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Abstract
The variation of the triple differential cross section of the (e,2e) simple ionization of CO2 with
the direction of the ejected electron is studied. The calculations are performed in the frame of a
perturbative first Born procedure, using a three-center Dyson type description for the 1πg bound
electron and an approximate three-center continuum solution of the corresponding Schrödinger
equation for a specific wave vector ke for the free ejected electron, which satisfies the correct
asymptotic boundary condition up to the order O kr(( ) )2− . Empirical values for the screening of
the three nuclei of the target and for the Sommerfeld parameters of the three-center Coulomb
continuum function are introduced. The results are compared to existing experimental results and
a theoretical result obtained by the same approach, using a Hartree–Fock Slater type orbital.

Keywords: inelastic electron-molecule collision, ionization of CO2, Dyson orbitals, two center
continuum

1. Introduction

The simple (e,2e) ionization by electron impact, which con-
sists in coincidence detection of the ejected and the scattered
electrons emerging from a mono-collision of an electron with
an atomic or molecular gas, is an excellent tool for studying
the electronic structure of the target, the nature of the inter-
actions involved, and the mechanisms of the inelastic colli-
sion [1–3]. Compared to the ionization of atoms, the
theoretical treatment of this process in the case of molecules
presents supplementary difficulties. Here the orientation of
the target during the inelastic collision and the vibrational and
rotational states must be taken into account. Moreover, the
description of the ejected electron in the field of many
attractive centers needs an appropriate continuum multi-

center wave function. Now, as the vibrational and rotational
levels involved cannot be resolved by the actual (e,2e) setups,
the closure relation is used over these levels. See [4] for a
clear explanation on this point. Here the ionization is con-
sidered as a vertical transition from the electronic ground state
at the equilibrium internuclear distance to the ground state of
the residual ion at the same internuclear distance.

An area of concern is the multi-center aspect of the wave
function of the ejected electron. Generally, one center partial
wave developments are used, which require large number of
terms and are not well adapted to the multi center nature of
molecules. The other alternative is to use, for linear mole-
cules, the many center development in spheroidal coordinates
[5], which would be appropriate if it did not demand very
large computational efforts. To avoid these inconveniences, a
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two-center Coulomb continuum (TCC) wave function in a
closed form, satisfying the correct boundary conditions
approximately, was developed in the past [6, 7]. This TCC
model was recently extended to three-center targets and
applied to the ionization of CO2 [8], for which simple (e,2e)
detections were realized by the Manchester group for the low
equal energy sharing regime [9] and by the Orsay group for
the relatively higher incident energy asymmetric regime [10].
This multicentric model is now considered to be an appro-
priate choice for the description of the electron in other
situations, such as the field of high harmonic generation by
ultra short pulsed lasers [11–13] on diatomic systems.

The aim of the present work is to introduce improvements
to the last theoretical attempt [8], which failed to reproduce the
expected ‘recoil lobe’ around the direction of the momentum
transfer in the variation of the multiple differential cross
sections (MDCS) observed experimentally [10]. In this work,
we try to go beyond the Hartree–Fock description of the bound
electron in the initial state of the colliding system and intro-
duce, for the first time, the Dyson 1πg Gaussian orbital, which
is obtained from coupled cluster [14, 15] results by calculating
the overlap between the N state of the target and the N( 1)−
state of the singly ionized ion [16]. The practical aspect of this
choice is that Gaussian functions nowadays are more often
available, especially for complex molecules, so the present
work can open the way for future calculations on more com-
plex linear systems. We adopt also, in the interaction of the
incident electron with the three centers of the target, a para-
metric description of the screening due to the inactive electrons.
We use, as in [8], the empirical charges for the wave function
of the ejected electron, satisfying the asymptotic condition.

