Single ionization of helium by fast proton impact: Searching for projectile coherence

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/635/2/022053)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 95.46.74.135
This content was downloaded on 14/09/2015 at 09:55

Please note that terms and conditions apply.
Single ionization of helium by fast proton impact: Searching for projectile coherence

*Institut für Kernphysik, University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
†Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
§School of Mathematics and Computer Science, National University of Mongolia, UlaanBaatar, Mongolia
¶Department of Physics, Pacific State University, Tikhookeansklaya 136, Khabarovsk 680035, Russia
‡Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia

Synopsis The fully differential cross section (FDCS) for single ionization $p + \text{He} \rightarrow p + e + \text{He}^+$ at proton energy of 1 MeV is studied both experimentally and theoretically. The 3D angular electron distribution is presented. The role of electron-electron correlations both in a trial helium ground-state wave function and in the final helium state is inspected.

A 3D angular distribution of the electron ejected in the reaction $p + \text{He} \rightarrow p + e + \text{He}^+$ was measured at an incident proton energy of 1 MeV. The momentum transfer q was fixed to 0.75 a.u. and the electron energy to 6.5 eV. The distribution has a shape of a pear with a narrow node in the P-plane, which is perpendicular to the scattering plane (C-plane) and crosses the latter along the proton-velocity axis. The first Born approximation (FBA) describes satisfactory all angle domains except that in the P-plane.

Other well-established approaches employed in our analysis, in particular, such as EWBA, SBA and J-matrix, also fail to reproduce the experimental data in the P-plane. We normalized all theories and experiment to the binary peak in the C-plane, thus obtaining the normalization coefficients for the P-plane. SBA and EWBA give practically no contribution to the FBA calculations, but we find a noticeable difference in the backward peak for the ground correlated [1] (blue curve in Fig. 1) and non-correlated [2] (green curve) helium wave functions, as well as for calculations within the J-matrix approach [3] (red curve), where final correlations between the electron and the helium ion are included. The results in the P-plane are presented in Fig. 1.

Possible explanations of the observed discrepancies will be discussed, including coherence/incoherence of a projectile beam (see the most recent paper [4] and references therein). Nevertheless, theoretical problems occur when FBA is close to zero in the P-plane. In such a case, both dynamical mechanisms beyond FBA and experimental uncertainties can manifest themselves.

Figure 1. Experimental and theoretical electron angular distributions in the P-plane for singly ionizing 1-Mev $p + \text{He}$ collisions. Blue curve represents FBA with a highly correlated helium wave function [1], green curve the same, but with a loosely correlated function [2], and red line the J-matrix calculations [3].

References

E-mail: schoeffler@atom.uni-frankfurt.de