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Abstract. The boundary problem in cylindrical coordinates for the
Schrödinger equation describing a hydrogen-like atom in a strong homo-
geneous magnetic field is reduced to the problem for a set of the longitudi-
nal equations in the framework of the Kantorovich method. The effective
potentials of these equations are given by integrals over transversal vari-
able of a product of transverse basis functions depending on the longitudi-
nal variable as a parameter and their first derivatives with respect to the
parameter. A symbolic-numerical algorithm for evaluating the transverse
basis functions and corresponding eigenvalues which depend on the pa-
rameter, their derivatives with respect to the parameter and corresponded
effective potentials is presented. The efficiency and accuracy of the algo-
rithm and of the numerical scheme derived are confirmed by computations
of eigenenergies and eigenfunctions for the low-excited states of a hydro-
gen atom in the strong homogeneous magnetic field.

1 Introduction

To solve the problem of photoionization of low-lying excited states of a hydrogen
atom in a strong magnetic field [1,2] symbolic-numerical algorithms (SNA) and
the Finite Element Method (FEM) code have been elaborated [3,4,5,6]. Next
investigations are shown that to impose on boundary conditions for the scattering
problem in spherical coordinates (r, θ, ϕ), one needs to consider solution of this
problem in cylindrical coordinates (z, ρ, ϕ) and to construct an asymptotics of
solutions for both small and large values of the longitudinal variable [2,7].

With this end in view we consider a SNA for evaluating the transverse basis
functions and eigenvalues depending on a longitudinal parameter, |z|, for their
derivatives with respect to the |z| and for the effective potentials depended on
|z| of the 1-D problem for a set of second order differential equations in the
frame of the Kantorovich method (KM) [8]. For solving the above problems on
a grid of the longitudinal parameter, |z|, from a finite interval, we elaborate
the SNA to reduce a transverse eigenvalue problem for a second order ordinary
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differential equation to algebraic one applied the FEM [9,10] or some expansions
of the solution over an appropriate basis such that corresponded integrals over
transversal variable will be calculated analytically [11,12]. A symbolic algorithm
for evaluating the asymptotic effective potentials with respect to the |z|, using a
series expansion in the Laguerre polynomials, is implemented in MAPLE and is
used to continue the calculated numerical values of effective potentials to large
values of |z|.

The main goal of this paper is to develop a symbolic algorithm for generation
of algebraic eigenvalue problem to calculate economically the transverse basis
on a grid points of finite interval of the longitudinal parameter, |z|, and its con-
tinuation from matching point to large |z|. The obtained asymptotic of effective
potentials at large values of the longitudinal variable are used as input file for an
auxiliary symbolic algorithm of evaluation in analytical form the asymptotics of
solutions of a set of the second order differential equations with respect to the
longitudinal variable, |z|, in the KM. The algorithms are explicitly presented and
implemented in MAPLE. The developed approach is applied to numerical calcu-
lation of effective potentials for the Schrödinger equation describing a hydrogen-
like atom in a strong magnetic field. A region of applicability versus a strength
of the magnetic field, efficiency and accuracy of the developed algorithms and
accompanying numerical schemes is confirmed by computation of eigenenergies
and eigenfunctions of a hydrogen atom in the strong homogeneous magnetic field.

The paper is organized as follows. In section 2 we briefly describe a reduction
of the 2D-eigenvalue problem to the 1D-eigenvalue problem for a set of the closed
longitudinal equations by means of the KM. In section 3 algorithm of generation
of an algebraic problem by means of the FEM. We examine the algorithm for
evaluating the transverse basis functions on a grid of the longitudinal parame-
ter from a finite interval. In section 4 the algorithm for asymptotic calculation
of matrix elements at large values of the longitudinal variable is presented. In
section 5 the auxiliary algorithm of evaluation the asymptotics of the longitude
solutions at large |z| in the KM. In section 6 the method is applied to calcu-
lating the low-lying states of a hydrogen atom in a strong magnetic field. The
convergence rate is explicitly demonstrated for typical examples. The obtained
results are compared with the known ones obtained in the spherical coordinates
to establish of an applicability range of the method. In section 7 the conclusions
are made, and the possible future applications of the method are discussed.