2. Theory

We employ, as in [8], a perturbative first Born procedure for the
determination of the MDCS of the simple ionization of the three-
center collinear molecule CO2 in a given orientation. For the
ionization of the 1πg orbital, it can be given in atomic units by:

( )
( )k

k k

k
T T

( )
d

d d d d 2

2
. (1)

s e e

s e

i
fi
m

fi
m

(4)
4

2

1 2 1 2

σ ρ σ
Ω Ω Ω

=

= +

ρ

= − =

As shown in figure 1, ρ represents the internuclear vector of the
target CO2, with θρ and ϕρ the polar and azimuthal angles,
respectively, defined in the fixed laboratory frame. The modulus

4.39ρ = a.u. at the equilibrium position. The elements of solid
angles dΩs, dΩe, and dΩρ are respectively, those of the orien-
tations of the scattered and the ejected electrons and that of ρ.
We represent the incident, scattered, and ejected electrons by
their wave vectors ki, ks, and ke. Finally, m is the electronic
magnetic quantum number corresponding to the level from
which the electron is ejected. Here m 1= ± for the 1πg electron.

As the collision takes place at any orientation of the
target, we have to integrate overall possible and equally

probable directions of the molecule in space and obtain the
triple differential cross section (TDCS):

1

4
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We define Ei, Es, and Ee as the energy values of the
incident, scattered, and ejected electrons, respectively. They
must satisfy the following energy conservation equation

E E E I, (3)i s e= + +

with I = 13.77 eV representing the energy necessary to eject
an electron from the 1πg orbit of the CO2 target [9, 17].

In our model we will consider only the active electron of
the target. So the transition matrix element Tfi

m will involve
only two electrons, the fast incident (scattered) and the bound
(slow ejected) electrons. The positions of these two electrons
in the body fixed system of reference are given by R and r.
The carbon atom is at the origin of this system, and the two
oxygen atoms are placed on the z axis at equal distances from
the carbon. Considering only the first order term of the Born
series we will have:
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Here, the plane waves describe the fast incident and scattered
electrons. r( , )i

m 1 ρλ = ± is the Dyson orbital [16, 18] of the
bound electron in the initial state in the body fixed system of
reference, and r( , )f ρλ is the wave function of the ejected
electron. The position of this electron with respect to the two
oxygen centers O1 and O2 will then be given by r r 2O1 ρ= +
and r r 2O2 ρ= − . The perturbation V, due to the interaction
of the incident electron with the target, will be approximated
by the following model potential borrowed from [19], which
takes into consideration the effect of the screening due to the

Figure 1. The reference frame with the different wave vectors ki, ks,
and ke, representing the momenta of the incident, scattered, and
ejected electrons, respectively, and the different position vectors of
the incident and ejected (bound) electrons with respect to the three
nuclei.
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inactive electrons in the molecule:
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Here, we have introduced the following polarization factor,
which varies with the orientation of the target
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Using the Bethe transformation for the position vector R
of the incident fast electron in equation (4)
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with K k ki s= − the momentum transfer, the transition
matrix element for a given value of m will be reduced to
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The integrations run over the space coordinates of the ejected
electron.

We have done five types of calculations with different
model potential parameters for the interaction of the incident
electron with the target. The first type corresponds to that
applied in [8], where the three centers are considered as
screened Coulomb centers with Za representing the positive
value of the nuclear charge of the oxygen center, as in the
Sommerfeld parameter in equation (13) obtained by the
asymptotic condition, which imposes that z z z 1O C O1 2+ + =
at very large distances from the residual ion. Taking
z z ZO O a1 2= = , we must have z Z1 2C a= − . The second type
corresponds to the same calculation but with the angular
polarization factor f ( )θρ± . In the third and fourth types, we
assimilate the interaction to that of an electron with three
protons. In the fifth type, we introduce the model potential of
[19], described above.

