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The Kondo and the Fano resonances in the two-point Green’s function of the single-level quantum
dot were found and investigated in many previous works by means of different numerical calculation
methods. In this report, we present a derivation of the analytical forms of the resonance terms in
the expression of the two-point Green’s function. For that purpose, the system of Dyson equations
for the two-point nonequilibrium Green’s functions in the complex-time Keldysh formalism was es-
tablished to the second order in the tunneling coupling constants with the mean field approximation
for the statistical averages of the products of four electron creation and destruction operators. This
system of Dyson equations was solved exactly by means of the computer algebra and the analytical
expressions for the resonance terms are derived. The conditions for the existence of the Kondo or
the Fano resonances were found.
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I. INTRODUCTION

The electrons transport through a single-level quan-
tum dot (QD) connected with two conducting leads has
been the subject for theoretical and experimental stud-
ies in many works since the early days of nanophysics
[1–22]. Two observable physical quantities, which can be
measured in experiments on electron transport, are the
electron current through the QD and the time-averaged
value of the electron number in the QD. Both can be
expressed in terms of the single-electron Green’s func-
tions. In the pioneering theoretical works [1, 3] on the
electron transport through a single-level QD, the differ-
ential equations for the real-time Green’s functions were
derived with the use of the Heisenberg equations of mo-
tion for the electron destruction and creation operators.
Due to the presence of the strong Coulomb interaction
between electrons in the QD, the differential equations
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for the single-electron Green’s functions contain multi-
electron Green’s functions and all the coupled equations
for these Green’s functions form an infinite system of dif-
ferential equations. In order to have a finite closed sys-
tem of equations, one can assume some approximation
to decouple the infinite system of equations. Moreover,
since the electron transport is a nonequilibrium process
one should work with the Keldysh formalism of nonequi-
librium complex-time Green’s functions [23,24].

In the study of the nonequibrium complex-time
Green’s functions by means of the perturbation theory
with respect to the Coulomb interaction one usually re-
tains some chain of ladder diagrams and assumes also the
noncrossing approximation (NCA). The systems of equa-
tions for the Green’s functions were solved by means of
different numerical methods, for example the Quantum
Monte Carlo technique [13] and the numerical renormal-
ization group method [10,12,14,17]. The electron two-
point Green’s functions were shown to have resonance
related to the Kondo effect. Beside of Kondo resonance,
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the Fano quasi-bound state in the energy spectrum of
the electron system of the QD and the leads might also
give some resonant contribution.

In this work, the exact analytical expressions of the
Kondo and the Fano resonance terms are derived with
the help of the computer algebra systems Mathematica
and Maple by explicitly solving the matrix equations for
the underlying Green’s functions. From these analytical
expressions, we obtain the whole set of resonances and
the conditions for their existence. In particular, we shall
demonstrate the distinction between the Kondo and the
Fano resonances, if they do exist.

II. SYSTEM OF DYSON EQUATIONS

Consider the nanosystem consisting of a single-level
QD connected to two leads through the potential
barriers with the total Hamiltonian

H = E
∑

σ

c+
σ cσ + UN↑N↓

+
∑

k

∑
σ

{
Ea(k)a+

σ (k)aσ(k) + Eb(k)b+
σ (k)bσ(k)

}
+

∑
k

∑
σ

{
Va(k)a+

σ (k)cσ + V ∗
a (k)c+

σ aσ(k)

+ Vb(k)b+
σ (k)cσ + V ∗

b (k)c+
σ bσ(k)

}
, (1)

where aσ(k), bσ(k) and a+
σ (k), b+

σ (k) are the annihila-
tion and creation operators of the electrons with mo-
menta k in the two leads,

Nσ = c+
σ cσ,

and Gσσ′(t − t′)C denotes the complex time single-
electron Green’s function and is given by

Gσσ′(t− t′)C = δσσ′G(t− t′)C

= −i
〈
TC

[
cσ(t)c+

σ′(t′)
]〉

, (2)

which is a set of four functions

Gσσ′(t− t′)αβ = δσσ′G(t− t′)αβ , α, β = 1, 2 (3)

with the Fourier transforms

G̃σσ′(ω)αβ = δσσ′G̃(ω)αβ .

Due to the presence of the Coulomb interaction term
in the Hamiltonian in Eq. (1), the differential equation
for the Green’s function in Eq. (2) contains a new Green’s
function H(t− t′)C defined as

Hσσ′(t− t′)C = δσσ′H(t− t′)C

= −i
〈
TC

[
N−σcσ(t)c+

σ′(t′)
]〉

. (4)

From the Heisenberg equations of motion for the op-
erators cσ(t), aσ(k, t) and bσ(k, t), we can derive the dif-
ferential equations for the Green’s functions. Applying

the mean field approximation to the products of the four
operators and neglecting the terms of fourth and higher
orders with respect to the tunneling coupling constants
Va(k) and Vb(k), we obtain the system of Dyson equa-
tions containing three self-energy parts, Σ(i)(t − t′)αβ ,
i = 1, 2, 3, a vertex ρ(t− t′)αβ and the constant

n = 〈c+
α cα〉 = −iG(−0)11.

