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Abstract—A computational scheme of the finite element
method (FEM) is presented that allows the solution of the eigen-
value problem for a SOODE with the known potential function
using the ODPEVP and KANTBP 4M programs that implements
FEM in the Fortran and Maple, respectively. Numerical analysis
of the solution using the KANTBP 4M program is performed
for the SOODE exact solvable eigenvalue problem. The discrete
energy eigenvalues and eigenfunctions are analyzed for vibra-
tional and rotational states of the diatomic beryllium molecule
solving the eigenvalue problem for the SOODE numerically with
the table-valued potential function approximated by interpolation
Lagrange and Hermite polynomials and its asymptotic expansion
for large values of the independent variable specified as Fortran
function. The efficacy of the programs is demonstrated by the
calculations of twelve eigenenergies of vibrational bound states
with the required accuracy, in comparison with those known
from literature, and the vibrational-rotational spectrum of the
diatomic beryllium molecule.

Index Terms—eigenvalue problem, second-order ordinary dif-
ferential equation, finite element method, Programs ODPEVP,
KANTBP 4M, diatomic beryllium molecule, vibration–rotation
states

I. INTRODUCTION

The study of mathematical models, describing waveguide
problems, spectral and optical properties of diatomic molecular
systems, reduces to the solution of a boundary-value problem

(BVP) for an elliptic equation of the Schrödinger type [1], [2].
After the separation of angular variables, this equation reduces
to a second order ordinary differential equation (SOODE) with
variable coefficients and the independent variable belonging
to the semiaxis r ∈ (0,+∞). In this equation the potential
function is numerically tabulated on a non-uniform grid in a
finite interval of the independent variable values [3]–[5].

To formulate the BVP on the semiaxis, the potential function
should be continued beyond the finite interval using the addi-
tional information about the interaction of atoms comprising
the diatomic molecule at large distances between them. The
leading term of the potential function at large distances is given
by the van der Waals interaction, inversely proportional to
the sixth power of the independent variable with the constant,
determined from theory and experimental data [6]–[8].

So, it is necessary to make an appropriate approximation of
the tabulated potential function and to match the asymptotic
expansion of the potential function with its tabulated numerical
values (within the accuracy of their calculation) at a suitable
sufficiently large value of the independent variable.

The development of technique for solving the above class
of eigenvalue problems for the SOODE using the programs
ODPEVP [9] and KANTBP 4M [10] implementing the FEM
[11] in the Fortran and Maple respectively, constitutes the
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subject of the present paper.
The efficacy of the programs is demonstrated by the cal-

culations of twelve eigenenergies of vibrational bound states
with the required accuracy, in comparison with those known
from literature, and the vibrational-rotational spectrum of the
diatomic beryllium molecule.

The structure of the paper is following. In section 2 setting
of the BVP for the SSODE is given. In section 2.1 a reduction
of the BVP to an algebraic problem is done. In section
2.2 numerical analysis of benchmark calculations by means
of KANTBP 4M program of an exact solvable eigenvalue
problem for the SSODE is presented. In section 3 the dis-
crete energy eigenvalues and eigenfunctions are analyzed for
vibrational and rotational states of the diatomic beryllium
molecule solving the eigenvalue problem for the SOODE
numerically. The table-valued potential function approximated
by interpolation Lagrange and Hermite polynomials and its
asymptotic expansion for large values of the independent
variable is specified as Fortran function in Appendix. In
section 4 summary and perspectives of applications the FEM
program are given.

II. SETTING OF THE PROBLEM

The mathematical model describing the spectral and optical
characteristics of molecular systems is formulated as a BVP
for the SOODE for the unknown function Φ(r) of the inde-
pendent variable r ∈ Ω[rmin, rmax]:

(D − E) Φ(r) =

(
− 1

r2

d

dr
r2 d

dr
+ V (r)− E

)
Φ(r) = 0. (1)

Here V (r) is a real-valued function from the Sobolev space
Hs≥1

2 (Ω), providing the existence of nontrivial solutions obey-
ing the boundary conditions (BCs) of the first (I) (Dirichlet),
second (II) (Neumann), or third (III) kind at the boundary
points of the interval r ∈ [rmin, rmax] at the given value of
R(zt):