2.1. The initial state wave function

It is useful to recall that the ground state configuration of CO2

is given by [20, 21]

1 1 2 3 2 4 3 1 1 . (11)g u g g u g u u g
2 2 2 2 2 2 2 4 4σ σ σ σ σ σ σ π π

The incident electron will eject a 1πg electron, which will
be described by the following Dyson orbital [16, 18] obtained
from coupled cluster [14, 15] results, constructed by linear
combinations of Gaussian type orbitals centered on the two
oxygen centers O1 and O2 and the carbon center C. It is given
by f gr( , ) 2 ( ı )i

m
g g
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and the upper index indicates the atom on which a given
orbital is centered. The orbitals are defined by
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Here the Mulligan convention [20] is used, where all one-
center orbitals have the same z axis along the internuclear axis
ρ. They are all positive in the positive z direction.

The optimized orbital exponents b1, b2, b3, b4, and b5 of
oxygen and carbon are shown in table 1. The corresponding
coefficients in the Gaussian function are Ci and are displayed
in table 2, and the corresponding coefficients A, B, E, and F of
the 1πg level are shown in table 3.
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2.2. The final state wave function: the three-center electronic
continuum

Following ionization, the relatively slow ejected electron will
be found in the field of the linear CO2

+ ion. Its wave function
r( , )f ρλ will be given by the following three-center Coulomb

continuum function proposed by [7]
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which corresponds as indicated in [7] to an approximate
solution of the Schrödinger equation, an electron having k as
the wave vector in the Coulomb field of three fixed centers.
Here F1 1 is the Kummer confluent hypergeometric function,
and Z kj jα = − is the Sommerfeld parameter. The vectors
r r 2a ρ= + and r r 2b ρ= − (see figure 1) refer to the
positions of the ejected electron with respect to the two
oxygen centers, and r rc ≡ that of the carbon. Following the
original choice [8], we will represent the charges, in the wave
function, corresponding to the two oxygen centers by Za = Zb.
Knowing that Z Z Z 1a b c+ + = for the residual ion, we will
have Z Z1 2c a= − . r( ,f ρλ ) is symmetrical with respect to
the exchange of the vectors ra and rb, and it satisfies the
asymptotic condition:

kr

k r
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It is clear that satisfying the asymptotic condition does
not insure the quality of the three-center continuum wave
function (ThCC), since the reaction region is in the first few
atomic units as the initial bound state wave function leads to a
fast convergence in terms of r. Nevertheless, we believe that
as the ThCC is an approximate solution of the three-center
Schrödinger equation [7] and by its nature posesses the three-
center symmetry in contrast to other one-center continuum
wave functions used for molecules, it can be considered as a
good compromise.

3. Results and discussion

Our aim in this work is to go beyond what has been done in
the last theoretical attempt [8] in matching the experimental
results concerning the (e,2e) simple ionization of CO2, which
has succeeded, first, to show, relatively well, the right beha-
vior of the TDCS in the region of the binary peak (see figure 1
of [8]); and, second, to give the good prediction for the
optimal incident energy value around 600 eV (see figure 4 in
[8]) as well as to show the expected molecular aspect of the
problem in the variation of the TDCS with the scattering
angle for a fixed direction of the internuclear axis. It has, on
the other hand, failed to reproduce the expected and experi-
mentally observed [10] ‘recoil lobe’ around the opposite
direction of the momentum transfer in the variation of the
TDCS. In this work, we introduce for the first time the Dyson
1πg Gaussian orbital, which we obtained from coupled cluster
[14, 15] results by calculating the overlap between the N state
of the target and the N( 1)− state of the singly ionized ion
[16]. Our aim in this choice was to open the way for future
applications of this type of orbitals, which are more available
for complex molecules than the Slater type orbitals used in
[8]. We adopt, for the interaction term of the incident electron
with the three-center target, a parametric description of the
screening due to the inactive electrons of equation (7) and
introduce empirical charges Za, Zb, and Zc for the wave
function of the ejected electron, satisfying the asymptotic
condition as presented above.

We have performed our calculations for the same con-
ditions as the existing experimental data, namely, the detec-
tion of the fast scattered electron, having the energy value
Es = 500 eV, at an angle 6sθ = − ° with respect to the inci-
dence direction, in coincidence with the ejected electron of
Ee = 37 eV. Here the incident energy is deduced from
equation (3).