In the derivation of the equations the contributions of
all crossing terms have been taken into account: there
was no necessity to use the NCA. Moreover, in all pre-
vious works on the Green’s functions of quantum dots
in the Keldysh formalism, the system of equations was
solved by using numerical methods. In the present work,
we use the analytical expressions for the exact solution
of the system of Dyson equations.

In terms of the 2 × 2 matrices Ĝ(ω), Ĥ(ω), Σ̂(i)(ω)
and ρ̂(ω) with the matrix elements being the Fourier
transforms of the functions G(t − t′)αβ , H(t − t′)αβ ,
Σ(i)(t− t′)αβ and ρ(t− t′)αβ , the system of Dyson equa-
tions becomes that of two matrix equations. From these
two matrix equations, we derive two similar systems of
algebraic equations, each of which consists of four equa-
tions for G(ω)α1 and H(ω)α1 or G(ω)α2 and H(ω)α2,
α = 1, 2. For the investigation of the electron transport
through the QD, it is necessary to study the function
G(ω)11. By solving the system of equations for the func-
tions G(ω)α1 and H(ω)α1, we have derived the expression
of this function in the form

G(ω)11 =
Z(ω)
Y (ω)

. (5)

The explicit forms of the rather cumbersome numera-
tor Z(ω) and denominator Y (ω) in Eq. (5) were found
from the system of two matrix equations for Ĝ(ω) and
Ĥ(ω) by solving exactly. This was done by using the
computer algebra methods implemented in Maple and
Mathematica. We used both computer algebra systems
to verify the expressions obtained and to analyze the
possible applicability of each of these software systems
in view of much more tedious computations related to
the extension of the study in the present paper.

III. KONDO AND FANO RESONANCES

Now we consider the resonances of the Green’s func-
tion in Eq. (5). It contains the dispersion integrals with
the spectral functions

Γ(p)
a,b(ω) = π

∑
k

[
e−βEa,b(k)

1 + e−βEa,b(k)

]p

× |Va,b(k)|2 δ[ω − Ea,b(k)],
p = 0, 1, 2, (6)
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λa,b = π
∑

k

`a(k) |Va,b(k)|2 δ[ω − Ea,b(k)], (7)

`a(k) =
1
Z

{
e−βE − [1 + e−βE ]na(k)

E − Ea(k)

+
e−β(E+U) − [1 + e−β(E+U)]na(k)

E + U − Ea(k)
e−βE

}
, (8)

na(k) =
〈
a+

σ (k)aσ(k)
〉

=
e−βEa(k)

1 + e−βEa(k)
, (9)

Z = 1 + 2e−βE + e−β(2E+U).

Denote µa, µb and Ωa, Ωb as the chemical potentials
and the tops of the energy bands of the systems of con-
ducting electrons in the leads “a” and “b”, respectively.
Because

Ea,b(k) = E
(0)
a,b(k)− µa,b,

where E
(0)
a,b(k) are the kinetic energies of the conducting

electrons in the leads, 0 ≤ E
(0)
a,b(k) ≤ Ωa,b, the spec-

tral functions Γ(p)
a,b(ω) and λa,b(ω) vanish for ω < −µa,b

and ω > Ωa,b − µa,b. For the study of the divergence
of Σ(i)(ω)αβ and ρ(ω)αβ , we set µa = µb, Ωa = Ωb,
Γ(0)

a (ω) = Γ(0)
b (ω) and λa(ω) = λb(ω) and we approxi-

mately replace the values of the latter two functions in
the interval −µ < ω < Ω − µ by some constants Γ and
λ, respectively. Then, we have following behaviors of the
Green’s function in Eq. (5) in the neighborhoods of the
divergence points of the functions Σ(i)(ω)αβ , neglecting
the finite very small terms of the second order with re-
spect to the tunneling coupling constants:

a) As ω → −µ and at low temperature T ≈ 0, the
Green’s function in Eq. (5) has an asymptotic form

G(ω)11 ≈ −
[
1− n + 1

2 (E + µ)λ
Γ

]
U

E + 2U + µ

× 1
1
2 (E + µ) + 2Γ

π ln
∣∣ω+µ

Ω

∣∣ + 2iΓ

−
E + µ +

[
1 + n− (E + U + µ)λ

Γ

]
U

E + 2U + µ

× 1
(E + U + µ) + 2Γ

π ln
∣∣ω+µ

Ω

∣∣ + 2iΓ
. (10)