(I) : Φ(rt) = 0, t = min or max, (2)

(II) : lim
r→rt

r2 dΦ(r)

dr
= 0, t = min or max, (3)

(III) : lim
r→rt

r2 dΦ(r)

dr
=R(rt)Φ(rt), t= min or max .(4)

The calculation of the approximate solution Φ(r)∈Hs≥1
2 (Ω̄)

of the BVP (1)–(4) is executed by means of the FEM using
the symmetric quadratic functional [11]

Ξ(Φ, E, rmin, rmax) = Π(Φ, E) (5)

−Φ(rmax)R(rmax)Φ(rmax) + Φ(rmin)R(rmin)Φ(rmin),

Π(Φ, E)=

∫ rmax

rmin

[
dΦ(r)

dr

dΦ(r)

dr
+Φ(r)(V (r)−E)Φ(r)

]
r2dr.

For the bound-state problem the set of M eigenvalues of the
energy Em: E1 ≤ E2 ≤ . . . ≤ EM and the corresponding set
of eigenfunctions Φ(r) ≡ {Φm(r)}Mm=1 is calculated in the

space H2
2 for the SOODE (1). The functions obey the BCs of

the first, second or third kind at the boundary points of the
interval r ∈ [rmin, rmax] and the orthonormalization condition

〈Φm|Φm′〉 =

∫ rmax

rmin

Φm(r)Φm′(r)r2dr = δmm′ . (6)

Thus, to solve the discrete spectrum problem on an axis
or semiaxis, the initial problem is approximated by the BVP
in the finite interval r ∈ [rmin, rmax] with the BCs of the
first, second, or third kind with the given R(rt), dependent
or independent of the unknown eigenvalue E, and the set of
approximated eigenvalues and eigenfunctions is calculated.

A. Reduction to an algebraic problem

Let us construct a discrete representation of the solution
Φm(r) of the problem (1)–(4), reduced to the variational
functional (5) on the finite-element mesh

Ωphj(r)[r
min, rmax]=[r0=rmin, r1, ..., rnp−1, rnp=r

max]. (7)

The solution Φhm(r) ≈ Φm(r) is sought in the form of
expansion in basis functions Ng

µ(r) in the interval r ∈ ∆ =
∪nj=1∆j = [rmin, rmax]:

Φhm(r) =
L−1∑
µ=0

Φhm;µN
g
µ(r), Φhm(rl) = Φhm;l, (8)

where L = pn+1 is the number of the basis functions Ng
µ(r)

and the desired coefficient Φhm;µ which at µ = l are values
of the function Φhm(r) at each node r = rl of the mesh
Ωphj(r)[r

min, rmax]. The basis functions Ng
µ(r) are piecewise

continuous polynomials of the order p in the corresponding
subinterval r ∈ ∆j = [rmin

j ≡ r(j−1)p, r
max
j ≡ rjp] con-

structed using the Lagrange interpolation polynomials (LIP)
or Hermite ones [11].

The substitution of the expansion (8) into the variational
functional (5) reduces the BVP (1)–(4) to the generalized
algebraic problem for the set of the eigenvalues Em and the
eigenvectors Φh

m = {Φhm;µ}L−1
µ=0 :

(A− EhmB)Φh
m = 0. (9)

Here A and the positive definite matrix B are the symmetric
stiffness and mass matrices, respectively, with the dimension
L× L, where L = κmax(np+ 1).

Theoretical estimates of the difference between the exact
solution Φm(z) ∈ H2

2 and the numerical one Φhm(r) ∈ H1 by
the norm H0 evaluate the convergence of the eigenvalues and
eigenfunctions of the order 2p and p+ 1, respectively [11]:

|Ehm−Em| ≤ c1h2p,
∥∥Φhm(r)−Φm(r)

∥∥
0
≤c2hp+1, (10)

where h = max1<j<n hj is the maximal step hj = rj+1 − rj
of the mesh (7), c1 ≡ c1(Em) > 0 and c2 ≡ c2(Em) > 0 are
independent of the step h, the norm H0 being defined as

