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Pavel Krassovitskiy6

1Joint Institute for Nuclear Research, Dubna, Russia
2RUDN University, Moscow, Russia, 6 Miklukho-Maklaya st, Moscow, 117198
3Institute of Mathematics, National University of Mongolia, Ulaanbaatar, Mongolia
4N.G. Chernyshevsky Saratov National Research State University, Saratov, Russia
5Institute of Physics, University of M. Curie-Skłodowska, Lublin, Poland
6Institute of Nuclear Physics, Almaty, Kazakhstan

Abstract. We describe a new algorithm for analytic calculation of high-order Hermite
interpolation polynomials of the simplex and give their classification. A typical example
of triangle element, to be built in high accuracy finite element schemes, is given.

1 Introduction

For more than half a century, the finite element method (FEM) has won universal recognition as
an efficient method for solving the most diverse problems of mathematical physics and engineering.
In the multidimensional case the finite element grids of various shapes are used. The problem of
constructing high-order interpolation polynomials for FEM has a simple solution only for simplex
finite elements, such as the well known Lagrange interpolation polynomials (LIPs) [1]. Meanwhile,
in the case of a d-dimensional simplex domain, the LIPs of the order p′ ≥ 1 are often sought by
compiling and solving systems of (d + p′)!/d!/p′! linear algebraic equations [2].

However, there are problems in which values of directional derivatives of the solutions are also
necessary. They are of particular importance when high smoothness between the elements is required,
or when highly accurate values of the gradient of the solution are necessary. The construction of such
basis functions, referred to as Hermite interpolation polynomials (HIPs), is not possible on arbitrary
meshes. This is one of the most important and difficult problems in the FEM and its applications in
different fields, solved to date explicitly only for certain particular cases [2, 3].

In this paper we report a new algorithm for the calculation of HIPs of the order p′ = κmax(p+1)−1
providing continuity of the approximating piecewise polynomial functions and of their directional
derivatives up to an order κ′ along the normals to the boundaries of the simplex finite elements in the
Euclidean space Rd, which reduces to solving systems consisting of

(d + p′)!
d! p′!

− (d + p)!
d! p!

· (d + κmax − 1)!
d! (κmax − 1)!
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linear algebraic equations, where p and κmax will be specified below.

2 Algorithm for Calculating the Hermite Interpolating Polynomials

The conventional FEM implementation for a problem defined in terms of the set of coordinates z =
(z1, . . . , zd) ∈ Rd performs all calculations in local (reference) coordinates z′ = (z′1, . . . , z

′
d) ∈ Rd, in

which the d + 1 coordinates of the simplex vertices are [3]: ẑ′j=(ẑ′j1, . . . , ẑ
′
jd), ẑ′jk=δ jk, j = 0, . . . , d,

zi = ẑ0i +

d∑
j=1

Ĵi jz′j, z′i =
d∑

j=1

(Ĵ−1)i j(z j − ẑ0 j),
∂

∂z′i
=

d∑
j=1

Ĵ ji
∂

∂z j
,
∂

∂zi
=

d∑
j=1

(Ĵ−1) ji
∂

∂z′j
, (1)

where Ĵi j = ẑ ji − ẑ0i, i, j = 1, . . . , d, given by the corresponding d + 1 physical coordinates
ẑ j=(ẑ j1, . . . , ẑ jd).

In the local coordinates of the d-dimensional simplex ∆, the LIP ϕr(z
′) of the order p′ = p which

equates one at the node points ξ′r = (n1/p, . . . , nd/p), ni ≥ 0, n1+· · ·+nd ≤ p, r = 1, . . . , (d+p)!/d!/p!
and zero at the remaining node points ξ′r′ , i.e., ϕr(ξ

′
r′ ) = δrr′ , is determined by the formula:

ϕr(z
′)=


d∏

i=1

ni−1∏
n′i=0

z′i−n′i/p
ni/p−n′i/p




n0−1∏
n′0=0

1−z′1− . . .−z′d−n′0/p
n0/p−n′0/p

 , n0 = p − n1 − · · · − nd. (2)

Step 1. To construct the HIPs in the local coordinates z′, we define the set of auxiliary polynomials
ϕκ1...κdr (z′) referred to as AP1

ϕκ1...κdr (ξ′r)=δrr′δκ10 . . . δκd0,
∂µ1...µdϕκ1...κdr (z′)
∂z′1
µ1 . . . ∂z′d

µd

∣∣∣∣∣
z′=ξ′r′
= δrr′δκ1µ1 . . . δκdµd , (3)

0 ≤ κ1 + κ2 + · · · + κd ≤ κmax−1, 0 ≤ µ1 + µ2 + · · · + µd ≤ κmax−1.

