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Abstract. A Kantorovich method for solving the multi-dimensional
eigenvalue and scattering problems of Schrödinger equation is devel-
oped in the framework of a conventional finite element representation
of smooth solutions over a hyperspherical coordinate space. Convergence
and efficiency of the proposed schemes are demonstrated on an exactly
solvable model of three identical particles on a line with pair attractive
zero-range potentials below three-body threshold. It is shown that the
Galerkin method has a rather low rate of convergence to exact result of
the eigenvalue problem under consideration.

1 Introduction

Elaboration of stable numerical methods for the elliptic partial differential equa-
tion is one of the main problems of computational mathematics. From this point
of view, the creation of numerical schemes for solving the Schrödinger equation
in a multi-dimensional space is a very important task of computational physics.
This is based on the fact that the numerical solution of such equation has a
wide application in different quantum-mechanical problems such as the mod-
ern calculations of the weakly bound states and elastic scattering in a system
of three helium atoms considered as point particles with some short range pair
potentials, i.e. a trimer of helium atoms [11], and modern laser physics exper-
iments [9]. So, the above experiments require computer modelling of dynamics
of exotic few-body Coulomb systems in external laser pulse fields [7]. There are
two conditions for elaborating numerical methods: to be stable and to have a
high accuracy.

The main idea of this paper is to formulate Kantorovich method for solv-
ing the multi-dimensional eigenvalue and scattering problems for Schrödinger
equation MSE. In this method multi-dimensional boundary problem is reduced
to a system of ordinary differential equations of second order with variable co-
efficients on a semi-axis with the help of expansion of the solution by a set of
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orthogonal solutions of an auxiliary parametric eigenvalue problem. Then the
finite-element method is applied, to construct numerical schemes for solving cor-
responding boundary problem for the system of ordinary differential equations
with an arbitrary accuracy in the space step. Note that variable coefficients
of ordinary differential equations and the corresponding solutions can have a
long-range asymptotic behavior. That is why one has to be very careful in the
formulation of the boundary problems under consideration. We consider as an ex-
ample the known exactly solvable model of three identical particles on a line with
pair attractive zero-range potentials below three-body threshold, build up ade-
quate formulations and corresponding schemes. We verify an accuracy of these
schemes in comparison with theoretical estimations, using sequences of the en-
closed meshes and examine rate of convergence to exact results with respect to
number of basis functions.

2 Statement of the Problem

We consider three identical particles in the local Jacobi coordinates {ξ, η} ∈ R2

in the center-of-mass system, η = 2−1/2(x1 − x2), ξ = 6−1/2(x1 + x2 − 2x3),
where xi ∈ R1, i = 1, 2, 3 are Cartesian coordinates of particles on a line. In
polar coordinates ρ and θ, η = ρ cos θ, ξ = ρ sin θ, −π < θ ≤ π, the Schrödinger
equation for a partial wave function Ψ(ρ, θ) has the form:

[
−1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ hρ

]
Ψ(ρ, θ) =

2m

�2
EΨ(ρ, θ). (1)

Here E is the relative energy in the center-of-mass, m = (m1m2 + m1m3 +
m2m3)/(m1+m2+m3) is the effective mass. We choose pair potentials Vi(

√
2η) =

gδ(|η|)/√2, i = 1, 2, 3 as delta-functions of a finite strength g = cκ̄
√

2(�2/m),
and consider an attractive case c = −1 and κ̄ = π/6, supports bound state
φ0(η) =

√
κ̄ exp(−κ̄|η|) with double energy ε

(0)
0 = −κ̄2, so that 2E = q2 + ε

(0)
0 in

units � = m = 1, where q is a relative momentum of the pair [4]. The parametric
Hamiltonian hρ at each fixed value ρ ∈ R1

+ has the form (in a.e. � = m = 1)

hρ = − 1
ρ2

∂2

∂θ2
+

2cκ̄

ρ

5∑
n=0

δ(θ − θn), θn = nπ/3 + π/6. (2)

Using six-fold symmetric representation (2) we formulate the following boundary
problem corresponding to equation (1) in the case E < 0 [6]

