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Abstract. A new algorithm for constructing multivariate interpolation Hermite polynomi-
als in analytical form in a multidimensional hypercube is presented. These polynomials
are determined from a specially constructed set of values of the polynomials themselves
and their partial derivatives with continuous derivatives up to a given order on the bound-
aries of the finite elements. The efficiency of the finite element schemes, algorithms and
programs is demonstrated by solving the Helmholtz problem for a cube.

1 Introduction

In recent decade we presented a new algorithm for the calculation of high-order Lagrange and Her-
mite interpolation polynomials (LIP and HIP) [1] of the simplex in analytical form, their classifica-
tion and a typical example of the triangle element for high-accuracy finite element method (FEM)
schemes [2–4]. We have illustrated the efficiency of the schemes using high-order accuracy LIP and
HIP on benchmark calculations of exactly solvable boundary value problems(BVPs)for a triangle
membrane, a hypercube and a helium atom [5, 6].

In this paper we present a new symbolic algorithm implemented in Maple for constructing Her-
mitian finite elements or piece-wise multivariate Birkhoff interpolants in a standard d-dimensional
cube that generalizes the construction and algorithm proposed for a three and four dimensional cube
[7–9]. Our construction does not use explicit inverse matrices in the solution of the algebraic problem
for a set of algebraic equations with respect to the unknown coefficients of polynomials of d vari-
ables [10]. The algorithm yields explicit expressions in analytical form for the Hermite interpolation
polynomials (HIPs). The basis functions of the finite elements are high-order polynomials determined
from a specially constructed set of values of the polynomials themselves and their partial derivatives
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up to a given order at the vertices of the hypercube. Such a choice of values allows us to construct
a piecewise polynomial basis continuous at the boundaries of the finite elements together with the
derivatives up to a given order. In the case of a d-dimensional cube, it is shown that the basis func-
tions are determined by products of d HIPs depending on each of the d variables given by means of
the recurrence relations in analytical form [2]. Using this fact we propose a new symbolic algorithm
implemented in Maple for analytical calculation of the basis functions, i.e. HIPs of d variables with
the derivatives continuous at the faces of the standard d hypercube. The method can be used to solve
elliptic BVPs by means of a high-accuracy FEM. Its advantages are the reduced computational cost
and the availability of accurate derivatives of the function interpolated. The present study is motivated
by possible applications of the FEM on simplexes [4] or hypercubes [10] for solving a BVP in the
collective nuclear model with tetrahedral symmetry [11], as well as by other applications in different
areas, e.g., flow dynamics in unsteady fluid systems [12, 13] and molecular dynamics [14].

2 Formulation of the problem

Consider a self-adjoint boundary-value problem (BVP) for the elliptic differential equation

(D − E)Φ(x) ≡
−

1
g0(x)

d∑
i, j=1

∂

∂xi
gi j(x)

∂

∂x j
+ V(x) − E

Φ(x) = 0. (1)

For the principal part coefficients of Eq. (1), the condition of uniform ellipticity holds in the bounded
domain x = (x1, . . . , xd) ∈ Ω of the Euclidean space Rd, i.e., the constants µ > 0, ν > 0 exist such
that µξ2 ≤ ∑d

i j=1 gi j(x)ξiξ j ≤ νξ2, ξ2 =
∑d

i=1 ξ
2
i ∀ξ = (ξ1, . . . , ξd) ∈ Rd. Also assumed that g0(x) >

0, g ji(x) = gi j(x) and V(x) are real-valued functions, continuous together with their generalized
derivatives up to a given order in the domain x ∈ Ω̄ = Ω ∪ ∂Ω ∈ Rd with the piecewise continuous
boundary S = ∂Ω, which provides the existence of nontrivial solutions Φ(x) obeying the boundary
conditions (BCs) of the first (I) or the second (II) kind [4]. For a discrete spectrum problem, the
functionsΦm(x) from the Sobolev space H2

2(Ω̄),Φm(x) ∈ H2
2(Ω̄), corresponding to the real eigenvalues

E: E1 ≤ E2 ≤ · · · ≤ Em ≤ · · · obey the orthonormalization conditions [4].
The polyhedral domain Ω̄ ⊂ Rd is decomposed Ω̄ = Ω̄h(x) =