∥∥Φhm(r)−Φm(r)
∥∥

0
=

(∫ rmax

rmin

r2dr(Φhm(r)−Φm(r))2

)1/2

. (11)



Fig. 1. Absolute errors σh
1 = |Eexact

2 − Eh
2 | and σh

2 =
maxr∈Ωh(r) |Φexact

2 (r)−Φh
2 (r)| of the second eigenvalue and eigenfunc-

tion of the BVP (1)–(4) as functions of the dimension L = 5ngp + 1
of the algebraic eigenvalue problem, calculated with the LIP from the
first (p = 1) to the eighth (p = 8) order. The left ends of the curves
correspond to the mesh with one finite element between two nodes. i.e.,
Ω = {0(2ng)1(2ng)5(ng)20} c ng = 1, where the number ng of finite
elements between two nodes is indicated in parentheses.

Since in the programs KANTBP 4M the integration in each
finite element is performed using expansion of potential V (r)
by, in general, interpolation Hermite polynomials (IHPs) with
multiplicities of nodes κmax that leads to quadrature formula
[10], [11]

rmax
j∫

rmin
j

r2drNL1
(r, rmin

j , rmax
j )V (r)NL2

(r, rmin
j , rmax

j )

=

p∑
r=0

κmax−1∑
κ=0

V (κ)(r(j−1)p+r)Vl1;l2;κmaxr+κ(rmin
j , rmax

j )), (12)

where Vl1;l2;l3(rmin, rmax) are determined by the integrals
with IHPs

Vl1;l2;l3(rmin
j , rmax

j )=

rmax
j∫

rmin
j

r2drNl1(r, rmin
j , rmax

j )Nl2(r, rmin
j , rmax

j )Nl3(r, rmin
j , rmax

j ). (13)

The obtained expression will be exact for polynomial poten-
tials of the order smaller than p. Generally this decomposition

Fig. 2. The potential V (r) (Å−2) of the beryllium diatomic molecule as a
function of r (Å) obtained by interpolating the tabulated values (points in the
subintervals, the boundaries of which are larger-size points) by means of the
fifth-order LIPs.

leads to numerical eigenfunctions and eigenvalues with the
accuracy of the order about p+ 1.

The estimation of the error is carried out using the maximal
norm, i.e., the maximal absolute value of the error of the
eigenfunctions Φhm(r) and eigenvalues Ehm in the interval
r ∈ Ωh(r):

σ1 = |Ehm − Em| ≤ c1(Em)hp+1,

σ2 = max
r∈Ωh(r)

|Φhm(r)− Φm(r)| ≤ c2(Em)hp+1. (14)

In the program ODPEVP the integrals are calculated by
the Gauss integration rule with 2p + 1 nodes and held the
theoretical estimations (10).

Since the eigenfunctions of the discrete spectrum exponen-
tially decrease, Φasm (r) ∼ exp(−

√
−Emr)/r, at r → +∞,

the initial problem is reduced to a BVP for bound state in the
finite interval with the Neumann conditions at the boundary
points rmin and rmax of the interval and the normalization
condition (6).

B. Benchmark calculations

The original bound state problem is formulated in the
infinite interval r ∈ (0,+∞) for the Schrödinger equation (1)
with the potential function inverse proportional to the square of
hyperbolic cosine V (r) = −λ(λ−1)

cosh(r)2 , where λ > 1. The eingen-
values Eexactm and eigenfunctions Φexactm (r) = r−1χexactm (r)
of this problem, normalized by the condition (6) at rmin → 0
and rmax → +∞, are known in the analytical form. For the
chosen λ = 11/2, the BVP has two discrete spectrum solutions
with eigenvalues −Em = 49/4, 9/4.

The calculations were performed in the finite interval r ∈
[rmin, rmax] with the Neumann boundary conditions (3) on
the quasi-uniform mesh Ω = { 0 (2ng) 1 (2ng) 5 (ng) 20 },
where in parentheses the number of finite elements between
two nodes is indicated, the dimension L is expressed in terms
of the number ng and the order of LIP p as L = 5ngp+ 1.

