4)

where the expression of G(θ ) is, for the time being,
unspecified. Averaging on the variable φ in Eq. (2) is

trivial: |M(�k)|2 = 1
2 |M(�k)φ=0|2. In the general case, |M(�k)|2 ≈

|M(0)|2 + 1
2 |M(�k)φ=0 − M(0)|2.

In order to estimate the magnitude of the TDCS, we use
the same initial and final wave functions considered in the
model described earlier in Ref. [6]. The properly normalized
and correlated initial-state wave function is given by

�i(�r1,�r2) =
∑

j

Dj (e−aj r1−bj r2 + e−aj r2−bj r1 )e−γj r12 , (5)

giving the helium ground energy εHe
0 = −2.90372 a.u. The

final double-continuum wave function is given by the well-
known three-body double-continuum Coulomb (3C) function:

�
(−)
f (�r1,�r2) = ei �p12·�r12φ−∗

1 φ−∗
2 φ−∗

12 . (6)

Here

φ−∗
j ( �pj ,�r) = R(ξj )e−i �pj �r

1F1(−iξj ,1; i(pj r + �pj · �r)),

with

�p12 = 1

2
( �p1 − �p2); ξ12 = 1

2p12
; ξj = − 2

pj

(j = 1,2);

R(ξ ) = e−πξ/2 �(1 + iξ ).

In these conditions, we are left with the evaluation of the
following three-dimensional integral:

M(�k)= i
∑

j

Dj

∫
d3p

(2π )3

{
γjK12( �p12; �p12 − �p; �ε; γj )

[
∂I1( �p1; �k + �p; aj )

∂aj

∂I2( �p2; − �p; bj )

∂bj

− ∂I2( �p2; �k − �p; aj )

∂aj

∂I1( �p1; �p; bj )

∂bj

+ (aj � bj )

]
+ ∂I12( �p12; �p12 − �p; γj )

∂γj

[
ajK1( �p1; �k + �p; �ε; aj )

∂I2( �p2; − �p; bj )

∂bj

+ ajK2( �p2; �k − �p; �ε; aj )
∂I1( �p1; �p; bj )

∂bj

+ (aj � bj )

]}
. (7)

In Eq. (7),

Ix( �px, �p,λ) =
∫

d3r

r
ei �p·�rφ−∗

x ( �px,�r)e−λr

= 4π R(ξx)
[(λ − ipx)2 + p2]iξx

[( �p − �px)2 + λ2](1+iξx )
, (8)

and

Kx( �px, �p,�ε,λ) =
∫

d3r

r
ei �p·�rφ−∗

x ( �px,�r)(�ε · �r)e−λr

= −2iIx( �px, �p,λ)

[
iξx

�ε · �p
(λ − ipx)2 + p2

− (1 + iξx)
�ε · ( �p − �px)

( �p − �px)2 + λ2

]
. (9)

The first term in the curly braces on the right-hand side of
Eq. (7) just corresponds to the seagull graph discussed in
Ref. [1] and disappears if k = 0.

B. Elliptic polarization

In the case of elliptically polarized photons, we have �ε =
(i sin β,0, cos β) with −π/2 � β � π/2, and �k = αω(0,1,0).
The case β = 0 corresponds to the linear polarization.

III. RESULTS AND DISCUSSION

In Fig. 1, we consider the case k = 0 and compare our
results for the absolute TDCS as a function of θ2 with the
data of two experiments by Schwartzkopf and Schmidt [7] and
Brauning et al. [8]. In both cases, the photon energy is equal
to 99 eV, the two electrons share the same energy, E1 = E2 =
10 eV, and �p1 is along the polarization axis.

The qualitative agreement of our results with the exper-
imental data of Brauning et al. and the fact that it is also
the case with other theoretical approaches that reproduce the
correct peak position seem to suggest that there is a problem
with the experimental results of Schwartzkopf and Schmidt.
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FIG. 1. Absolute TDCS in b eV−1 sr−2 [given by (2)] as a function
of θ2, the angle between �p2 and the polarization axis. The photon
momentum k = 0, ω = 99 eV, �p1 is directed along the polarization
axis, and E1 = E2 = 10 eV. Our results (solid line) are compared to
the data of two experiments: open circles show Schwartzkopf and
Schmidt [7], and black dots show Brauning et al. [8].