Here in contrast to the LIPs, the values of the functions themselves, and of their derivatives up to the
order κmax−1 are specified at the node points ξ′r. The explicit expressions of AP1 are given by

ϕκ1κ2...κdr (z′) = wr(z′)
∑

µ1+···+µd=0,1,...,κmax−1

aκ1...κd ,µ1...µd
r (z′1 − ξ′r1)µ1 × · · · × (z′d − ξ′rd)µd , (4)

wr(z′)=


d∏

i=1

ni−1∏
n′i=0

(z′i−n′i/p)κ
max

(ni/p−n′i/p)κmax




n0−1∏
n′0=0

(1−z′1− . . .−z′d−n′0/p)κ
max

(n0/p−n′0/p)κmax

 , wr(ξ′r) = 1,

where the coefficients aκ1...κd ,µ1...µd
r are calculated from recurrence relations obtained by the substitution

of Eq. (4) into the conditions (3).
Step 2. To enforce a uniquely defined polynomial basis, two types of auxiliary polynomials Qs(z)

denoted respectively AP2 and AP3 are defined. AP2 and AP3 are linearly independent of AP1 from
Eq. (4) and satisfy the following conditions at the node points ξ′r′ of AP1:

Qs(ξ′r′ )=0,
∂κ
′
1κ
′
2...κ

′
d Qs(z′)

∂z′1
µ1∂z′2

µ2 . . . ∂z′d
µd

∣∣∣∣∣
z′=ξ′r′
=0, s=1, . . . ,K, K =

(d+p′)!
d!p′!

− (d+p)!
d!p!

(d+κmax−1)!
d!(κmax−1)!

. (5)

To provide the continuity of derivatives, the polynomials referred to as AP2 are asked to satisfy the
condition

∂kQs(z′)
∂nk

i(s)

∣∣∣∣∣
z′=η′s′
=δss′ , s, s′=1, . . . ,T1(κ′), k = k(s′), (6)

2

EPJ Web of Conferences 173, 03009 (2018)	 https://doi.org/10.1051/epjconf/201817303009
Mathematical Modeling and Computational Physics 2017



linear algebraic equations, where p and κmax will be specified below.

2 Algorithm for Calculating the Hermite Interpolating Polynomials

The conventional FEM implementation for a problem defined in terms of the set of coordinates z =
(z1, . . . , zd) ∈ Rd performs all calculations in local (reference) coordinates z′ = (z′1, . . . , z

′
d) ∈ Rd, in

which the d + 1 coordinates of the simplex vertices are [3]: ẑ′j=(ẑ′j1, . . . , ẑ
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wr(z′)=


d∏

i=1

ni−1∏
n′i=0

(z′i−n′i/p)κ
max

(ni/p−n′i/p)κmax




n0−1∏
n′0=0

(1−z′1− . . .−z′d−n′0/p)κ
max

(n0/p−n′0/p)κmax

 , wr(ξ′r) = 1,

where the coefficients aκ1...κd ,µ1...µd
r are calculated from recurrence relations obtained by the substitution

of Eq. (4) into the conditions (3).
Step 2. To enforce a uniquely defined polynomial basis, two types of auxiliary polynomials Qs(z)

denoted respectively AP2 and AP3 are defined. AP2 and AP3 are linearly independent of AP1 from
Eq. (4) and satisfy the following conditions at the node points ξ′r′ of AP1:

Qs(ξ′r′ )=0,
∂κ
′
1κ
′
2...κ

′
d Qs(z′)

∂z′1
µ1∂z′2

µ2 . . . ∂z′d
µd

∣∣∣∣∣
z′=ξ′r′
=0, s=1, . . . ,K, K =

(d+p′)!
d!p′!

− (d+p)!
d!p!