Figure 1 shows the dependence of the absolute errors (14)
of the second state (m = 2) depending on the dimension
L of the algebraic eigenvalue problem (9) for finite element
schemes with LIP of different order p. In double logarithmic
scale the plots of the error starting from a certain number L



Fig. 3. The MEMO potential function V (r) (points and line 1 [3]), the
asymptotic expansion Vas(r) of the MEMO function (line 2, [6]), the
analytical forms of the potential function Van(r) (line 3 [7] and line 4 [8]).
r is given in Å, V∗(r) in cm−1.

Fig. 4. The 11-th χ10L(r) = rΦ10L(r) (solid curves) 12-th χ11L(r) =
rΦ11L(r) (dashed curves) eigenfunctions vs. r of the vibrational-rotational
spectrum of beryllium diatomic molecule at L = 0, 1, 2: Ev=10;L=0 =
−4.41, Ev=10;L=1 = −4.21, Ev=10;L=2 = −3.82; Ev=11;L=0 =
−0.325, Ev=11;L=1 = −0.245 and Ev=11;L=2 = −0.096 (in cm−1).

are close to straight lines with different slope, corresponding
to the theoretical estimates of the approximation order p + 1
of the approximate eigenfunctions and eigenvalues (14) using
the LIP with different p.

III. BERYLLIUM DIATOMIC MOLECULE

In quantum chemical calculations, the effective potentials
of interatomic interaction are presented in the form of nu-
merical tables calculated with limited accuracy and defined

TABLE I
THE EIGENVALUES OF VIBRATIONAL ENERGY −EvL=0 (IN CM−1) OF

THE BERYLLIUM DIATOMIC MOLECULE CALCULATED BY THE PROGRAMS
KANTBP 4M [10] AND ODPEVP [9] IMPLEMENTED FEM (FEM), AB

INITIO MEMO CALCULATION [3], THEORETICAL (EMO) AND
EXPERIMENTAL (EXP) RESULTS [4], SYMMETRY-ADAPTED PERTURBATION
THEORY (SAPT) [5] , AND THE MORSE-LONG RANGE (MLR) FUNCTION

AND CHEBYSHEV POLYNOMIAL EXPANSION (CPE) [8], De IS THE
ABSOLUTE ENERGY AT THE DISSOCIATION LIMIT IN cm−1), re IS THE

EQUILIBRIUM INTERNUCLEAR DISTANCE IN Å.

v FEM MEMO EMO Exp SAPT MLR&CPE
re 2.4534 2.4534 2.4535 2.4536 2.443 2.445
De 929.804 929.74 929.74 929.7±2 938.7 934.8&935.0

0 806.07 806.48 806.5 807.4 812.4 808.1510
1 583.57 584.32 583.8 584.8 590.1 585.2340
2 408.73 408.88 408.7 410.3 414.8 410.7319
3 288.36 288.61 288.3 289.3 292.1 289.7314
4 211.18 211.42 211.1 212.6 214.5 213.0654
5 154.16 154.38 154.1 155.9 157.3 156.3536
6 107.15 107.34 107.1 108.6 109.8 109.1202
7 68.35 68.51 68.3 69.7 70.7 70.1719
8 37.80 37.92 37.7 39.2 40.0 39.6508
9 16.33 16.43 15.8 17.5 18.1 17.9772

10 4.41 4.40 3.1 4.8 5.3 5.3187
11 0.326 0.27 0.5 0.5175

on a nonuniform mesh of nodes in a finite domain of inter-
atomic distance variation. However, for a number of diatomic
molecules the asymptotic expressions for the effective poten-
tials are calculated analytically for sufficiently large distances
between the atoms. The equation for the diatomic molecules
in a crude adiabatic approximation, commonly referred to as
Born–Oppenheimer approximation (BO), has the form(
− ~2

2mDaÅ
2

(
1

r2

d

dr
r2 d

dr

)
+ṼL(r̃)−ẼvL

)
Φ̃vL(r̃)=0, (15)

where ṼL(r̃) = Ṽ (r̃)+ ~2

2mDaÅ
2
L(L+1)
r2 , L is a quantum num-

ber of the total angular momentum, ~2/(2Da)=1.685762920 ·
10−7 Å, the reduced mass of beryllium is m=M/2=4.506,
r̃=r Å, the effective potential is Ṽ (r̃) in atomic units
aue=0.002194746314 Å−1, the energy is ẼvL cm−1.

