EPJ Web of Conferences 108,02026 (2016)
DOI: 10.1051/epjconf/ 201610802026
© Owned by the authors, published by EDP Sciences, 2016

Solution of Boundary-Value Problems using Kantorovich Method
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Abstract. We propose a computational scheme for solving the eigenvalue problem for an
elliptic differential equation in a two-dimensional domain with Dirichlet boundary con-
ditions. The solution is sought in the form of Kantorovich expansion over the basis func-
tions of one of the independent variables with the second variable treated as a parameter.
The basis functions are calculated as solutions of the parametric eigenvalue problem for
an ordinary second-order differential equation. As a result, the initial problem is reduced
to a boundary-value problem for a set of self-adjoint second-order differential equations
for functions of the second independent variable. The discrete formulation of the problem
is implemented using the finite element method with Hermite interpolation polynomials.
The efficiency of the calculation scheme is shown by benchmark calculations for a square
membrane with a degenerate spectrum.

1 Introduction

The calculation of spectral and optical properties of electronic states in axially symmetric quantum
dots is reduced to the solution of two-dimensional boundary-value problems (BVP) for elliptic differ-
ential equations with nonseparable variables in a finite domain [1]. One of the ways to solve these
problems is implemented as the set of programs ODPEVP-KANTBP [2, 3] based on the Kantorovich
method that provides the reduction of the initial problem to a set of ordinary differential equations
[4] with further use of the finite element method [5] with Lagrange interpolating polynomials. For
the impurity states of quantum dots such BVPs are defined in domains of complicated geometry and
involve piecewise-continuous potential functions. In this case it is necessary to preserve not only the
continuity of the approximate solution, but also the continuity of its first derivative, which is most
naturally achieved using the finite element method with Hermite interpolating polynomials [6, 7].
Testing such approach for the solution of two-dimensional BVPs is the aim of the present work.
We present a computational scheme for solving the eigenvalue problem for an elliptic differential
equation in a two-dimensional finite domain with Dirichlet boundary conditions. The solution is
sought in the form of Kantorovich expansion over the basis functions of one of the independent vari-
ables with the second variable treated as a parameter. The basis functions are calculated as a solution
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of the parametric eigenvalue problem for an ordinary second-order differential equation. Finally, the
initial problem is reduced to a BVP for a set of self-adjoint second-order differential equations for
functions of the second independent variable. The discretization of the problems is carried out using
the finite element method with Hermite interpolation polynomials.

The result is used to formulate a generalized algebraic eigenvalue problem. For matrices of small
dimension this problem is solved using Maple. For matrices of large dimension we use the symbolic
algorithm to generate Fortran routines for numerical solution of the generalized algebraic eigenvalue
problem. We demonstrate the efficiency of the programs generated in Maple and Fortran for 100x 100
and higher-order matrices, respectively, in benchmark calculations for the exactly solvable eigenvalue
problem of a square membrane with degenerate spectrum. This example is not trivial from the com-
putational view point. It shows the applicability of the method, algorithms and program in solving
the generalized algebraic eigenvalue problem with the higher-order matrices which has a quasidegen-
erate spectrum. The use of new coordinates that can be separated within the domain but not at the
boundary allows the simulation of a potential function, depending upon two variables, and justifies
the application of the Kantorovich method.

2 Kantorovich Method

Let us consider the 2D BVP in the two-dimensional domain Q(x, x,) C RZ:

0? 0’
- __+V 7Y_E\II ’S=07 1
( ox, " ax; (xr, x5) (xr, x5) (D
where V(x, x) is a real-valued function and W(x, x,) satisfies the Dirichlet condition at the boundary
0Q(xy, x,) of the domain Q(xy, x;)

W(xy, x,) =0. ()

(X7,x5)E0QU X7, x5)

The solution W(x/, x,) € W%(Q) of the BVP (1)—(2) is sought as a Kantorovich expansion [4]

Jmax

Wy, x0) = ) D003 X)X (x,) 3)
j=1

over the set of eigenfunctions @ ;(x¢; x5) € Fy, ~ WZZ(QX +(x5)) of the parametric BVP

2
(_a_ + V(xp, ) — e,-(xs)) D(xs;x,) = 0, “)
aXf

defined in the interval x; € (xf;‘i“(xx), x;‘}a"(xx)) = Q,,(x,) and depending on the variable x; € Q, asa
parameter. These functions obey the boundary conditions

D (x,);%5) = 0, DX (x); %) = 0 (5)

at the boundary points {xr]?i“(xx), x;‘a"(xx)} = c')Qxf(xS), of the interval Q. (x5)- The eigenfunctions
satisfy the orthonormality condition in the same interval x; € Q, (x,):

A (x,)
<<I>,-|<Dj> - f Di(xs; x0)Dj(xp; xg) dxp = 6ij. ©

r;ﬁn(xv)
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Figure 1. The components y ,(x,) of the Kantorovich expansion (3) corresponding to the first eight eigenvalues