2 Statement of the Problem in Cylindrical Coordinates

The wave function Ψ̂(ρ, z, ϕ) = Ψ(ρ, z) exp(ımϕ)/
√

2π of a hydrogen atom in an
axially symmetric magnetic field B = (0, 0, B) in cylindrical coordinates (ρ, z, ϕ)
satisfies the 2D Schrödinger equation

− ∂2

∂z2 Ψ(ρ, z) + ÂcΨ(ρ, z) = εΨ(ρ, z), (1)

Âc = Â(0)
c − 2Z

√
ρ2 + z2

, Â(0)
c = −1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

m2

ρ2 + mγ +
γ2ρ2

4
,
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in the region Ωc: 0 < ρ < ∞ and −∞ < z < ∞. Here m = 0, ±1, . . . is the
magnetic quantum number, γ = B/B0, B0 ∼= 2.35 × 105 T is a dimensionless
parameter which determines the field strength B. We use the atomic units (a.u.)
h̄ = me = e = 1 and assume the mass of the nucleus to be infinite. In these
expressions ε = 2E, E is the energy (expressed in Rydbergs, 1 Ry = (1/2) a.u.)
of the bound state |mσ〉 with fixed values of m and z-parity σ = ±1, and
Ψ(ρ, z) ≡ Ψmσ(ρ, z) = σΨmσ(ρ, −z) is the corresponding wave function. Bound-
ary conditions in each mσ subspace of the full Hilbert space have the form

lim
ρ→0

ρ
∂Ψ(ρ, z)

∂ρ
= 0, for m = 0, and Ψ(0, z) = 0, for m �= 0, (2)

lim
ρ→∞ Ψ(ρ, z) = 0. (3)

The wave function of the discrete spectrum obeys the asymptotic boundary
condition. Approximately this condition is replaced by the boundary condition
of the second and/or first type at small and large |z|, but finite |z| = zmax � 1,

lim
z→0

∂Ψ(ρ, z)
∂z

= 0, σ = +1, Ψ(ρ, 0) = 0, σ = −1, (4)

lim
z→±∞Ψ(ρ, z) = 0 → Ψ(ρ, ±|zmax|) = 0. (5)

These functions satisfy the additional normalization condition
∫ zmax

−zmax

∫ ∞

0
|Ψ(ρ, z)|2ρdρdz = 2

∫ zmax

0

∫ ∞

0
|Ψ(ρ, z)|2ρdρdz = 1. (6)

2.1 Kantorovich Expansion

Consider a formal expansion of the partial solution ΨEmσ
i (ρ, z) of Eqs. (1)–

(3), corresponding to the eigenstate |mσi〉, expanded in the finite set of one-
dimensional basis functions {Φ̂m

j (ρ; z)}jmax
j=1

ΨEmσ
i (ρ, z) =

jmax∑

j=1

Φ̂m
j (ρ; z)χ̂(mσi)

j (E, z). (7)

In Eq. (7) the functions χ̂(i)(z)≡ χ̂(mσi)(E, z), (χ̂(i)(z))T =(χ̂(i)
1 (z),. . . ,χ̂(i)

jmax
(z))

are unknown, and the surface functions Φ̂(ρ; z) ≡ Φ̂
m

(ρ; z) = Φ̂
m

(ρ; −z),
(Φ̂(ρ; z))T = (Φ̂1(ρ; z), . . . , Φ̂jmax(ρ; z)) form an orthonormal basis for each value
of the variable z which is treated as a parameter.

In the KM the wave functions Φ̂j(ρ; z) and the potential curves Êj(z) (in Ry)
are determined as the solutions of the following eigenvalue problem

ÂcΦ̂j(ρ; z) = Êj(z)Φ̂j(ρ; z), (8)

with the boundary conditions

lim
ρ→0

ρ
∂Φ̂j(ρ; z)

∂ρ
= 0, for m = 0, and Φ̂j(0; z) = 0, for m �= 0, (9)

lim
ρ→∞ Φ̂j(ρ; z) = 0. (10)
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Since the operator in the left-hand side of Eq. (8) is self-adjoint, its eigenfunctions
are orthonormal

〈
Φ̂i(ρ; z)

∣
∣
∣
∣Φ̂j(ρ; z)

〉

ρ

=
∫ ∞

0
Φ̂i(ρ; z)Φ̂j(ρ; z)ρdρ = δij , (11)

where δij is the Kronecker symbol. Therefore we transform the solution of the
above problem into the solution of an eigenvalue problem for a set of jmax or-
dinary second-order differential equations that determines the energy ε and the
coefficients χ̂(i)(z) of the expansion (7)

(

−I
d2

dz2 + Û(z) + Q̂(z)
d

dz
+

dQ̂(z)
dz

)

χ̂(i)(z) = εi Iχ̂(i)(z). (12)

Here I, Û(z) = Û(−z) and Q̂(z) = −Q̂(−z) are the jmax × jmax matrices whose
elements are expressed as

Ûij(z) =

(
Êi(z) + Êj(z)

2

)

δij + Ĥij(z), Iij = δij ,

Ĥij(z) = Ĥji(z) =
∫ ∞

0

∂Φ̂i(ρ; z)
∂z

∂Φ̂j(ρ; z)
∂z

ρdρ, (13)

Q̂ij(z) = −Q̂ji(z) = −
∫ ∞

0
Φ̂i(ρ; z)

∂Φ̂j(ρ; z)
∂z

ρdρ.