If E + µ > 0, then G(ω)11 has two resonances at
two points,

ω
(±)
1 = −µ± Ω exp

{
− π

4Γ
(E + µ)

}
, (11)

and two more resonances at two more points,

ω
(±)
2 = −µ± Ω exp

{
− π

2Γ
(E + U + µ)

}
. (12)

Between these four resonances, there are dips. If
E +µ < 0 but E +U +µ > 0, G(ω)11 has only two

resonances at the points ω
(±)
2 . If E + U + µ < 0,

then in the neighbourhood of the point ω = −µ,
the Green’s function G(ω)11 has no resonance. All
four points ω

(±)
1 and ω

(±)
2 are very close to the

point ω = −µ and the resonances at ω
(±)
1 and ω

(±)
2

look like a resonance at ω = −µ. The origin of
these resonances is the presence of the Fano quasi-
bound state at the lower edge of the energy band of
the conducting electrons. If they exist, they would
be called Fano resonances.

b) As ω → 0 and at T = 0 the Green’s function
G(ω)11 has the asymptotic form

G(ω)11 ≈ − E + (1− n)U
E(E + U) + 2ΓU

π ln
∣∣ µ
ω

∣∣ + 2i(3E + 2U)Γ
.

(13)

If E(E +U) < 0, G(ω)11 has two resonances at the
points

ω
(±)
3 = ±µ exp

{
− π

2Γ

∣∣∣∣E(E + U)
U

∣∣∣∣} , (14)

which are very close to the point ω = 0. At ω = 0
and 0 < T < TK ,

TK =
1
k

µ exp
{
−π

2
|E(E + U)|

ΓU

}
, (15)

where k is the Boltzmann constant, instead of the
formula in Eq. (13), we have

G(ω)11 ≈
π

2
E + (1− n)U

ΓU

× 1
ln |T/TK | − iπ(3E + 2U)Γ

. (16)

The resonances in the neighborhood of the point
ω = 0 have the same physical origin as the Kondo
effect in the scattering of electrons by a magnetic
impurity. They are the Kondo resonances.

c) As ω → 2E+U and at T = 0, the Green’s function
G(ω)11 has the asymptotic form

G(ω)11 ≈
E + nU

E(E + U)− 2ΓU
π ln

∣∣∣ µ
ω−2E−U

∣∣∣− 2iEΓ
.

(17)

Therefore, if E(E + U) > 0, G(ω)11 also has two
resonances at the points

ω
(±)
4 = 2E + U ± µ exp

{
− π

2Γ
E(E + U)

U

}
, (18)
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which are very close to the point ω = 2E + U . At
ω = 2E + U and 0 < T < T ′

K ,

T ′
K =

1
k

µ exp
{
−π

2
E(E + U)

ΓU

}
; (19)

instead of the formula in Eq. (17), we have

G(ω)11 ≈
π

2
E + nU

ΓU

1
ln |T/T ′

K | − 2iEΓ
. (20)

The resonances in the neighbourhood of the point
ω = 2E +U are the Kondo resonances of the cross-
ing terms.

d) As ω → 2E +U +µ and at low temperature T ≈ 0,
the Green’s function G(ω)11 has the asymptotic
form

G(ω)11 ≈
1− n + (E + U + µ)λ

Γ

(E + U + µ) + 2Γ
π ln

∣∣∣ω−2E−U−µ
Ω

∣∣∣− 2iΓ

× U

E + µ
. (21)

If E + U + µ > 0, G(ω)11 has two resonances at
the points

ω
(±)
5 = 2E + U + µ± Ωe−

π
2

E+U+µ
Γ , (22)

which are very close to the point ω = 2E + U + µ.
They are the Fano resonances of the crossing terms.

IV. CONCLUSION

By means of the equation of motion method, the sys-
tem of Dyson equations for the complex-time nonequilib-
rium electron Green’s functions of a system consisting of
a single-level QD connected with two conducting leads
was derived in the mean field approximation with re-
spect to the products of four creation and destruction
operators of the electron and to second order with re-
spect to the effective tunneling coupling constants. All
the crossing terms are included in the equations. The ex-
act solution of the system of Dyson equations obtained
by solving them with the help of the computer algebra
systems Mathematica and Maple may have resonances
of four types, dependending on the physical parameters
of the system: the Kondo resonances at the Fermi sur-
face whose origin is similar to that of the Kondo ef-
fect in the scattering of electrons on magnetic impuri-
ties, the Fano resonances due to the presence of the elec-
tron quasi-bound state at the lower edge of the energy
band of the conducting electrons, the Kondo resonances
in the crossing terms and the Fano resonances in the

crossing terms. The analytical asymptotic expressions of
the single-electron Green’s function G(ω)11 at these res-
onances were derived. The results of the present study
complement and agree with the numerical calculations in
previous works [6-19] on the electron Green’s functions
in a QD.
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