⋃Q
q=1 ∆q in finite elements in the form

of d dimensional simplexes or hypercubes ∆q with HIPs or LIPs ϕκr(x), x ∈ Rd, calculated using the
algorithms of Refs. [4, 10]. The piecewise polynomial functions Pl(x) ∈ Cκ

′
of order p′ with continu-

ous derivatives up to order κ′ ≤ κmax−1 are constructed by joining the polynomials, ϕκr(x), on the finite
elements ∆q ∈ Ω̄h(x). The expansion of the sought solution Φh

m(x) from the Sobolev space Hs≥1
2 (Ω̄)

in the basis of piecewise polynomial functions Pl(x), Φh
m(x) =

∑L
l=1 Pl(x)Φh

lm leads to the generalized
algebraic eigenvalue problem (AEP), (A − BEh

m)Φh
m = 0, solved using the standard method [15]. The

elements of the symmetric matrices of stiffness A and mass B comprise the integrals, which are calcu-
lated on the elements ∆q in the domain Ω̄ = Ω̄h(x) =

⋃Q
q=1 ∆q, recalculated into the local coordinates

on the element ∆. The deviation of the approximate solution Eh
m, Φh

m(x) ∈ Hκ′+1≥1
2 (Ωh) from the exact

one Em, Φm(x) ∈ H2
2 (Ω) is estimated as [15]

∣∣∣Em − Eh
m

∣∣∣ ≤ c1h2p′ ,
∥∥∥Φm(x) − Φh

m(x)
∥∥∥

0 ≤ c2hp′+1, where
‖Φm(x)‖20 =

∫
Ω
g0(x)Φm(x)Φm(x) dx, h is the maximal size of the finite element ∆q, p′ is the order of

the FEM scheme, c1 and c2 are coefficients independent of h.

3 Algorithm for constructing Hermitian finite elements in hypercube

The HIPs ϕκr(x) ≡ ϕκ1···κi···κdr1···ri···rd (x1, . . . , xi, . . . , xd) of d variables in a d-dimensional parallelepiped element
x = (x1, . . . , xi, . . . , xd) ∈ [x1;min, x1;max] × · · · × [xd;min, xd;max] = ∆q ⊂ Rd that are obtained on nodes

2

EPJ Web of Conferences 226, 02007 (2020)	 https://doi.org/10.1051/epjconf/202022602007
Mathematical Modeling and Computational Physics 2019



up to a given order at the vertices of the hypercube. Such a choice of values allows us to construct
a piecewise polynomial basis continuous at the boundaries of the finite elements together with the
derivatives up to a given order. In the case of a d-dimensional cube, it is shown that the basis func-
tions are determined by products of d HIPs depending on each of the d variables given by means of
the recurrence relations in analytical form [2]. Using this fact we propose a new symbolic algorithm
implemented in Maple for analytical calculation of the basis functions, i.e. HIPs of d variables with
the derivatives continuous at the faces of the standard d hypercube. The method can be used to solve
elliptic BVPs by means of a high-accuracy FEM. Its advantages are the reduced computational cost
and the availability of accurate derivatives of the function interpolated. The present study is motivated
by possible applications of the FEM on simplexes [4] or hypercubes [10] for solving a BVP in the
collective nuclear model with tetrahedral symmetry [11], as well as by other applications in different
areas, e.g., flow dynamics in unsteady fluid systems [12, 13] and molecular dynamics [14].

2 Formulation of the problem

Consider a self-adjoint boundary-value problem (BVP) for the elliptic differential equation

(D − E)Φ(x) ≡
−

1
g0(x)

d∑
i, j=1

∂

∂xi
gi j(x)

∂

∂x j
+ V(x) − E

Φ(x) = 0. (1)

For the principal part coefficients of Eq. (1), the condition of uniform ellipticity holds in the bounded
domain x = (x1, . . . , xd) ∈ Ω of the Euclidean space Rd, i.e., the constants µ > 0, ν > 0 exist such
that µξ2 ≤ ∑d

i j=1 gi j(x)ξiξ j ≤ νξ2, ξ2 =
∑d

i=1 ξ
2
i ∀ξ = (ξ1, . . . , ξd) ∈ Rd. Also assumed that g0(x) >

0, g ji(x) = gi j(x) and V(x) are real-valued functions, continuous together with their generalized
derivatives up to a given order in the domain x ∈ Ω̄ = Ω ∪ ∂Ω ∈ Rd with the piecewise continuous
boundary S = ∂Ω, which provides the existence of nontrivial solutions Φ(x) obeying the boundary
conditions (BCs) of the first (I) or the second (II) kind [4]. For a discrete spectrum problem, the
functionsΦm(x) from the Sobolev space H2