The discrete spectrum solutions obey the asymptotic boundary condition and
the orthonormality conditions

lim
z→0

(
d

dz
− Q̂(z)

)
χ̂(i)(z) = 0, σ = +1, χ̂(i)(0) = 0, σ = −1, (14)

lim
z→±∞ χ̂(i)(z) = 0 → χ̂(i)(±zmax) = 0, (15)
∫ zmax

−zmax

(
χ̂(i)(z)

)T

χ̂(j)(z)dz = 2
∫ zmax

0

(
χ̂(i)(z)

)T

χ̂(j)(z)dz = δij . (16)

3 Algorithm 1 of Generation of Parametric Algebraic
Problems by the Finite Element Method

To solve eigenvalue problem for equation (8) the boundary conditions (9), (10)
and the normalization condition (11) with respect to the space variable ρ on an
infinite interval are replaced with appropriate conditions (9), (11) and Φ̂(ρmax; z)
= 0 on a finite interval ρ ∈ [ρmin ≡ 0, ρmax].

We consider a discrete representation of solutions Φ̂(ρ; z) of the problem (8)
by means of the FEM on the grid, Ωp

h(ρ) = (ρ0 =ρmin, ρj = ρj−1+hj , ρn̄ =ρmax),
in a finite sum in each z = zk of the grid Ωp

h(z)[zmin, zmax]:
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Φ̂(ρ; z) =
n̄p∑

μ=0

Φh
μ(z)Np

μ(ρ) =
n̄∑

r=0

p∑

j=1

Φh
r+p(j−1)(z)Np

r+p(j−1)(ρ), (17)

where Np
μ(ρ) are local functions and Φh

μ(z) are node values of Φ̂(ρμ; z). The local
functions Np

μ(ρ) are piece-wise polynomial of the given order p equals one only
in the node ρμ and equals zero in all other nodes ρν �= ρμ of the grid Ωp

h(ρ), i.e.,
Np

ν (ρμ) = δνμ, μ, ν = 0, 1, . . . , n̄p. The coefficients Φν(z) are formally connected
with solution Φ̂(ρp

j,r; z) in a node ρν = ρp
j,r, r = 1, . . . , p, j = 0, . . . , n̄:

Φh
ν (z) = Φh

r+p(j−1)(z) ≈ Φ̂(ρp
j,r; z), ρp

j,r = ρj−1 +
hj

p
r.

The theoretical estimate for the H0 norm between the exact and numerical
solution has the order of

|Êh
m(z) − Êm(z)| ≤ c1|Êm(z)| h2p,

∥∥Φh
m(z) − Φm(z)

∥∥
0 ≤ c2|Êm(z)|hp+1,

where h = max1<j<n̄ hj is maximum step of grid [9]. It has been shown that we
have a possibility to construct schemes with high order of accuracy comparable
with the computer one [14]. Let us consider the reduction of differential equations
(8) on the interval Δ : ρmin < ρ < ρmax with boundary conditions in points
ρmin and ρmax rewriting in the form

A(z)Φ̂(ρ; z) = Ê(z)B(z)Φ̂(ρ; z), (18)

where A and B are differential operators. Substituting expansion (17) to (18)
and integration with respect to ρ by parts in the interval Δ = ∪n̄

j=1Δj , we arrive
to a system of the linear algebraic equations

ap
μνΦh

μ(z) = Ê(z)bp
μνΦh

μ(z), (19)

in framework of the briefly described FEM. Using p-order Lagrange elements [9],
we present below an algorithm 1 for construction of algebraic problem (19) by
the FEM in the form of conventional pseudocode. It MAPLE realization allow
us show explicitly recalculation of indices μ, ν and test of correspondent modules
in FORTRAN code.