On the other hand, it is legitimate to expect that the present
model gives at least reliable qualitative results.

In Fig. 2, we consider the case of a back-to-back electron
emission ( �p1 = − �p2). The averaged TDCS is shown as a
function of the angles θ and ϕ of the escaping electrons.
The kinetic energy of each electron is E = 360 eV. Note that
for a back-to-back emission, the electron energy distribution
presents a local maximum at equal energy sharing [2] [see
also Fig. 6, taking into account that M(0) = 0]. We clearly
see a four-peak angle distribution. This contrasts with the zero
photon momentum case where this distribution is uniformly
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FIG. 2. (Color online) Absolute averaged TDCS in mb eV−1

sr−2 in the case of a back-to-back electron emission. �p1 = − �p2 =
p(sin θ cos ϕ, sin θ sin ϕ, cos θ ), ω = 799 eV, E1 = E2 = 360 eV,
and k = αω.
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FIG. 3. (Color online) Absolute averaged TDCS in mb eV−1

sr−2 as a function of θ2 for ω = 799 eV and E1 = E2 = 360 eV.
It is assumed that the angle θ1 between the momentum �p1 and the
polarization axis is fixed at 45◦. In addition, the direction of the vector
�p2 rotates with θ2 in the plane formed by �p1 and the polarization axis.
Two different values of the photon momentum k are considered: k = 0
(dashed line) and k = αω (solid line).

zero. Of course, the effect is very small, the magnitude of it
being of the order of a fraction of a millibarn.

This effect is also observable in Fig. 3 for the same case
as in Fig. 2. Here, however, the angle between the electron
momentum �p1 and the polarization vector is fixed at 45◦. These
two vectors form a plane in which �p2 rotates. The TDCS is
shown as a function of θ2 for two values, namely, 0 and αω, of
the photon momentum k. The peak at θ2 = 215◦ for k = αω

is about two times higher than the value obtained for k = 0,
but again, the effect is rather small.

So far, we have considered the case of a linear polarization.
Let us now assume that the field is circularly polarized. In
Fig. 4, we consider the same case as in Fig. 2, except that β,
which determines the type of field polarization, is now equal to
45◦, which corresponds to the circular polarization. The TDCS
as a function of θ and ϕ exhibits a volcano type of structure,
whereas for zero photon momentum, it is uniformly zero. Note
that for β = 0 (linear polarization), this distribution reduces
to the one given in Fig. 2. It is interesting to analyze for what
value of β the effects due to nonzero photon momentum are the
strongest. In Fig. 5, we show the TDCS for θ = 90◦ and ϕ =
135◦ as a function of β for the same case as before, namely, k =
αω, a photon energy of 799 eV, and E1 = E2 = 360 eV. We
clearly see that the TDCS reaches its highest value for |β| �
75◦, i.e., for a highly elliptical polarization. It is interesting
to note that if we were able to create a beam of such highly
elliptically polarized photons, we would practically double the
TDCS in comparison to the linear polarization. Note that for
β = 0 (linear polarization), the TDCS is equal to zero. This
results from the fact that θ = 90◦ and ϕ = 135◦ (see Fig. 2).

Let us now study the electron energy distribution in the case
where the field polarization is linear. As before, we assume that
both electrons are emitted back to back and consider the same
case as in Fig. 2, namely, a photon energy of 799 eV and
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FIG. 4. (Color online) Absolute TDCS in mb eV−1 sr−2 in the
case of a back-to-back electron emission. Angles θ and ϕ are the
same as in Fig. 2, ω = 799 eV, E1 = E2 = 360 eV, and k = αω. In
this case, the field is circularly polarized, β = 45◦.

a photon momentum given by k = αω. We also set θ = 45◦
and ϕ = 0. This corresponds to a maximum of the TDCS in
Fig. 2. The results for the energy distribution are shown in
Fig. 6, where they are compared with those obtained with
k = 0. We clearly observe an effect resulting from the nonzero
value of the photon momentum for E1 = E2 = 360 eV. Note,
however, that at E1 = E2 = E, the TDCS does not exhibit a
local maximum. This is because there is no integration on the
solid angles �1 and �2.