To see separately the different contributions of the
interaction potential terms equation (7), we present three
types of results. The first is obtained by considering
V R r| | 1= − − in equation (5), taking only the interaction of the
incident electron with the bound (ejected) electron and
neglecting the nuclear terms; the second, by considering
V U R( )= , where we exclude the electron–electron interac-
tion; and the third, by taking the whole interaction of the
incident electron with the molecule. For each situation we
have tested, for the ejected electron continuum wave function

Table 1.Optimized orbital exponents b1, b2, b3, b4, and b5 of oxygen
and carbon.

b1 b2 b3 b4 b5

15.539 616 3.599 933 6 1.013 761 8 0.270 005 8 0.8

Table 2. The coefficients C1, C2, C3, C4, and C5 of the molecular
orbitals of CO2.

C1 C2 C3 C4 C5

0.070 874 3 0.339 752 8 0.727 158 6 1 1

Table 3. The coefficients A, B, E, and F for the Dyson orbital of the
1πg level.

A B E F

0.449 110 3 0.351 321 7 0.023 783 7 0.066 074 8
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(13), many different values are obtained for Za, and conse-
quently for Zb and Zc , following the asymptotic condition
Z Z Z 1a b c+ + = . Among these values we present only the
results for Z 0.1, 0.2, 0.3a = and 0.4, which are quite
representative.

Figure 2 corresponds to the first test, whereV R r| | 1= − − .
We can observe that in this choice, the variation of the
charges Za, Zb, Zc in the three-center continuum wave func-
tion has a very small effect on the different curves, which
present no recoil lobe. The profile of the curves does not vary.
This is reasonable because in the four cases the initial state
function is the same. Moreover, these charges in the con-
tinuum state are directly related to the molecular nature of the
residual ion, which is ignored in the interaction potential in
this try.

On figures 3(a)–(d) the results obtained forV U R( )= are
presented for Z 0.1, 0.2, 0.3a = and 0.4, respectively. Here,
we take only the interaction of the incident electron with the
three screened nuclei. Five different types of potentials are
considered, defined in table 4. To allow comparison, all five
cases are plotted on the same absolute scale in atomic units.
The general observation is that the variation of Za, Zb, Zc in
the TCC brings a small change in the profiles. This change is
perceptible on the dotted curve (the second from below on the
figures), corresponding to the type 2 potential in table 4 as it
changes from a straight line for (a) Za = 0.1 to a small
‘sinusoidal’ structure for Z Z 0.4a b= = , Zc = 0.2. In the other
types, the same effect of increase in the ‘amplitude’ is also
waypresent. This can be explained by the fact that, as we
increase Za, the influence of the outer oxygen atoms is
increased both in the ThCC function and in the potential for
type 2, thus increasing the molecular aspect of the continuum
wave function.

Figure 2. The variation of the TDCS for V R r| | 1= − − , in terms of
the ejection angle θe of the ionization of the 1πg level of CO2 for four
values of the empirical parameter Z 0.1, 0.2, 0.3a = and 0.4, for the
final state. The energy of the scattered electron Es = 500 eV, detected
at an angle 6sθ = − °. The energy of the ejected electron Ee = 37 eV.

Figure 3. Same as in figure 2 but forV U R( )= . The dotted line corresponds to the results obtained by the choice type 1 of table 4. The short-
dashed line to type 2, the dash-dot-dot to type 3, the dash-dot to type 4, and the full line to type 5.
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Figure 4 corresponds to the variation of the TDCS
(equation (2)) with both terms of perturbation V in the transi-
tion matrix element. All the theoretical results are given in the
same scale. The experimental result is normalized in such a
way as to have the maximum of the experimental point on the
same level as that of the continuous curve, corresponding to the
potential of type 5 in table 4. We first compare the dotted curve
to the one with crosses, which represent, respectively, the
results obtained by the Dyson Gaussian type orbitals and the
Hartree–Fock Slater type orbitals, corresponding both to the
type 1 in table 4. We observe that the introduction of the Dyson
orbitals for the same perturbation, i.e., type 1 potential, pro-
duces no recoil peak and changes only the magnitude of the
TDCS, keeping the structure unchanged. So we can be assured
that Dyson Gaussian type orbitals, which can be more available
than Slater type orbitals, especially for complex molecules, are
as well adapted as the Slater type orbitals.

