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Abstract. In this paper we propose a generating function method for constructing new
two and three-point iterations with p (p = 4, 8) order of convergence. This approach
allows us to derive a new family of optimal order iterative methods that include well
known methods as special cases. Necessary and sufficient conditions for p-th (p = 4, 8)
order convergence of the proposed iterations are given in terms of parameters τn and
αn. We also propose some generating functions for τn and αn. We develop a unified
representation of all optimal eighth-order methods. The order of convergence of the
proposed methods is confirmed by numerical experiments.

1 Introduction

Solving nonlinear equations is important in many applied mathematics and theoretical physics prob-
lems. In recent years, a number of higher-order iterative methods have been developed and analyzed
on this issue, see [1–11] and references therein. Motivated by the recent results in [11], in this paper
we introduce a generating function method for the construction of new two and three-point itera-
tions with p-th order of convergence. This paper is organized as follows. Section 2 is devoted to
the construction of a generating function for the optimal fourth-order method. We then present some
choices for the parameters τn and αn. Some iterations are proposed among which some are already
well known. In Section 3 we propose a family of optimal eighth-order methods, that include many
well-known methods as particular cases. In our previous paper [11] we have considered two and
three-point iterative methods of solving nonlinear equation f (x) = 0

yn = xn −
f (xn)
f ′(xn)

, xn+1 = yn − τ̄n
f (yn)
f ′(xn)

, (1)

and

yn = xn −
f (xn)
f ′(xn)

, zn = yn − τ̄n
f (yn)
f ′(xn)

, xn+1 = zn − αn
f (zn)
f ′(xn)

. (2)

We have proved in [11] the following theorems:
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Theorem 1. Assume that f (x) is smooth enough function with a simple root x∗ ∈ I and the initial
approximation x0 is close enough to x∗. Then the iterative method (1) has fourth-order of convergence
if and only if the parameter τn is given by

τn = 1 + θn + 2θ2n + O(θ3n), θn =
f (yn)
f (xn)

. (3)

Theorem 2. Assume that all assumptions of Theorem 1 are fulfilled. Then the three-point iterative
methods (2) has an eighth-order of convergence if and only if the parameters τ̄n and αn are given by

τ̄n = 1 + 2θn + βθ2n + γθ
3
n + · · · ,

(
τ̄n =

τn − 1
θn

)
, (4)

and

αn = 1 + 2θn + (β + 1)θ2n + (2β + γ − 4)θ3n + (1 + 4θn)
f (zn)
f (yn)

+ O(θ4n). (5)

Our approach in [11] is constructive in the sense that it proposes a new way to obtain optimal order
iterations (see [11] for details). An extended version of the present paper will be published elsewhere.

2 Construction of optimal fourth-order methods

The Theorems 1 and 2 not only give sufficient conditions for iterations of p-th (p = 4, 8) order of
convergence, but they also allow us to construct new iterations with p order of convergence. Ob-
taining new optimal methods of order four is still important, because they combine higher-order of
convergence and low computational cost. We consider the following choice of the parameter τn

τn = H(θn), (6)

where H(θ) is a real function to be determined properly. Obviously τn will satisfy the condition (3) if

H(0) = 1, H′(0) = 1, H′′(0) = 4. (7)

We call the function H(θ) satisfying conditions (7) a generating function for the iteration (1). The
construction of the generating function allows us to derive a new optimal order family of iterations.
The following theorem is a consequence of Theorem 1.

Theorem 3. Assume that all assumptions of Theorem 1 are fulfilled. Then the optimal fourth-order
two-point iterations (1) are obtained by the generating function (6) satisfying the conditions (7).
Many different variants of the generating function H(x), satisfying condition (7) are possible. We cite
here one simple form, namely

H(x) =
1 + (1 − mα)x + (2 − mα + m(m−1)

2 α2)x2 + ωx3

(1 − αx)m , α,m, ω ∈ R. (8)

The optimal two-point iterations (1) with τn = H(θn) given by (8) include many well-known iterations
as special cases. If ω = 0, m = 1 and α = 2 − b, b ∈ R, then (1) leads to King’s method [5]. If
α = 0, m = 1 and ω = 1 in (8), then (1) yields a modification of Potra-Ptak’s method [4]. If α = m = 1
and ω = −1 in (8), then (1) leads to Maheshwari’s method [7]. If α = 1, m = 2 and ω = 0 in (8), then
(1) leads to Chun and Lee’s method [2]. Recently, Behl et al [12] proposed a general class of fourth-
order optimal methods that includes the well-known Ostrowski’s and King’s family as special cases.
We note that this general class of optimal fourth-order iterations is also included in our methods with
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τn = H(θn) given by (8) as a special case. Namely, if m = 3, α replaced by −α and ω = α2 + 5
3α +