In order to solve the generalized eigenvalue problem (19), the subspace itera-
tion method [9,10] elaborated by Bathe [10] for the solution of large symmetric
banded matrix eigenvalue problems has been chosen. This method uses a sky-
line storage mode, which stores components of the matrix column vectors within
the banded region of the matrix, and is ideally suited for banded finite element
matrices. The procedure chooses a vector subspace of the full solution space and
iterates upon the successive solutions in the subspace (for details, see [10]). The
iterations continue until the desired set of solutions in the iteration subspace
converges to within the specified tolerance on the Rayleigh quotients for the
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eigenpairs. Generally, 10-16 iterations are required for the subspace iterations to
converge the subspace to within the prescribe tolerance. If matrix ap in Eq. (19)
is not positively defined, problem (19) is replaced by the following problem:

ãp Φh = Ěh bp Φh, ãp = ap − αbp. (20)

The number α (the shift of the energy spectrum) is chosen in such a way that
matrix ãp is positive. The eigenvector of problem (20) is the same, and Êh =
Ěh + α.

Algorithm 1

Input:
Δ = ∪n̄

j=1Δj = [ρmin, ρmax], is interval of changing of space variable ρ;
hj = ρj − ρj−1 is a grid step;
n̄ is a number of subintervals Δj = [ρj−1, ρj];
p is a order of finite elements;
A(z),B(z) are differential operators in Eq. (18);
Output:
Np

μ is a basis functions in (17);
ap

μν , bp
μν are matrix elements in system of algebraic equations (19);

Local:
ρp

j,r are nodes;
φp

j,r(ρ) are Lagrange elements;
μ, ν = 0, 1, . . . , n̄p ;

1: for j:=1 to n̄ do
for r:=0 to p do

ρp
j,r = ρj−1 + hj

p r
end for;

end for;
2: φp

j,r(ρ) =
∏

k �=r[(ρ − ρp
j,k)(ρp

j,r − ρp
j,k)−1]

3: Np
0 (ρ) := {φp

1,0(ρ), ρ ∈ Δ1; 0, ρ �∈ Δ1};
for j:=1 to n̄ do

for r:=1 to p − 1 do
Np

r+p(j−1)(ρ) := {φp
j,r(ρ), ρ ∈ Δj ; 0, ρ �∈ Δj , }

end for;
Np

jp(ρ) := {φp
j,p(ρ), ρ ∈ Δj ; φ

p
j+1,0(ρ), ρ ∈ Δj+1; 0, ρ �∈ Δj

⋃
Δj+1};

end for;
Np

n̄p(ρ) := {φp
n̄,p(ρ), ρ ∈ Δn̄; 0, ρ �∈ Δn̄};

4: for μ, ν:=0 to n̄p do
ap

μν :=
∫

Δ

Np
μ(ρ)A(z)Np

ν (ρ)ρdρ; bp
μν :=

∫

Δ

Np
μ(ρ)B(z)Np

ν (ρ)ρdρ;

end for;
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Remarks

1. For equation (8) matrix elements of the operator,

Âc = −1
ρ

∂

∂ρ
ρ

∂

∂ρ
+ V (ρ; z), V (ρ; z) = − 2Z

√
ρ2 + z2

+
m2

ρ2 + mγ +
γ2ρ2

4
,

between local functions Nμ and Nν defined in same interval Δj calculated by
formula

(a(zk))q+p(j−1),r+p(j−1) =
+1∫

−1

{
4
h2

j
(φp

j,q)
′(φp

j,r)
′ + V (ρ; zk)φp

j,qφ
p
j,r

}
hj

2 ρdη,

(b(zk))q+p(j−1),r+p(j−1) =
+1∫

−1
φp

j,qφ
p
j,r

hj

2 ρdη.

2. If integrals do not calculated analytically, for example, like in [11,12], then
they have been calculated by numerical methods [9], by means of the Gauss
quadrature formulae of the order p + 1.

3. For calculations matrix elements (19) and the corresponded derivatives of
eigenfunctions by z we used algorithm described in [3]. Starting from matching
point zm < zmax of the grid Ωp

h(z)[zmin, zmax] the calculation has been performed
using an asymptotic expansion from next section (zm ∼ 20, zmax ∼ 100).

4. The problem (8)–(10) has been solved using a grid Ωp
h(ρ)[ρmin, ρmax] =

0(500)4(500)30 (the number in parentheses denotes the number of finite elements
of order p = 4 in each interval). As an example, at m = −1 and γ = 10
the calculated the potential curves Êj(z), effective potentials Q̂ij(z), Ĥij(z) are
shown in Fig. 1.