The BVP (1)–(4) was solved for the equation (15) where
the variable r is specified in (Å), and the effective potential
V (r) = (2mDaÅ

2
aue/~2)Ṽ (rÅ)= 58664.99239Ṽ (rÅ)Å

−2

and the desired value of energy EvL=(2mDaÅ
2
/~2)ẼvL in

Å−2, ẼvL=(1/0.2672973729)EvL cm−1.
In Ref. [3] the potential V (r) (see Fig. 2) is given by

the BO-PRC potential function marked as MEMO tabu-
lar values {VM (ri)}76

i=1. So, in the interval r ∈ [r1 =
1.5, r46 = 9] the potential V (r) was approximated in subin-
tervals r ∈ [r5k−4, r5k+1], k = 1, ..., 9 by the fifth-order
interpolation Lagrange polynomials of the variable r. In the
interval r ∈ [rmatch = 14,∞) the asymptotic behavior
Vas(r)=58664.99239Ṽas(r) at large r is given by the expan-
sions [6]

Ṽas(r)=−
(

214(3)

Z6
+

10230(60)

Z8
+

504300

Z10

)
, (16)

where Z = r/0.52917. In the subinterval r ∈ [r46 =
9, rmatch = 14] we consider the approximation of the potential



V (r) by the fourth-order interpolation Hermite polynomial
using the values of the potential V (r) at the points r = {r46 =
9, r47 = 10, r48 = 11} and the values of the asymptotic
potential Vas(r) and its derivative dVas(r)/dr at the point
r = rmatch = 14. This approximation is specified in Å−2

as REAL*8 FUNCTION VPOT(R) of the variable R in (Å)
(see Appendix).

For comparison Fig. 3 plots the above potential function
V (r), its asymptotic expansion Vas(r), and the analytical
potential functions Ṽan(r) in a.u. proposed in Ref. [7]:

Ṽan(r)=A exp(−bZ)+d exp(−eZ−fZ2)

−
8∑

n=3

((
1− exp(−bZ)

2n∑
k=0

(bZ)k

k!

)
C(2n)

Z2n

)
, (17)

where A = 21.7721, b = 1.2415, d = −4.3224, e =
0.5891, f = 0.0774, Z = r/0.52917, C(6) = 214,
C(8) = 10230, C(10) = 504300, C(2i) = (C(2i −
2)/C(2i − 4))3C(2i − 6), i = 6, 7, 8, and r is given in
Å. One can see that the MEMO potential function V (r)
has a minimum −De(FEM)=V (re) = 929.804 cm−1

at the equilibrium point re = 2.4534 Å and displaces
above the analytic potential function Van(r) in the vicin-
ity of this point, −De(Sheng)=Van(re)=−948.3 cm−1 and
the MLR&CPE potential functions [8] −De(MLR)=934.8,
−De(CPE) =935.0 at re = 2.445, while the analytical
potential function Van(r) is located above the MEMO and
MLR&CPE potential functions in the interval r ∈ (3.2, 6.1),
i.e. to the left of the interval r ∈ (6.1,∞), where the
considered potentials tend to the dominated asymptotic po-
tential Vas(r).In the calculation presented below, we used
the asymptotic expansion Vas(r), Eq. (16) with which the
matching of the tabulated potential V (r) and the asymptotic
potential Vas(r) was executed at r = rmatch = 14 using
REAL*8 FUNCTION VPOT(R) of the variable R in (Å) (see
Appendix). The BVP (1) was solved on the finite element
mesh Ω1 = {1.50 (ng) 2.00 (ng) 2.42 (ng) 2.50 (ng) 3.00
(ng) 3.50 (ng) 4.00 (ng) 5.00 (ng) 6.00 (ng) 9.00 (ng)
14.00 (ng) 19.00 (ng) 24.00 (ng) 29.00 (ng) 38.00 (ng)
48.00 (6ng) rmax =78.00} with Neumann BCs. In each of
the subintervals (except the last one) the potential V (r) was
approximated by the LIP of the fifth order, and ng = 4 finite
elements were used. The last integrand was divided into 6ng
finite elements and the potential V (r) was replaced with its
asymptotic expansion. In the solution of the BVP at all finite
elements of the mesh the local functions were represented by
the fifth-order LIP. Table I presents the results of using FEM
programs KANTBP 4M and ODPEVP to calculate twelve
energy eigenvalues of beryllium diatomic molecule. Note,
that our calculation was performed using the program that
implements the Numerov method on the mesh (0,100) for
twelve levels with the mesh spacing 0.02 with Dirichlet BCs
for χvL(r) = rΦvL(r), which differs from the FEM results
in Table I only in the last significant digit. The table shows
the eigenvalues calculated with ab initio modified (MEMO)
expanded Morse oscillator (EMO) potential function [3]. In