(d+κmax−1)!
d!(κmax−1)!

. (5)

To provide the continuity of derivatives, the polynomials referred to as AP2 are asked to satisfy the
condition

∂kQs(z′)
∂nk

i(s)

∣∣∣∣∣
z′=η′s′
=δss′ , s, s′=1, . . . ,T1(κ′), k = k(s′), (6)

Table 1. Characteristics of the HIP bases

[pκmaxκ
′] [120] [131] [141] [231] [152] [162] [241] [173]

p′ = κmax(p + 1) − 1 3 5 7 8 9 11 11 13
N1p′ = (p′ + 1)(p′ + 2)/2 10 21 36 45 55 78 78 105
K = p(p + 1)κmax(κmax − 1)/4 1 3 6 9 10 15 9 21
N(AP1) = Nκmax p′ 9 18 30 36 45 63 60 84
N(AP2) = T1(κ′) 0 3 3 6 9 9 6 18
N(AP3) = K − T1(κ′) 1 0 3 3 1 6 12 3

Nκmax p′ = (p + 1)(p + 2)κmax(κmax + 1)/4
Restriction of derivative order κ′: 3pκ′(κ′ + 1)/2 ≤ K

where η′s′ = (η′s′1, . . . , η
′
s′d) are conveniently chosen points lying on the faces of various dimension-

alities (from 1 to d − 1) of the d-dimensional simplex ∆ and do not coincide with the nodal points
of HIP ξ′r, where Eq. (3) is valid, ∂/∂ni(s) is the directional derivative along the vector ni, normal to
the corresponding i-th face of the d-dimensional simplex ∆q at the point ηs′ in the physical frame,
which is recalculated to the point η′s′ of the face of the simplex ∆ in the local frame using the relations
(1). Calculating the number T1(κ) of independent parameters required to provide the continuity of
derivatives to the order κ, we determine its maximal value κ′ that can be obtained for the schemes with
given p and κmax and, correspondingly, the additional conditions (6).

T2=K−T1(κ′) parameters remain independent and, correspondingly, T2 additional conditions are
added, necessary for the unique determination of the polynomials referred to as AP3,

Qs(ζ′s′ )=δss′ , s, s′=T1(κ′)+1, . . . ,K, (7)

where ζ′s′ = (ζ′s′1, . . . , ζ
′
s′d) ∈ ∆ are the chosen points belonging to the simplex without the boundary,

but not coincident with the node points of AP1 ξ′r.
The auxiliary polynomials AP2 and AP3 are given by the expression

Qs(z′) =


d∏

t=0

z′t
kt


∑

j1,..., jd

b j1,..., jd ;sz′1
j1 . . . z′d

jd , z′0 = 1 − z′1 − · · · − z′d. (8)

For AP2 kt = 1 if the point ηs, at which the additional conditions (6) are specified, lies on the corre-
sponding face of the simplex ∆, and kt = κ

′, otherwise, t = 0, . . . , d. For AP3 kt = κ
′, t = 0, . . . , d. The

coefficients b j1,..., jd ;s are determined from the uniquely solvable system of linear equations, obtained
as a result of the substitution of Eq. (8) into the conditions (5)–(7).

Step 3. As a result, we get the required set of basis HIPs ϕκr(z′) = {ϕ̌κr(z′),Qs(z′)}, κ = κ1, . . . , κd,
composed of the polynomials Qs(z′) of the type AP2 and AP3, and the polynomials ϕ̌κr(z′)

ϕ̌κr(z′)=ϕκr(z′)−
K∑

s=1

cκ;r;sQs(z′), cκ;r;s=


∂kϕκr (z′)
∂nk

i(s)

∣∣∣∣∣
z′=η′s
, Qs(z′) ∈ AP2,

ϕκr(ζs), Qs(z′) ∈ AP3.
(9)

Step 4. The AP1 ϕ̌κr(z′) from (9), where κ denotes the directional derivatives along the local
coordinate axes, are recalculated using Eqs. (1) into ϕ̌κ̌r(z′) specified in the local coordinates, but now
κ̌ = κ̌1, . . . , κ̌d denotes the directional derivatives along the physical coordinate axes.