4 Algorithm 2 of Evaluation the Asymptotics of Effective
Potentials at Large |z| in Kantorovich Method

Step 1. In (8) apply the transformation to a scaled variable x

x =
γρ2

2
, ρ =

√
x

√
γ/2

, (21)

and put λ = Êj(z)/(2γ) = λ(0) +m/2−Z/(γ|z|)+ δλ. Eigenvalue problem reads
⎛

⎝− ∂

∂x
x

∂

∂x
+

m2

4x
+

x

4
+

m

2
− Z

γ
√

2x
γ + z2

− λ

⎞

⎠ Φ̂j(x; z) = 0, (22)

with a normalization condition

1
γ

∫ ∞

0
Φ̂j(x; z)2dx = 1. (23)
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Fig. 1. The behaviour of potential curves Êj(z), effective potentials Q̂ij(z) and Ĥij(z)
for γ = 10, m = −1

At Z = 0 Eq. (22) takes the form

L(n)Φ(0)
nm(x) = 0, L(n) = − ∂

∂x
x

∂

∂x
+

m2

4x
+

x

4
− λ(0), (24)

and has the regular and bounded solutions at

λ(0) = n + (|m| + 1)/2, (25)

where transverse quantum number n ≡ Nρ = j − 1 = 0, 1, . . . determines the
number of nodes of the solution Φ

(0)
nm(x) with respect to the variable x. Normal-

ized solutions of Eq. (24), take the form

Φ(0)
nm(x) = Cn|m|e−

x
2 x

|m|
2 L|m|

n (x), Cn|m| =
[
γ

n!
(n + |m|)!

] 1
2

, (26)

1
γ

∫ ∞

0
Φ(0)

nm(x)Φ(0)
n′m(x)dx = δnn′ , (27)

where L
|m|
n (x) are Laguerre polynomials [13].

Step 2. Substituting notation δλ = λ − λ(0) − m/2 + Z/(γ|z|) ≡ Êj(z)/(2γ) −
(n + (m + |m| + 1)/2) + Z/(γ|z|), and decomposition
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Z

γ|z| − Z

γ
√

2x
γ + z2

=
jmax∑

k=1

V (k)

|z|k ,

V (k) =

{
−(−1)k′ (2k′−1)!!

k′ !
Zxk′

γk′+1 , k = 2k′ + 1, k′ = 1, 2, . . . ,

0, otherwise,

to Eq. (22) at Z �= 0, transform it in the following form

L(n)Φ̂j(x; z) +

(
jmax∑

k=1

V (k)

|z|k − δλ

)

Φ̂j(x; z) = 0. (28)

Step 3. Solution of equation (28) is found in the form of the perturbation series
by inverse powers of |z|

δλ =
kmax∑

k=0

|z|−kλ(k), Φj(x; z) =
kmax∑

k=0

|z|−kΦ(k)
n (x). (29)

Equating coefficients at the same powers of |z|, we arrive to the system of inho-
mogeneous differential equations with respect to corrections λ(k) and Φ(k)

L(n)Φ(0)(x) = 0 ≡ f (0),

L(n)Φ(k)(x) =
k−1∑

p=0

(λ(k−p) − V (k−p))Φ(p)(x) ≡ f (k), k ≥ 1. (30)

For solving the Eqs. (28) the unnormalized orthogonal basis

Φn+s(x) = Cn|m|e−
x
2 x

|m|
2 L

|m|
n+s(x) = Cn|m|C−1

n+s|m|Φ
(0)
n+s,m(x), (31)

〈s|s′〉 =
∫ ∞

0
Φn+s(x)Φn+s′ (x)dx = δss′γ

n!
(n + |m|)!

(n + s + |m|)!
(n + s)!

,

has been applied. The operators L(n) and x on the functions Φn+s(x) are defined
by the relations without fractional powers of quantum numbers n and m

L(n)Φn+s(x) = sΦn+s(x), (32)
xΦn+s(x) = −(n + s + |m|)Φn+s−1(x) + (2(n + s) + |m| + 1)Φn+s(x)

−(n + s + 1)Φn+s+1(x).

Step 4. Applying relations (32), the right-hand side f (k) and solutions Φ(k)(x)
of the system (30) are expanded over basis states Φn+s(x)

Φ(k)
n (x) =

k∑

s=−k

b(k)
s Φn+s(x), f (k) =

k∑

s=−k

f (k)
s Φn+s(x). (33)

Then a recurrent set of linear algebraic equations for unknown coefficients b
(k)
s

and corrections λ(k) is obtained
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sb(k)
s − f (k)

s = 0, s = −k, . . . , k.

that is solved sequentially for k = 1, 2, . . . , kmax:

f
(k)
0 = 0 → λ(k); b(k)

s = f (k)
s /s, s = −k, . . . , k, s �= 0.

The initial conditions (25) and b
(0)
s = δs0 are followed from (24) and (27).