-80 -60 -40 -20 0 20 40 60 80
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

TD
C
S

β (deg)

FIG. 5. Absolute TDCS in mb eV−1 sr−2 for θ = 90◦, ϕ = 135◦

as a function of β, which determines the polarization of the field. As in
Fig. 2, the photon energy is equal to 799 eV, k = αω, and it is assumed
that both electrons are emitted back to back with E1 = E2 = 360 eV.
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FIG. 6. (Color online) Electron energy distribution of the aver-
aged TDCS in mb eV−1 sr−2. Electrons move in opposite directions,
with θ = 45◦, ϕ = 0, and ω = 799 eV. Solid line, k = αω; dashed
line, k = 0.

In Fig. 7, we study how the maximal value of the TDCS that
occurs at θ = 45◦ and ϕ = 0 (see Fig. 2) varies with the energy
E of each electron or, in other words, with the photon energy.
As before, it is assumed that both electrons are emitted back
to back. Quite unexpectedly, we clearly see that the amplitude
of the maximum of the TDCS occurs at the rather low energy
E ≈ 10 eV, which corresponds to a photon energy of about
100 eV. In addition, the results presented in Fig. 7 demonstrate
clearly that the amplitude of the effects due to the nonzero
photon momentum depends strongly on the way the final-state
electron correlation is treated. In the case of the 3C function,
the amplitude of the maximum of the TDCS near E = 10 eV is
almost eight times the value obtained by using an uncorrelated
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FIG. 7. Dependence of the maximum of the averaged TDCS (in
mb eV−1 sr−2) on the energy E = E1 = E2 of the outgoing electrons
moving in opposite directions, with θ = 45◦, ϕ = 0, and k = αω.
The solid line corresponds to a 3C final-state wave function, and
the dotted line corresponds to the uncorrelated 2C final-state wave
function.
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TABLE I. Energy E = E1 = E2 of the escaping electrons leading
to a maximum value of the TDCS assuming a back-to-back electron
emission with θ = 45◦ and ϕ = 0◦. Various nucleus charges Z of
heliumlike ions are considered.

Maximum of TDCS
Z E (eV) (mb eV−1sr−2)

2 11 7.75
3 21 1.45
4 33 0.47
5 45 0.19
6 75 0.10

2C function to describe the final-state wave function. Note
that for values of E > 80 eV, both functions lead to very
similar results, as expected. This dependence of the TDCS on
the final-state electron correlations confirms what was already
suggested in Amusia’s work [1].

Within the present context, it is legitimate to ask whether
helium is the best target to observe effects due to nonzero
photon momentum. In order to answer that question, let us
consider heliumlike ions and examine the influence of the
nucleus charge Z on the relative amplitude of the effects
of nonzero photon momentum on the TDCS. We assume
the external field linearly polarized and consider a back to
back electron emission with θ = 45◦ and ϕ = 0◦ since this
configuration leads to a maximum of the TDCS for k �= 0,
as shown in Fig. 2. The ground-state wave functions for a
few light heliumlike ions are generated following a procedure
described in Ref. [9]. Our results are presented in Table I. For
each ion, we calculate the energy of the escaping electrons that
lead to a maximum of the TDCS in the above configuration.
We clearly see that for increasing values of the nucleus charge
Z, the absolute value of the maximum of the TDCS decreases
rapidly. Taking into account that the effects due to nonzero
photon momentum are very small, it follows that, from the
experimental point of view, only helium and maybe lithium
are suitable targets.

IV. CONCLUSIONS

In this paper, we considered (γ,2e) processes and studied
in detail the effects resulting from a nonzero value of the
photon momentum on the triply differential cross section. Due
to the small value of the photon momentum, these effects
are quite small, of the order of a few millibarn, and are
only observable in particular kinematical conditions. This is
the case when both electrons are emitted back to back with
equal energy sharing. In fact, for this configuration, the wave
function has a node when the photon momentum is identi-
cally zero (dipole approximation). Under these conditions,
the absolute value of the effect depends on the energy
and the polarization of the photon. The effect is the strongest
when the polarization is linear or strongly elliptical. Fur-
thermore and quite unexpectedly, we have shown that the
effect is maximal for relatively low photon energies. We have
also shown that the final-state electron correlations play an
important role. Neglecting electron correlations in the final
state leads to a quite severe underestimation of the amplitude of
the effect. Finally, we examined the case of several heliumlike
ions and showed that, in the same kinematical conditions,
helium and maybe lithium are more suitable targets for
observing experimentally these effects due to nonzero photon
momentum.
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