Here €(x;) < --- < €, (x5) < --- is the desired set of real eigenvalues. If this parametric eigenvalue

problem has no analytical solution, then it is solved numerically using the program ODPEVP [2].
Substituting (3) into (1) with (5) and (6) taken into account, we arrive at the set of self-adjoint

ODE:s for the unknown vector functions x,(x;, E) = x,(xs) = (v 1,(Xs), ..., x jmmu(xs))T S WZZ(QXT):

( & dQ(x,)

1% s) = 2E, 1+ dr, +Q(x v) X,,(xv) = )

Here U(x,) and Q(x,) are matrices of the dimension jy.x X jmax
Uij(xs) = €(x5)0i; + Hij(xs),
) 9D (xp; X5) OD(x 73 X))
Hi' s) = H'i s) = 4
(x5) Gi(xs) f): o, ox, ox,
X7 (xs) AP (xy; xy)
0ii(xs) = =Qji(x,) = - f D; (xfsxs)f Xf.

xf"‘(xy) s

d)Cf, (8)

The discrete spectrum solutions E : E} < E; < --- < E, < --- that obey the boundary conditions

at the points x/, = {x™", x™} = §Q located at the boundary of Q. and the orthonormality conditions

-max
X

X, (X)) =0, x = xmin ymax e Xy () dxg = Oy )
Kfpin

are calculated by means of the program KANTBP [3].

3 Benchmark calculation: rectangular membrane

As a benchmark example we consider the exactly solvable BVP for a rectangular membrane in con-
ventional variables (x, y) € Q(x, y)
( 0 0?

-z —a—yz—E)‘P(x,y)=0 (10)
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Figure 2. Profiles of the linear combinations of the eigenfunctions ¥, (xy, x,) and ¥3(xy, x,) corresponding to
linear combinations of exact solutions u;, and uy1: ujo, U + V2/3us1, s + Uy

Figure 3. Profiles of the linear combinations of the eigenfunctions Ws(xy, x,) and Ws(x¢, x,) corresponding to the
linear combinations of the exact solutions w3 and uz;: uyz + uzy, g3 + (1/3)uszy, w3, uz — (2/3)uzy, uyz — uz;

Figure 4. Profiles of the linear combinations of the eigenfunctions ¥7(xy, x,) and Ws(xy, x,), corresponding to
the linear combinations of the exact solutions uy3 and usy: uys, uxz + (1/3)usn, uys + usz,

Figure 5. Profiles of the linear combinations of the eigenfunctions Wo(x, x,) and ¥o(xy, x,) corresponding to
the linear combinations of the exact solutions w4 and u4: 4, w14 + (1/3) V2/3usy, 14 + V2/3usy, uis + ugy

with the Dirichlet conditions for ¥(x, y) at the boundary 9Q(x, y) of the region Q(x, y)
Y(zxa/2,y) =0, Y(x,xb/2)=0. (11)

We solve the BVP (1)—(2) for the rectangular membrane x € (—a/2,a/2),y € (-b/2,b/2), in the
new variables x;=(x+y)/ V2, xs=(x—y)/ V2 with V(xs,x,)=0. The new variables can be separated
within Q but not at the boundary €, which simulates the presence of a potential V(xy, x,) # 0 and al-
lows us to use the Kantorovich method and to seek for the approximate solution in the form (3). In the
considered case the parametric eigenvalue problem (4)—(6) has an exact solution, i.e., the parametric
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eigenfunctions @; (xf; xs) and the potential curves ¢; (x;) are expressed in the analytical form

\/Esin[

iy = X0(x,) ]

AP () = A0 ()

\/x}‘a‘(xs) = X ()

w22

- , 12
(A (x,) = 0 (x,))2 (42

€ (x5)=

; (Xf; Xs) =

With the basis functions (12), the integration in the effective potentials (8) can be carried out analyti-
cally. This yields the expressions

[(_1)i+j dx™ () dx;?in(xs)]

2ij dx; dxg .
ij\Xs) = —= R - s * )
Q ](x ) 12 _ ]2 x;l(qax(xs) _ x?m(xx) ‘] !
AT dan(x) | (AN ()
—1)iti — - : - —
4l (12 + '2) dxs dxs dxs dxs
Hij(xs) = - ‘.]2 .2]2 max min 2 ’ (13)
(l —-J ) (-xf (-xs) - xf (xx))
dx}’?a"(xs) 2 dx}‘?ax(xs) dx?i"(xs) dx';.‘i“(xs) :
+ +—
22 dx, dx; dx; dxg
Hii(x) = 3

() = X0 Cx,)2

daf™ () di ()’
1 dxg dxg
4 () — 2P (x))?