Step 5. To obtain the normalized wave function Φ̂j(x; z) up to the k-th order,
the coefficient b

(k)
0 are defined by the following relation:

b
(k)
0 = − 1

2γ

k−1∑

p=1

k−p∑

s′=p−k

p∑

s=−p

b(k−p)
s 〈s|s′〉b(p)

s′ , b
(k=1,...,5)
0 = 0.

As an example of output file at steps 1–5, we display nonzero coefficients λ(k),
b
(k)
s of the inverse power series (29), (33) up to O(|z|−5):

λ(0) = n + (|m| + 1)/2, λ(3) = Z(2n + |m| + 1)/γ2,

b
(0)
0 = 1, b

(3)
−1 = −Z(n + |m|)/γ2, b

(3)
1 = Z(n + 1)/γ2. (34)

Step 6. In scaled variable x the relations of effective potentials Ĥij(z) = Ĥji(z)
and Q̂ij(z) = −Q̂ji(z) takes form

Ĥij(z)=
1
γ

∞∫

0

dx
∂Φ̂i(x; z)

∂z

∂̂Φj(x; z)
∂z

, Q̂ij(z)=− 1
γ

∞∫

0

dxΦ̂i(x; z)
∂Φ̂j(x; z)

∂z
. (35)

For their evaluation the decomposition of solution Eqs. (24) over the normalized
orthogonal basis Φ

(0)
n+s with the normalized coefficients b

(k)
n;n+s,

Φ(k)
n (x) =

k∑

s=−k

b
(k)
n;n+sΦ

(0)
n+s, (36)

has been applied. The normalized coefficients b
(k)
n;n+s are calculated via b

(k)
s ,

b
(k)
n;n+s = b(k)

s

√
n!

(n + |m|)!
(n + s + |m|)!

(n + s)!
(37)

as follows from (33), (36) and (31).

Step 7. In a result of substitution (29), (36) in (35), matrix elements takes form

Q̂jj+t(z) = −
kmax−1∑

k=0

|z|−k−1
k∑

k′=0

min(k,k−k′−t)∑

s=max(−k,k′−k−t)

(k − k′)b(k′)
n;n+sb

(k−k′)
n+t;n+s,

Ĥjj+t(z) =
kmax−2∑

k=0

|z|−k−2
k∑

k′=0

min(k,k−k′−t)∑

s=max(−k,k′−k−t)

k′(k − k′)b(k′)
n;n+sb

(k−k′)
n+t;n+s. (38)
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Collecting of coefficients of (38) at equal powers of |z|, algorithm leads to final
expansions of eigenvalues and effective potentials of output file

Êj(z) =
kmax∑

k=0

|z|−kE
(k)
j , Ĥij(z) =

kmax∑

k=8

|z|−kH
(k)
ij , Q̂ij(z) =

kmax∑

k=4

|z|−kQ
(k)
ij . (39)

The successful run of the above algorithm was occurs up to kmax = 16 (Run
time is 95s on Intel Pentuim IV, 2.40 GHz, 512 MB). The some first nonzero
coefficients takes form (j = n + 1)

E
(0)
j = 2γ(n + (m + |m| + 1)/2),

E
(1)
j = −2Z,

E
(3)
j = 2Z(2n + |m| + 1)/γ,

E
(5)
j = −3Z(2 + 3|m| + 6n2 + |m|2 + 6n|m| + 6n)/γ2,

E
(6)
j = −2Z2(2n + |m| + 1)/γ3,

Q
(4)
jj+1 = 3Z

√
n+1

√
n+|m|+1/γ2,

Q
(6)
jj+1 = −15Z

√
n+1

√
n+|m|+1(2n + |m| + 2)/γ3,

Q
(6)
jj+2 = 15Z

√
n+1

√
n+2

√
n+|m|+1

√
n+|m|+2/(4γ3),

H
(8)
jj = 9Z2(2n2 + 2n|m| + 2n + |m| + 1)/γ4,

H
(10)
jj = −90Z2(2n + |m| + 1)(2n2 + 2n|m| + 2n + |m| + 2)/γ5,

H
(10)
jj+1 = 45Z2√n+1

√
n+|m|+1(n2 + n|m| + 2n + |m| + 2)/(2γ5),

H
(8)
jj+2 = −9Z2√n+1

√
n+2

√
n+|m|+1

√
n+|m|+2/γ4,

H
(10)
jj+2 = 90Z2√n+1

√
n+2

√
n+|m|+1

√
n+|m|+2(2n + |m| + 3)/γ5,

H
(10)
jj+3 = −45Z2√n+1

√
n+2

√
n+3

√
n+|m|+1

√
n+|m|+2

√
n+|m|+3/(2γ5).