2(Ω̄),Φm(x) ∈ H2
2(Ω̄), corresponding to the real eigenvalues

E: E1 ≤ E2 ≤ · · · ≤ Em ≤ · · · obey the orthonormalization conditions [4].
The polyhedral domain Ω̄ ⊂ Rd is decomposed Ω̄ = Ω̄h(x) =

⋃Q
q=1 ∆q in finite elements in the form

of d dimensional simplexes or hypercubes ∆q with HIPs or LIPs ϕκr(x), x ∈ Rd, calculated using the
algorithms of Refs. [4, 10]. The piecewise polynomial functions Pl(x) ∈ Cκ

′
of order p′ with continu-

ous derivatives up to order κ′ ≤ κmax−1 are constructed by joining the polynomials, ϕκr(x), on the finite
elements ∆q ∈ Ω̄h(x). The expansion of the sought solution Φh

m(x) from the Sobolev space Hs≥1
2 (Ω̄)

in the basis of piecewise polynomial functions Pl(x), Φh
m(x) =

∑L
l=1 Pl(x)Φh

lm leads to the generalized
algebraic eigenvalue problem (AEP), (A − BEh

m)Φh
m = 0, solved using the standard method [15]. The

elements of the symmetric matrices of stiffness A and mass B comprise the integrals, which are calcu-
lated on the elements ∆q in the domain Ω̄ = Ω̄h(x) =

⋃Q
q=1 ∆q, recalculated into the local coordinates

on the element ∆. The deviation of the approximate solution Eh
m, Φh

m(x) ∈ Hκ′+1≥1
2 (Ωh) from the exact

one Em, Φm(x) ∈ H2
2 (Ω) is estimated as [15]

∣∣∣Em − Eh
m

∣∣∣ ≤ c1h2p′ ,
∥∥∥Φm(x) − Φh

m(x)
∥∥∥

0 ≤ c2hp′+1, where
‖Φm(x)‖20 =

∫
Ω
g0(x)Φm(x)Φm(x) dx, h is the maximal size of the finite element ∆q, p′ is the order of

the FEM scheme, c1 and c2 are coefficients independent of h.

3 Algorithm for constructing Hermitian finite elements in hypercube

The HIPs ϕκr(x) ≡ ϕκ1···κi···κdr1···ri···rd (x1, . . . , xi, . . . , xd) of d variables in a d-dimensional parallelepiped element
x = (x1, . . . , xi, . . . , xd) ∈ [x1;min, x1;max] × · · · × [xd;min, xd;max] = ∆q ⊂ Rd that are obtained on nodes

1 10

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

E
m

 M    (n=4, L=1000)
 T3   (n=3, L=1000)
 T4   (n=2, L=  729)
 T5   (n=2, L=1331)

E
m

Figure 1. The discrepancy δEm=Eh
m−Em,

m = 0, 1, . . . , 11 (except δE0) of
calculated eigenvalue Eh

m of the
Helmholtz problem for a
three-dimensional cube with the edge
length π from their exact values
Em = 0[1]1[3]2[3]3[1]4[3]5[6]6[3]8[3]
9[6]10[6]11[3], where the multiplicity of
the degeneracy is shown in square
brackets. Results of FEM are marked: for
cubic elements with HIPs of the ninth
order p′ = p′1 p′2 p′3 = 9 by M, and for
tetrahedral elements with LIPs of the
third order by T3, fourth order by T4, and
fifth order by T5.

xr1···ri···rd = (x1r1 , . . . , xiri , . . . , xdrd ), xiri = ((p − ri)xi;min + rixi;max)/p; ri = 0, . . . , p, i = 1, . . . , d are
determined by relations [1, 7]

ϕκ1···κi···κdr1···ri···rd
(x1r′1 , . . . , xir′i , . . . , xdr′d ) = δr1r′1 · · · δrir′i · · · δrdr′dδκ10 · · · δκi0 · · · δκd0,

∂κ
′
1+···+κ′dϕκ1···κi···κdr1···ri···rd (x1, . . . , xi, . . . , xd)

∂x
κ′1
1 · · · ∂x

κ′i
i · · · x

κ′d
d

∣∣∣∣∣∣∣∣
(x1,...,xi,...,xd)=(x1r′1

,...,xir′i
,...,xdr′d

)