−
[
1
ρ

∂

∂ρ
ρ

∂

∂ρ
+

1
ρ2

∂2

∂θ2

]
Ψ(ρ, θ) = 2EΨ(ρ, θ), (3)

with boundary conditions by the angle variable θn ≤ θ < θn+1

1
ρ

∂Ψ(ρ, θi)
∂θ

= (−1)i−ncκ̄Ψ(ρ, θi), i = n, n + 1, n = 0, 1, ...5,

Ψ(ρ, θn+1 − 0) = Ψ(ρ, θn+1 + 0),
(4)
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and asymptotic conditions by radial variable

lim
ρ→0

ρ∂Ψ(ρ,θ)
∂ρ = 0,

Ψ(ρ, θ)|ρ→∞ → χas
0 (ρ)Bas

0 (ρ, θ) + F (k, θ)
√

π
2kρe−kρ, k =

√−2E.
(5)

For a scattering problem in the open channel E(q) > ε
(0)
0 , i.e. for 0 < q < κ̄

χas
0 (ρ) ≈ sin(qρ + δ)/

√
qρ, (6)

where δ = δ(q) is unknown phase shift, and for bound states (E(q) ≤ ε
(0)
0 )

χas
0 (ρ) ≈ e−q̄ρ/

√
ρ, (7)

where ε = q̄2 = −q2 ≥ 0 is unknown binding energy of the three body system.

3 The Kantorovich Method

Consider a formal expansion of the solution of Eqs. (1)-(2) using the infinite set
of one-dimensional basis functions Bj(ρ; θ) ∈ W 1

2 (−π, π), j = 0, 1, 2, . . .:

Ψ(ρ, θ) =
∞∑

j=0

χj(ρ)Bj(ρ; θ). (8)

In Eq. (8), functions χ(ρ)T = (χ0(ρ, ), χ1(ρ), . . . , ) are unknown, and surface
functions B(ρ; θ)T = (B0(ρ; θ), B1(ρ; θ), . . . , ) form an orthonormal basis for
each value of ρ which is treated here as a given parameter. In the Kantorovich
approach [10], functions Bj(ρ; θ) are determined as solutions of the following
one-dimensional parametric eigenvalue problem θn ≤ θ < θn+1:




1
ρ2

∂2Bj(ρ; θ)
∂θ2

= −εj(ρ)Bj(ρ; θ),

1
ρ

∂Bj(ρ; θi)
∂θ

= (−1)n−icκ̄Bj(ρ; θi), i = n, n + 1, n = 0, 1, ...5,

Bj(ρ; θn+1 − 0) = Bj(ρ; θn+1 + 0).

(9)

The eigenfunctions of this problem are normalized as follows

< Bi(ρ; θ)|Bj(ρ; θ) >=
∫ π

−π Bi(ρ; θ)Bj(ρ; θ)dθ = δij . (10)

After substitution of expansion (8) into the Rayleigh-Ritz variational functional
(see [3]) and subsequent minimization of the functional, the solution of Eqs.
(1)-(2) is reduced to a solution of an eigenvalue problem for the finite set of
nmax ordinary second-order differential equations for determining energy E and
coefficients (radial wave functions) χ(ρ) of expansion (8)

−I
1
ρ

d

dρ
ρ
dχ

dρ
+ Vχ − A

dχ

dρ
− 1

ρ

dρAχ

dρ
= 2EIχ, lim

ρ→0
ρ
dχ(ρ)

dρ
= 0. (11)
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The boundary conditions on ρ → ∞ are (6) or (7) corresponding to the problem.
In these expressions matrix V is symmetric one and A is anti-symmetric. They
are given by the formulas

Vij = Hij + 0.5(εi + εj)δij , Hij(ρ) =
〈

∂
∂ρBi(ρ; θ)

∣∣∣ ∂
∂ρBj(ρ, θ)

〉
,

Aij(ρ) =
〈
Bi(ρ; θ)

∣∣∣ ∂
∂ρBj(ρ; θ)

〉
.