Fig. 5. Potential functions VL(r) (in cm−1) vs r (in Å) at L = 0, ..., 36
and rotational-vibrational spectrum EvL (in cm−1) of the beryllium diatomic
molecule vs L at.

contrast to the original EMO function, which was used to
describe the experimental (Exp) vibrational levels [4], it has
not only the correct dissociation energy, but also describes all
twelve vibrational energy levels with the RMS error smaller
than 0.4 cm−1. The table also shows the results of recent
calculation using the Morse long-range (MLR) function and
Chebyshev polynomial expansion (CPE) alongside with the
EMO potential function [8]. The main attention in the op-
timization of the MLR and CPE functions was focused on
their correct long-range behavior displayed in Fig. 3. However,
there are some problems with the quality of the MLR and CPE
potential curves [3]. As a consequence, one can see from the
table, that the MLR and CPE results provide a lower estimate
while FEM and MEMO results give an upper estimate for the
discrete spectrum of the diatomic beryllium molecule.

Fig. 5 displays potential functions VL(r) from L = 0 till
L = 36 that support 36 + 33 + 30 + 28 + 25 + 23 + 20 +
17+14+11+7+3+1 = 248 vibrational–rotational levels or
12+12+12+11+11+11+11+10+10+10+10+9+9+
9+8+8+8+7+7+7+6+6+6+5+5+4+4+4+3+3+
2 + 2 + 2 + 1 + 1 + 1 + 1 = 248 rotational-vibrational levels.
The Fig. 5 shows also the rotational-vibrational spectrum EvL
(in cm−1) of the beryllium diatomic molecule vs L. One can
see that potentials VL(r) at L = 1 and L = 2 supports 12
vibrational energy levels.

CONCLUSION

We present the computational finite element scheme for the
solution of the BVP for the SOODE with variable coeffi-
cients using the programs KANTBP 4M and ODPEVP. The
numerical analysis of the solution of the benchmark eigenvalue
problem for the SOODE is given.

The discrete energy eigenvalues and eigenfunctions are
analyzed for vibrational–rotational states of the diatomic beryl-



lium molecule by solving the eigenvalue problem for the
SOODE numerically with the table-valued potential function
approximated by interpolation Lagrangian and Hermite poly-
nomials and its asymptotic expansion for large values of the
independent variable specified as Fortran function.

The efficacy of the programs is demonstrated by the calcu-
lations of twelve eigenenergies of the vibrational bound states
of the diatomic beryllium molecule with the required accuracy
in comparison with those known from literature, as well as the
vibrational-rotational spectrum.

New high accuracy ab initio calculations of the tabulated
potential function will be useful for further study of the
vibrational-rotational spectrum and scattering problems.