For example, at d = 2 the derivatives ∂/∂ni along the direction ni, perpendicular to the appropriate
face i = 0, 1, 2 in the physical frame are expressed in terms of the partial derivatives ∂/∂z′j, j = 1, 2 in

3
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Table 2. The 20 HIPs p=1, κmax=4, κ′=1, p′=7, remaining 16 HIPs are obtained by permutation z1 ↔ z2.

AP1 : ξ0=(0, 0), ξ1=(1, 0), ξ2=(0, 1), P0(z j) = (20z3
j−70z2

j+84z j−35), P1(z j) = (10z2
j−24z j+15)

ϕ0,0
2 =−z4

2P0(z2) ϕ0,1
2 =z4

2(z2−1)P1(z2) ϕ1,0
2 =z1z4

2P1(z2) ϕ0,0
0 =−z4

0P0(z0)
ϕ0,2

2 =−z4
2(z2−1)2(4z2−5)/2 ϕ1,1

2 =−z1z4
2(z2−1)(4z2−5) ϕ2,0

2 =−z2
1z4

2(4z2−5)/2 ϕ0,1
0 =z4

0z2P1(z0)
ϕ0,3

2 =z4
2(z2−1)3/6 ϕ1,2

2 =z1z4
2(z2−1)2/2 ϕ2,1

2 =z2
1z4

2(z2−1)/2 ϕ3,0
2 =z3

1z4
2/6

ϕ2,0
0 =−z4

0z2
1(4z0−5)/2 ϕ1,1

0 =−z4
0z1z2(4z0−5) ϕ0,3

0 =z4
0z3

2/6 ϕ1,2
0 =z4

0z1z2
2/2

AP2 : η1=(0, 1/2), η2=(1/2, 0), η3=(1/2, 1/2) AP3 : ζ4=(1/4, 1/2), ζ5=(1/2, 1/4), ζ6=(1/4, 1/4)
Q1=8z1z2

2z2
0(12z2

1−7z1−8z1z2−8z2
2+8z2)/ f11 Q4=1024z2

0z2
1z2

2(4z2−1)
Q3=4z2

1z2
2z0(12z2

2−17z2+5−17z1+32z1z2+12z2
1)/ f01 Q6=1024z2

0z2
1z2

2(4z0−1)

the local frame of the triangle ∆, using the relations (1), as

∂

∂ni
= fi1

∂

∂z′1
+ fi2

∂

∂z′2
, i=1, 2,

∂

∂n0
=( f01+ f02)

∂

∂z′1
+( f01− f02)

∂

∂z′2
, (10)

where fi j = fi j(ẑ0, ẑ1, ẑ2) are functions of the coordinates of the vertices ẑ0, ẑ1, ẑ2 of the triangle ∆q in
the physical frame. The characteristics of the polynomial basis of HIPs on the triangle element ∆ at
d = 2, including known Argyris triangle [131] (see [3]), are presented in Table 1. Table 2 presents
the results of executing the Algorithm for calculating the HIPs in the case (p=1, κmax=4, κ′=1, p′=7),
AP1: ϕk

r (z′), AP2 and AP3: Qs(z′), and the corresponding coefficients cκ;r;s are calculated using Eqs.
(9). The notations are as follows: ξr, ηs, ζs are the coordinates of the nodes, which are specified in
the conditions (3), (6) or (7), respectively, z0 = 1 − z1 − z2, the arguments of functions and the primes
in the notations of independent variables are omitted. The explicit expressions for the HIPs from
Table 1 were calculated too, but are not presented here because of the paper size limitations (they can
be obtained under request to the authors or using the program TRIAHP implemented in Maple, which
will be published in the library JINRLIB). The calculations were carried out using the Intel Pentium
CPU 987, x64, 4 GB RAM, the Maple 16, during 6 seconds.

3 Conclusion

We presented a symbolic-numeric algorithm, implementable in any computer algebra system, in par-
ticular, the Maple system, for analytical calculation of the basis of Hermite interpolation polynomials
of several variables of the simplex, which can be used to construct a FEM computational scheme of
high-order accuracy. The efficiency of the FEM computational schemes using high-order accuracy
LIPs and HIPs for benchmark calculations of exactly solvable problems for the triangle membrane
and hypercube is shown in the forthcoming paper of this issue.
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