We then pass to the line with short dashes in figure (4),
which corresponds to the type 2 potential for the interaction of
the incident electron with the target, and where an angular
polarization of the charges is introduced, as defined in
equation (8). It does not bring any significant improvement
either in the recoil region.

The dash-dot-dot and the dash-dot curves, which both
correspond to the case for which a pure Coulomb interaction
with unit charges is considered for the perturbation potential,
produce the expected recoil peak. Here also the introduction
of the angular polarization in type 4 does not modify sig-
nificantly the results with respect to type 3.

A general observation of these results can be that the
interaction of the incident electron with nuclei plays an
important role for the ejection in the recoil region. In fact, the
recoil momentum q K ke= − of the target, which is obtained
by the conservation of the total momentum, reaches its

Table 4. Numerical values of the coefficients and the screening parameter used in equation (7).

type a zO zC Cα Cβ Oα Oβ N1C N2C N1O N2O f ( )θρ±

1 1 Za Z1 2 a− 0 0 0 0 0 0 0 0 1
2 1 Za Z1 2 a− 0 0 0 0 0 0 0 0 equation (8)
3 1 1 1 0 0 0 0 0 0 0 0 1
4 1 1 1 0 0 0 0 0 0 0 0 equation (8)
5 1

3
1 1 4.714 1.110 09 6.264 1.5964 2 3 2 5 1

Figure 4. Same as in figure 2 but for V U R R r( ) | | 1= + − − . The curve with crosses corresponds to the past results of [8]. The experimental
cross-section set [10] is normalized in such a way that the binary peak is at the same level as that of type 5.
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maximum value when the momentum of the ejected electron
ke is anti parallel to the momentum transfer K. Now, in this
situation, the residual ion moves in the opposite direction to
the ejected electron. This happens when the interaction of the
incident electron with the target, which will create this
movement of the residual ion, is well described, which is
apparently the case for types 3 and 4.

This semiclassical interpretation of the existence of the
recoil peak does not take into consideration the second order
quantum effects, which we have ignored in the first Born
treatment. This can explain the observation that the experi-
mental recoil peak is not situated exactly on the direction of
K− but is slightly translated to the right. We will in a future
work try to introduce the second order terms to try to match
the experimental result.

Let us now observe the decrease of the ratio of the binary
peak to that of the recoil peak with Za. This is perceptible for
the potential of type 3 represented by the dash-dot-dot curves
in figure 4. We think that this must be caused by the increase
of the influence of the outer oxygen centers and the reduction
of the influence of the carbon situated on the center of the
system as we mentioned above, thus increasing the three-
center aspect of the continuum wave function.

The variation of the TDCS with the incident energy value
has shown globally the same behavior as in [8], with the
optimal value around 600 eV. The molecular aspect, which
manifests itself in the interference structure of the variation of
MDCS for a fixed orientation of the molecule with the ejection
or scattering angle, was also similar to that obtained in [8].

4. Conclusion

We have applied a three-center Coulomb continuum function,
obtained by the calculation of the Schrödinger equation of a
free electron (with wave vector k) in the Coulomb field of
three fixed charged nuclei, to the (e,2e) ionization of CO2,
whose electronic structure is described by Dyson orbitals. We
observe that in contrast to the binary peak, whose angular
position is the same as the experimental one, the recoil peak
can be obtained only when special care is employed in the
choice of the parameters for the interaction of the incident
electron, with the three atoms constituting the target. We see
also that second order terms in the transition matrix element
must be introduced to try to move the theoretical recoil peak
toward the higher angles to match the experimental result.
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