(12)

As is shown in paper [8] the problem (9) - (10) has analytical solutions

B0(ρ; θ) =
√

y2
0−x2

π(y2
0−x2)+|x| cosh [6y0(θ − nπ/3)] ,

Bj(ρ; θ) =
√

y2
j +x2

π(y2
j +x2)−|x| cos [6yj(θ − nπ/3)] ,

ε0(ρ) = −
(

6y0(ρ)
ρ

)2

, εj(ρ) =
(

6yj(ρ)
ρ

)2

.

(13)

The functions ε0(ρ), εj(ρ), j = 1, 2, . . . can be calculated as the roots of transcen-
dental equations, which follow from the boundary problems (9)-(10) at c=-1,

y0(ρ) tanh(πy0(ρ)) = −x, 0 ≤ y0(ρ) < ∞, x = c π
36ρ,

yj(ρ) tan(πyj(ρ)) = x, j − 1
2 < yj(ρ) < j, j = 1, 2, 3, ....

(14)

So using analytical expressions for functions B0, ε0, Bj , εj we have a possi-
bility to calculate the matrix elements Vij , Aij analytically.

4 The Galerkin Method

Let us consider the following expansion for the wave function Ψ(ρ, θ)

Ψ(ρ, θ) =
1√
2π

χ̄0(ρ) +
1√
π

∞∑
j=1

χ̄j(ρ) cos(6jθ). (15)

In this expansion the basic function ηj(θ) are solutions of the eigenvalue prob-

lem − d2b

dθ2
= ε̄ρ2b with six-fold symmetry conditions and functions χ̄j(ρ) are

unknown coefficients. In this case we have that bj(θ) = cos(6jθ). Using these
functions the corresponding matrix elements in the system of radial equations
(12) have the form

Hij(ρ) =




c/ρ, if i = j = 0,

(−1)j
√

2c/ρ, if i = 0, j �= 0,

(−1)i
√

2c/ρ, if i �= 0, j = 0,
(−1)i+j2c/ρ, if i �= 0, j �= 0,

(16)

Aij(ρ) = 0, Vij(ρ) = Hij(ρ) + 0.5(ε̄i(ρ) + ε̄j(ρ))δij , ε̄i(ρ) = (6i/ρ)2. (17)

Below we will compare the convergence of the Kantorovich method and the
Galerkin method on example of a calculation for the ground state of the discrete
spectrum problem under consideration.
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5 Reducing the Problem to a Finite Interval

We consider a reduction the boundary problem from semi-axis to finite interval
using known asymptotic behavior of variable coefficients Hij(ρ), Aij(ρ) and
εj(ρ) and solutions χj(ρ) at small and large values of radial variable ρ.

5.1 Discrete Spectrum Problem

In the paper [6] the following asymptotics for components χ0(ρ), χ1(ρ), . . . are
hold

χ0(ρ) ≈ exp (−q̄ρ)√
ρ

, χj(ρ) ≈
√

π

2kρ
exp (−kρ), j = 1, 2, . . . . (18)

From these relations we can obtain the homogeneous third type boundary con-
dition for large ρm, ρm >> 1, j = 1, 2, . . .

ρm
dχ0(ρm)

dρ
= −(

1
2

+ q̄ρm)χ0(ρm), ρm
dχj(ρm)

dρ
= −(

1
2

+ kρm)χj(ρm). (19)

Here q̄2 = −2E − π2/36 ≥ 0, where E < 0 is the unknown eigenvalue. So the
problem has to be nonlinear. But in the considered case we can use for simplicity
its known analytical value (−2Eb

exact = π2/9 for a ground state, −2Ehb
exact =

π2/36 for a half-bound state) and the problem becomes a linear one.

5.2 Continuous Spectrum Problem

In this case the asymptotics of functions χj , j = 0, 1, . . . for large ρ are

χ0(ρ)
∣∣∣
ρ→∞

→ J0(qρ) − tan δ′Y0(qρ)

=
√

2
qπρ

(
sin

(
qρ + π

4

)
+ tan δ′ cos

(
qρ + π

4

))
+ O(ρ−3/2),

χj(ρ)
∣∣∣∣
ρ→∞

→ (ε0(ρ) − εj(ρ))−1

[
−Aj0(ρ)

d

dρ
− 1

ρ

d

dρ
ρAj0(ρ) + Hj0(ρ)

]
χ0(ρ).