4
3

or ω =
(
1 − β6

)
α3 + α2 − 2α, then the iterations (1) with τn = H(θn) given by (8) reduce to (3.8) and

(3.10) in [12], respectively. This shows that our class of optimal fourth-order methods is wider than
that of [12]. So, we have obtained an optimal fourth-order convergence family of iterative methods
with three degrees of freedom based on the generating function method.

3 Proper representation of the optimal order three-point iterative methods
Recently, based on optimal fourth-order methods some higher-order, in particular eighth order three-
point methods have been proposed for solving nonlinear equations. It is easy to show that τn = H(θn)
given by (8) satisfies the condition (4) provided

β = ω + 2mα − m(m − 1)
2

α2 +
m(m − 1)(m − 2)

6
α3, (9a)

γ = ωmα + m(m + 1)α2 − (m − 1)m(m + 1)
3

α3 +
(m − 2)(m − 1)m(m + 1)

8
α4. (9b)

Table 1. Optimal order three-point iterative methods recovered at special parameter values

m αn − (1 + 4θn)[ f (zn)/ f (yn)] Methods
β = γ = 1, [14] Maheshwari-based

1 0 1 + 2θn + (β + 1)θ2n + (2β + γ − 4)θ3n β = 4, γ = 8, Method 1 in [14] see [11]
β = 3, γ = 4, Chun Lee [2]
p = −3, d = 0, q = 5/2, Maheshwari-based

2 1 (2 − θn)/(6θ2n − 5θn + 2) optimal methods [16]
[2β − 1 + 2β(β − 2)θn]/ d = 0, q = 2(β2 − 4β + 1)/(1 − 2β),

3 1 [2β − 1 + 2(β2 − 4β + 1)θn + (1 + 4β)θ2n] p = (1 + 4β)/(1 − 2β), King-based optimal methods [17]
β = 4, γ = 8, q = 2, p = 1, d = ω = 0,

4 1 1/(1 − 2θn − θ2n) method 4 in [14]

The following theorem is a consequence of Theorem 2.
Theorem 4. Assume that all assumptions of Theorem 1 are fulfilled. Then the family of three-point

iterative methods (2) has an eighth-order of convergence if and only if the parameters τn and αn are
given by (6), (8) and

αn =
(
H(θn) + θn + (β − 1)θ2n + (β + γ − 4)θ3n

)
+ (1 + 4θn)

f (zn)
f (yn)

. (10)

Thus, we propose the families of three-point iterative methods (2) with generating function τn =

H(θn). They include many well-known eighth-order methods, as particular cases (see Table 1). The
expression in brackets in (10) can be approximated by a simple rational function without loss of
generality. Then αn can be represented as

αn =
1 − (2 − mq)θn + cθ2n + ωθ

3
n(

1 − θn(dθ2n + pθn + q)
)m + (1 + 4θn)

f (zn)
f (yn)

, q, p, d,m ∈ R, (11)

where

c = β + 1 − m
(
p + 2q +

1
2

(m − 1)q2
)
,

ω = (2β + γ − 4) − m
(
d + 2p +

(
β + 1 + (1 − m)p

)
q − (m − 1)q2 +

(m − 1)(m − 2)
6

q3
)
. (12)
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We call the optimal order three-point iterative methods (2), with parameters τn and αn given by (6),
(8) and (11) respectively, proper representations. It is easy to show that all the well-known optimal
order three-point iterative methods can be represented uniquely in the proper form (see [1–3, 6, 8–
11, 13–20] and references therein). It should be mentioned that Wu and Lee in [10] first used a proper
representation of (2). Thus, by means of (6), (8) and (11) we find a unified representation of all
optimal order three-point iterations. It should be mentioned that the order of convergence of the
proposed methods was confirmed by numerical experiments.

Conclusions

The construction of the generating function for τn and αn allows us to derive new optimal order
family of iterations. This family includes many known iterations as special cases. We develop a
unified and proper representation of optimal eighth-order three-point methods. The sufficient and
necessary conditions for iterations (2) to be p (p = 4, 8) order of convergence are also given in term
of parameters τn and αn.
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