=

δr1r′1 . . . δrir′i . . . δrdr′dδκ1κ
′
1
· · · δκiκ′i · · · δκdκ′d . (2)

These HIPs of order p′ =
∏d

s=1 p
′
s are calculated as a product, ϕκr(x) ≡ ϕκ1···κi···κdr1···ri···rd (x1, . . . , xi, . . . , xd)

=
∏d

s=1 ϕ
κs
rs (xs), of one-dimensional HIPs ϕκsrs (xs), which are calculated by the following way. For each

z ≡ xs as a set of basis functions, the 1D HIPs {{ϕκr(z)}pr=0}
κmax

r −1
κ=0 of order p′ s ≡ p′ =

∑p
r=0 κ

max
r − 1 in

a standard interval z ∈ [0, 1] at the nodes zr, r = 0, . . . , p, z0 = 0, zp = 1 are constructed. The values
of the functions ϕκr(z) ∈ Cκmax−1 continuous together with their derivatives up to order (κmax

r − 1), i.e.
κ = 0, . . . , κmax

r − 1, where κmax
r is referred to as the multiplicity [1] of the node zr, are determined by

Eqs. (2). These 1D HIPs are calculated analytically from the recurrence relations derived in [2]

ϕκr(z) = wr(z)
κmax

r −1∑
κ′=0

aκ,κ
′

r (z − zr)
κ′ , aκ,κ

′

r =



0, κ′ < κ,
1/κ′!, κ′ = κ,

−
κ′−1∑
κ′′=κ

1
(κ′−κ′′)!g

κ′−κ′′
r (zr)aκ,κ

′′
r , κ

′ > κ,
(3)

wr(z) =
p∏

r′=0,r′�r

( z − zr′

zr − zr′

)κmax
r′
, gκr(z) = (wr(z))−1 dκwr(z)

dzκ
.

Below we consider only the HIPs with the nodes of identical multiplicity, κmax
r = κmax, r = 0, . . . , p,

then p′ = κmax(p + 1) − 1. For example, at κmax = 2, p′ = 2p + 1 the 1D HIPs take the form:

ϕκs=0
r (z) =

1−(z−zr)
p∑

r′=0,r′�r

2
zr−z′r


p∏

r′=0,r′�r

( z−zr′

zr−zr′

)2
, φκs=1

r (z) = (z−zr)
p∏

r′=0,r′�r

( z−zr′

zr−zr′

)2
,

for polynomials φκs=0
r (z) or φκs=1

r (z) whose value or value of first derivative is equal to 1, respectively.
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As an example of applying the above algorithms, we present the results of solving the Helmholtz
problem (1) with BC (II) for a 3D cube with the edge length π. Figure 1 shows the discrepancy
δEm = Eh

m − Em, m = 0, 1, . . . , 11 (except δE0) of the numerical eigenvalues Eh
m of this problem from

their exact values. The results were calculated using FEM with HIPs of the ninth order (M (n = 4,
L = 1000)) for cubic elements and LIPs [3] of the third order (T3 (n = 3, L=1000)), fourth order (T4
(n = 2, L = 729)), and fifth order (T5 (n = 2, L = 1331)) for tetrahedral elements. The number of
parts n into which we divide the edge of the cube and the length of the eigenvector L = (pn + 1)dκdmax
of AEP are shown in parentheses. One can see that the accuracy of the FEM with HIPs of the ninth
order p′ = p′1 p′2 p′3 = 9 with continuous first derivatives κmax − 1 = 1 at each face of the 3-dimensional
cube is higher than with the LIPs of the third order, but lower than with the LIPs of the fourth and fifth
order.

4 Conclusions
In this paper we present a new symbolic algorithm implemented in Maple for constructing in analytical
form the Hermitian finite elements with d variables in a standard d-dimensional hypercube. In the
construction of this algorithm we used the fact that the basis functions are determined by a product
of d one-dimensional HIPs depending on each of the d variables with continuous derivatives up to a
given order κ′ on the boundaries of the the finite elements using the recurrence relations (3). It allows
us to construct a piecewise polynomial basis continuous on the boundaries of finite elements together
with the derivatives up to the given order, which can be used to solve elliptic BVPs as well as other
problems with partial derivatives of a high order by means of the high-accuracy finite element method.
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