(20)
Now we have the following nonhomogeneous third type boundary conditions for

given value of 0 < q < κ̄, 2E = q2 − π2

36
< 0

ρ
dχ0(ρ)

dρ

∣∣∣∣
ρ=ρm

= ρ

(
dJ0(qρ)

dρ
− tan δ′

dY0(qρ)
dρ

)∣∣∣∣
ρ=ρm

, (21)

tan(δ′) =
π

2

∫ ρm

0

J0(qρ)V0(ρ)χ(ρ)ρdρ, δ =
π

4
− δ′ + π. (22)

Here δ = δ(q) is the value of the required phase shift at a fixed value of momen-
tum 0 < q < π/6 and J0(ρ) and Y0(ρ) are the cylindrical Bessel functions of the
first and second king, and
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V0(ρ)χ(ρ) =
∞∑

j=1

(
−A0j(ρ)

d

dρ
− 1

ρ

d

dρ
ρA0j(ρ) + H0j(ρ)

)
χj(ρ)

+
(

V00(ρ) +
π2

36

)
χ0(ρ).

(23)

For high accuracy calculation of tan(δ′) we take into account asymptotic correc-
tion terms in an exact definition of the phase shift

tan(δ′) =
π

2

∫ ρm

0

J0(qρ)V0(ρ)χ(ρ)ρdρ + vas − tan(δ′)uas. (24)

As a result we have the following formula

tan(δ′) =
(

π

2

∫ ρm

0

J0(qρ)V0(ρ)χ(ρ)ρdρ + vas

)
/(1 + uas), (25)

where the asymptotic correction terms are of the form

vas = π
2

∫ ∞
ρm

J0(qρ)
(
V00(ρ) + π2

36

)
J0(qρ)ρdρ ∼ O

(
1

ρm

)
,

uas = π
2

∫ ∞
ρm

J0(qρ)
(
V00(ρ) + π2

36

)
Y0(qρ)ρdρ ∼ O

(
1

ρ2
m

)
.

(26)

Here the exact value of the phase shift δ for each q ∈ (0, π/6) equals

δexact =
3π

2
− arctan

8
√

3qπ
π2 − 36q2

. (27)

6 Numerical Method

For numerical solution of one-dimensional eigenvalue problems and boundary
value problem (11) subject to the corresponding boundary conditions (6) and
(7), the high-order approximations of the finite element method [12,5] elaborated
in our previous papers [3,1,2] have been used. One-dimensional finite elements of
order p = 1, 2, . . . , 10 have been implemented. Using the standard finite element
procedures [5], these problems are approximated by the generalized algebraic
eigenvalue problem

KFh = EhMFh. (28)

and the system of linear algebraic equations

K̂uh = U. (29)

Here K and M are the standard stiffness and mass matrices, corresponding to
discrete spectrum problem, matrix K̂ and right-hand side vector U correspond
to continuous spectrum problem, Eh and Fh are the numerical approximation of
the corresponding eigenvalue problem and uh is the finite element approximation
of the continuous wave function on the finite-element grid.
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7 Numerical Results

Here we study the convergence rate of the Kantorovich and Galerkin methods
(KM and GM) in depending on a number of equations of system (11). The
problem under consideration is a good test for numerical methods because it has
analytical solutions of discrete and continuous spectrum. First we consider the
eigenvalue problem with ρm = 50. We use the 1000 finite elements of forth order.
The finite element grid consists 4001 nodes. We consider the calculations with
double and quadruple precision for the KM and double precision of the GM. In
Table 1 the differences ∆E = −2Eh + 2Eexact for each case are shown. One can
see that if we use the quadruple precision the KM monotonically converges to
the exact values while for double precision calculations it holds true only till 35
equations. Note that for the solution of algebraic eigenvalue problem we apply the
Subspace iteration method. The main step there is to find the solutions of system
of linear algebraic equations with matrix K using the Cholesky decomposition.
For N = 50 this system consists of 200050 equations. It can be solved stable only
if we use the quadruple precision. The last column shows that there is a rather
low rate of convergence for the GM, because it is compatible with boundary
conditions only in vicinity of small values ρ. So, the GM it can not apply in
the scattering problem. For scattering problem we calculate phase shift δh at
qρm = 300 and use 1500 finite elements of forth order. The finite element grid
consists 6001 nodes. In Table 2 differences ∆δ =δexact−δh are shown. One can
see that the KM converges monotonically to the exact values δexact with a rate
of order 1/N.