The results and the presented FEM programs with inter-
polation Hermite polynomials that preserve the derivatives
continuity of the approximate solutions can be applied in
the analysis of spectra of diatomic molecules and waveguide
problems by solving the eigenvalue and scattering problems
in the closed–coupled channel method.
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APPENDIX
REAL*8 FUNCTION VPOT(R)
REAL*8 R
IF ( R .LT. 0.200D1) THEN
VPOT = -25773.7109044290317516659D0*R
#+45224.0477977149109075999D0
#+11630.1409366263902691980D0*(R-1.50D0)**5
#-21410.9944579041874319967D0*(R-1.50D0)**3
#-6655.69301415296537793622D0*(R-1.50D0)**4
#+37646.6374905803929755811D0*(R-1.50D0)**2
ELSEIF ( R .LT. 0.242D1) THEN
VPOT = -3104.29731660146789925758D0*R
#+6567.96677835187237746414D0
#+145901.637557436977844389D0*(R-2.00D0)**5
#+70890.0501932798636244675D0*(R-2.00D0)**3
#-178091.891722217850289831D0*(R-2.00D0)**4
#-5215.01465840480348371833D0*(R-2.00D0)**2
ELSEIF ( R .LT. 0.250D1) THEN
VPOT = -87.4623224249792247412537D0*R
#-35.4722493028120322541662D0
#-5122452.98252855176907985D0*(R-2.42D0)**5
#-37267.2557427451395256506D0*(R-2.42D0)**3
#+767538.576723810368564874D0*(R-2.42D0)**4
#+1940.26376259904725429059D0*(R-2.42D0)**2
ELSEIF ( R .LT. 0.300D1) THEN
VPOT =95.5486415932416181588138D0*R
#-485.009680038558034254034D0
#-559.791178882855959174489D0*(R-2.50D0)**5
#-2399.49666698491294179656D0*(R-2.50D0)**3
#+2045.36781464380745875587D0*(R-2.50D0)**4
#+1039.16158144865749926292D0*(R-2.50D0)**2
ELSEIF ( R .LT. 0.350D1) THEN
VPOT = 181.680445623994493034163D0*R
#-673.209766066617684340488D0
#-42.1375729651804208384176D0*(R-3.00D0)**5
#+154.527717281912104793036D0*(R-3.00D0)**3
#-2.64421453511851874413350D0*(R-3.00D0)**4
#-224.971347436273044312400D0*(R-3.00D0)**2
ELSEIF ( R .LT. 0.400D1) THEN
VPOT = 58.2170634592331667146628D0*R
#-279.496863252389085774320D0
#+16.3002196867918408302045D0*(R-3.50D0)**5
#+60.2807956755861261238267D0*(R-3.50D0)**3
#-47.2260081876105825000000D0*(R-3.50D0)**4
#-47.2940696984941697748181D0*(R-3.50D0)**2
ELSEIF ( R .LT. 0.500D1) THEN
VPOT =37.5433740382779941025814D0*R
#-203.532767180257088384326D0
#+1.57933446805903445309567D0*(R-4.00D0)**5
#+2.06536720797980643219389D0*(R-4.00D0)**3
#-3.90913978185322013018878D0*(R-4.00D0)**4
#-6.72175482977376484481239D0*(R-4.00D0)**2
ELSEIF ( R .LT. 0.600D1) THEN
VPOT = 22.4749425088812799926950D0*R
#-135.176802468861661924475D0
#-1.74632723645421934973176D0*(R-5.00D0)**5
#-1.13910625636659500903584D0*(R-5.00D0)**3
#+3.46551546383436915312500D0*(R-5.00D0)**4
#-8.23297658169947934799179D0*(R-5.00D0)**2
ELSEIF ( R .LT. 0.900D1) THEN
VPOT = 8.25446369250102969043326D0*R
#-57.5068241812660846645295D0
#+0.262554831228989391666862D-1*(R-6.00D0)**5
#+1.52595797003340802069435D0*(R-6.00D0)**3
#-.302331762133111382686686D0*(R-6.00D0)**4
#-4.49546478165576415777827D0*(R-6.00D0)**2
ELSEIF ( R .LT. 0.1400D2) THEN
VPOT = 11.385941234992376680396136937226D0*R
#-37.683304037819782698889968642231D0
#-1.3036988112705401175758401661849D0*R**2
#+0.6675467548036330733418010128614D-1*R**3
#-0.12861577375486918213137485397657D-2*R**4
ELSE
Z=R/0.52917D0
VPOT = -( 214.D0/Z**6+10230.D0/Z**8
# +504300.D0/Z**10)
VPOT =58664.99239D0*VPOT
RETURN
END