In the symmetric case a = b: X7 (x,) = —x""(x,) the matrix elements H; ; and Q;; between even
and odd indexes equal zero and one can solve the BVP for even (e) and odd (o) solutions separately.

Numerical calculations of the eigenvalue problem (7)—(9) were carried out for j,.x = 6 using the
program KANTBP4M implemented in Maple on the grid Q, = (=x,,(4)—7x,,/8(4)0(4)7x,,,/8(4)x,,) at
Xy = 70/ V2-1 /20, where the number of finite elements in each subinterval is presented in parentheses.
The finite-element local functions are constructed using the Hermite interpolation polynomials of the
seventh order (p’ = k™™ (p+1)—1 = 7) with the multiplicity of the nodes x"** = 1 and p+1 = 8 in each
of the elements [7], which provides the accuracy O(h” *!) of the eigenfunctions and the eigenvalues,
where £ is the maximal element length. The dimension of the mass and stiffness matrices is 666 X 666
and their half-width is 48. The components y ,(x,) of the corresponding eigenfunctions ¥, (xy, x;) are
shown in Fig. 1 that allows one to estimate the accuracy of the Kantorovich expansion (3) to be of
the order of 4 - 107 + 1072 and the accuracy of the corresponding eigenvalues E7: 2.0004, 5.0004,
5.0017, 8.0050, 10.0042, 10.0016, 13.0034, 13.0153, 17.0050, 17.0053 of the order 4 - 10™* + 1072,
in comparison with the exact values E,: 2, 5, 5, 8, 10, 10, 13, 13, 17, 17. For the number jpy,x of
the parametric basis functions increased to 280, more RAM and computer time are needed. Here,
we used the Fortran version of the program KANTBP4, which provides the accuracy O(h”*!) of
the eigenfunctions and O(h*"") of the eigenvalues, and achieved the discrepancy 6E¢ = EY — E,
of the order of 1078 for the eigenvalues that is shown in Table 1. One can see from the Table that
the convergence rate of the Kantorovich expansion (3) is the order of j;2  which corresponds to the
theoretical estimation given by the perturbation theory.
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Table 1. The discrepancy 0E) = EJ — E,, o = e, 0 vs a number of even (e) and odd (o) basis functions jmax

Jmax OE§ SES SE} SE; SES SE? SES SE
6 3.54(—4) 3.76(-4) 1.79(=3) 4.91(=3) 4.09(-3) 1.60(-3) 2.95(-3) 1.53(-2)
13 3.67(=5) 3.85(=5) 2.06(—4) 4.88(-—4) 3.96(-4) 1.82(-4) 2.93(-4) 1.68(-3)
28 3.81(—6) 3.98(-6) 2.26(-5) 5.04(=5) 4.07(-5) 1.98(-5) 3.01(-5) 1.82(-4)
60 3.96(=7) 4.12(=7) 242(-6) 523(-6) 423(-6) 2.11(-6) 3.12(-6) 1.95(-5)
130 3.95(-8) 4.10(-8) 2.44(=7) 521(=7) 4.22(-7) 2.13(=7) 3.10(=7) 1.96(-6)
280 397(-9) 4.11(-9) 248(-8) 5.25(-8) 4.25(-8) 2.15(-8) 3.12(-8) 1.99(-7)

exact E|=2 E2=5 E3=5 E4=8 E5=10 E6=10 E7=13 Eg=13

The calculation time was about 100 sec. for j,.x = 6 in Maple and 80 sec. for jax = 60 in Fortran
using a PC Intel Core i5 3.33GHz, 4Gb RAM, and a 64 bit Windows 7 as the operation system.

It is known that the eigenvalues of the rectangular membrane BVP may be degenerate. It is
always the case, if the aspect ratio a : b is a rational number, because in this case the equation
m?/a® + n?|b* = m'*/a® + n’* /b always has nontrivial integer solutions. For example, in the present
case of a square membrane with a = b = 7 such a solution is m = n’, n = m’. For the boundary
condition u = 0 the corresponding fundamental functions are sinmx sinny and sinnxsinmy. For
any eigenvalue the degeneracy order is determined by the solution of the number theory problem of
how many ways exist to represent an integer v* as a sum of two squares: v> = m?> + n> The nodal
lines for the eigenfunctions sin nx sinmy are just straight lines parallel to the coordinate axes (x, y).
However, with degenerate eigenvalues quite different nodal lines may appear, e.g., the square has
a locus of points at which the function a sinnxsinmy + sinmxsinny equals zero. In Figs. 2-5
some typical examples of profiles and nodal lines of linear combinations of the eigenfunctions are
presented, corresponding to the exact doubly degenerate eigenvalues 5, 10, 13, and 17. In the captions
the notation u,,, = sinmxsinny is used. The nodal lines of the eigenfunctions are shown by solid
curves, which coincide with those presented in [8].
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