Table 1. The convergence of the Kantorovich method (KM) for the differences
∆E = −2Eh + 2Eexact of energy value of the ground state versus the number
of equations. First column shows the number of equations N , second and fourth
ones display the accuracy of calculations for quadruple and double precision.
Sixth column shows a rather low rate of convergence of the Galerkin method
(GM). Thirds, fifth and seventh columns shows correspondingly CPU times for
calculations on PC III-750MHz

N ∆Equad
KM CPUquad ∆Edouble

KM CPUdouble ∆Edouble
GM CPUdouble

1 1.801(-04) 0.225 1.801(-04) 0.023 9.662(-2) 0.020
2 2.762(-06) 1.169 2.762(-06) 0.082 4.116(-2) 0.046
3 2.697(-07) 2.791 2.697(-07) 0.183 2.573(-2) 0.083
4 5.413(-08) 5.142 5.413(-08) 0.325 1.866(-2) 0.154
5 1.594(-08) 8.414 1.594(-08) 0.515 1.462(-2) 0.220
6 5.949(-09) 11.978 5.950(-09) 0.770 1.201(-2) 0.336

10 3.967(-10) 33.765 3.979(-10) 2.194 7.010(-3) 0.880
20 1.099(-11) 137.805 1.245(-11) 8.273 3.431(-3) 3.448
30 1.390(-12) 303.616 3.276(-12) 18.222 2.271(-3) 8.096
35 6.357(-13) 430.993 3.194(-12) 24.608 1.943(-3) 11.556
40 3.232(-13) 571.624 3.361(-12) 31.970 1.697(-3) 15.457
50 1.046(-13) 916.614 4.427(-12) 52.430 1.355(-3) 26.433
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Table 2. The differences ∆δ= δexact−δh of exact and numerical results (with the
double precision) of phase shift versus the number of equations N and momentum
q.

N q
0.002 0.100 0.200 0.300 0.400 0.500

1 6.180(-1) 2.972(-2) 3.946(-2) 3.311(-2) 6.857(-2) 8.513(-2)
2 2.991(-2) 5.716(-3) 1.038(-2) 1.548(-2) 2.064(-2) 2.583(-2)
3 5.279(-3) 3.011(-3) 5.920(-3) 8.869(-3) 1.182(-2) 1.478(-2)
4 1.706(-3) 2.074(-3) 4.128(-3) 6.188(-3) 8.250(-3) 1.031(-2)
5 7.554(-4) 1.587(-3) 3.165(-3) 4.746(-3) 6.329(-3) 7.914(-3)
6 4.034(-4) 1.285(-3) 2.566(-3) 3.848(-3) 5.131(-3) 6.417(-3)

10 8.353(-5) 7.303(-4) 1.459(-3) 2.188(-3) 2.918(-3) 3.662(-3)
16 2.567(-5) 4.435(-4) 8.863(-4) 1.329(-3) 1.774(-3) 2.273(-3)
20 1.627(-5) 3.518(-4) 7.031(-4) 1.054(-3) 1.410(-3) 1.858(-3)

8 Conclusions

The stably numerical schemes for solving MSE with high accuracy with respect
to variables ρ are developed. New results are obtained for the long-range poten-
tial MSE by using PC without essential computer resources (see Table 1). It is
shown that the obtained numerical results strongly correspond to the theoreti-
cal ones. This paper opens the way to apply elaborated methods for solving the
MSE for the system of second-order ordinary differential equations and realizing
the Kantorovich method for multi-dimensional problems [3].

The investigation was carried out under the financial support by RFBR
(Grants No-00-01-00617, No-00-02-16337) and a grant of the President of Bul-
garian State Agency for Atomic Energy (2000-2002).
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