As an example, in Table 1 we show true convergence of partial sums of asymp-
totic expansions (39) of effective potentials Q̂ij(z) to the corresponding numer-
ical values calculated by algorithm 1, described in section 3.

5 Algorithm 3 of Evaluation the Asymptotics of Solutions
at Large |z| in Kantorovich Method

Step 1. We write the set of differential equations (12) at fixed values m, and ε in
the explicit form for χjio (z) ≡ χ̂

(io)
j (z) and j = 1, 2, . . . , jmax, io = 1, 2, . . . , No

−d2χjio (z)
dz2 − 2Z

|z| χjio (z) −
(

ε − Êj(z) − 2Z

|z|

)
χjio (z) + Ĥjj(z)χjio (z)

=
jmax∑

j′=1,j′ �=j

(

−Q̂jj′(z)
d

dz
− Ĥjj′ (z) − dQ̂jj′ (z)

dz

)

χj′io(z), (40)
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Table 1. Values of the partial sums (39) depending on kmax for m = −1, Z = 1,
z = 10, γ = 10. The last row contains the corresponding numerical values (n.v.).

i, j Q̂12, 10−6 Q̂23, 10−6 Q̂34, 10−5 Q̂13, 10−8 Q̂24, 10−8 Q̂14, 10−11

z −4Q
( 4)
ij 4.24264069 7.34846923 1.03923048 0 0 0

+z −6Q
( 6)
ij 4.17900108 7.16475750 1.00285742 1.29903811 3.18198052 0

+z −7Q
( 7)
ij 4.17883137 7.16446356 1.00281585 1.29903811 3.18198052 0

+z −8Q
( 8)
ij 4.17972233 7.16857870 1.00394341 1.26266504 3.04833733 7.0000

+z −9Q
( 9)
ij 4.17972824 7.16859579 1.00394680 1.26260268 3.04818460 7.0000

+z−10Q
(10)
ij 4.17971489 7.16850321 1.00391243 1.26342108 3.05252800 6.6850

+z−11Q
(11)
ij 4.17971474 7.16850253 1.00391224 1.26342451 3.05254060 6.6846

+z−12Q
(12)
ij 4.17971496 7.16850469 1.00391330 1.26340651 3.05240830 6.6950

+z−13Q
(13)
ij 4.17971496 7.16850471 1.00391331 1.26340638 3.05240762 6.6950

+z−14Q
(14)
ij 4.17971496 7.16850466 1.00391328 1.26340679 3.05241163 6.6947

+z−15Q
(15)
ij 4.17971496 7.16850466 1.00391327 1.26340679 3.05241166 6.6947

+z−16Q
(16)
ij 4.17971496 7.16850466 1.00391328 1.26340678 3.05241154 6.6947

(n.v.) 4.17971496 7.16850466 1.00391328 1.26340678 3.05241154 6.6947

where matrix elements Q̂jj′ (z) and Ĥjj′ (z) have of the form (39).
Note, that at large z, E

(2)
i =H

(2)
ii =0, i.e., the centrifugal terms are eliminated

and the longitudinal solution has the asymptotic form corresponding to zero
angular momentum solutions, or to the one-dimensional problem on a semi-axis:

χjio (z) =
exp(w(z))

√
pio

φjio (z), φjio (z) =
kmax∑

k=0

φ
(k)
jio

|z|−k, (41)

where w(z) = ıpio |z|+ ıζ ln(2pio |z|)+ ıδio, pio is the momentum in the channel, ζ

is the characteristic parameter, and δio is the phase shift. The components φ
(k)
jio

satisfy the system of ordinary differential equations

(p2
io

− 2E + E
(0)
j )φ(k)

jio
= f

(k)
jio

(φ(k′=0,...,k−1)
j′io

, pio)

≡ −2(ζpio + ı(k − 1)pio − Z)φ(k−1)
jio

− (ζ + ı(k − 2))(ζ + ı(k − 1))φ(k−2)
jio

−
k∑

k′=3

(E(k′)
j + H

(k′)
jj )φ(k−k′)

jio
+

jmax∑

j′=1

k∑

k′=4

(−2ıQ
(k′)
jj′ pio − H

(k′)
jj′ )φ(k−k′)

j′io

+
jmax∑

j′=1

k∑

k′=5

(2k − 1 − k′ − 2ıζ)Q(k′−1)
jj′ φ

(k−k′)
j′io

,

k = 0, 1, . . . , kmax, φ
(−1)
jio

≡ 0, φ
(−2)
jio

≡ 0, kmax ≤ jmax − io. (42)

Here index of summation, j′, takes integer values, except io and j, (j′ = 1, . . . ,
jmax, j′ �= io, j′ �= j).
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Step 2. From first two equations (k = 0, 1) of set (42) we have the leading
terms of eigenfunction φ

(0)
jio

, eigenvalue p2
io

and characteristic parameter ζ, i.e
initial data for solving recurrence sequence,

φ
(0)
jio

= δjio , p2
io

= 2E − E
(0)
io

→ pio =
√

2E − E
(0)
io

, ζ = Z/pio . (43)

Open channels have p2
io

≥ 0, and close channels have p2
io

< 0. Lets there are
No ≤ jmax open channels, i.e., p2

io
≥ 0 for io = 1, . . .No and p2

io
< 0 for io =

No + 1, . . . jmax.

Step 3. Substituting (43) in (42), we obtain the following recurrent set of alge-
braic equations for the unknown coefficients φjio (z) for k = 1, 2, . . . , kmax:

(E(0)
io

− E
(0)
j )φ(k)

jio
= f

(k)
jio

(φ(k′=0,...,k−1)
j′io

, pio) (44)

that is solved sequentially for k = 1, 2, . . . , kmax:

φ
(k)
jio

= f
(k)
jio

(φ(k′=0,...,k−1)
j′io

, pio)/(E(0)
io

−E
(0)
j ), j �= io,

f
(k+1)
ioio

(φ(k′=0,...,k)
j′io

, pio) = 0 → φ
(k)
ioio

. (45)

The successful run of the above algorithm was occurs up to kmax = 16 (Run
time is 167s on Intel Pentuim IV, 2.40 GHz, 512 MB). The some first nonzero
coefficients takes form (j = n + 1)

φ
(0)
jio

= δjio ,

φ
(1)
jio

= δjio ıZ(Z+ıpio)/(2p3
io

),

φ
(2)
jio

= δjio [ıE(3)
j /(4pio)−Z(Z+ıpio)

2(Z+2ıpio)/(8p6
io

)],

φ
(3)
jio

= δjio [−E
(3)
j (3Z2+7ıpioZ−6p2

io
)/(24p4

io
)

−ıZ(Z+ıpio)
2(Z+2ıpio)

2(Z+3ıpio)/(48p9
io

)],

φ
(4)
jio

= δjio [ıE(5)
j /(8pio)−(E(3)

j )2/(32p2
io

)

−ıE
(3)
j (3Z4+20ıpioZ

3−53p2
io

Z2−66ıp3
io

Z+36p4
io

))/(96p7
io

)

+Z(Z+ıpio)
2(Z+2ıpio)

2(Z+3ıpio)
2(Z+4ıpio)/(384p12

io
)]

+2ıpioQ
(4)
jio

/(E(0)
io

−E
(0)
j ).

Remarks

1. Expansion (41) holds true for |zm|�max(Z2/(2p3
io

), 2Z(2io+|m|−1)/(8γp2
io

)).
The choice of a new value of zmax for the constructed expansions of the linearly
independent solutions for pio > 0 is controlled by the fulfillment of the Wronskian
condition with a long derivative Dz ≡ Id/dz − Q(z)

Wr(Q(z); χ∗(z), χ(z)) = (χ∗(z))T Dzχ(z) − (Dzχ
∗(z))T χ(z) = 2ıIoo

up to the prescribed accuracy. Here Ioo is the No-by-No identity matrix.
2. This algorithm can be applied also for evaluation asymptotics of solutions

in closed channels pio = ıκio , κio > 0.
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Table 2. Convergence of the method for the binding energy E = γ/2 − E (in a.u.) of
even wave functions m = −1, γ = 10 and γ = 5 versus the number jmax of coupled
equations (40)

jmax 2p−1 (γ = 10) 3p−1 (γ = 10) 2p−1 (γ = 5) 3p−1 (γ = 5)
1 1.123 532 554 (3) 0.182 190 992 (2) 0.857 495 336 (9) 0.165 082 403 (4)
2 1.125 069 513 (1) 0.182 282 868 (7) 0.859 374 058 (2) 0.165 234 428 (1)
3 1.125 280 781 (8) 0.182 294 472 (5) 0.859 641 357 (6) 0.165 253 152 (9)
4 1.125 343 075 (2) 0.182 297 825 (6) 0.859 721 942 (4) 0.165 258 606 (4)
6 1.125 381 347 (9) 0.182 299 867 (7) 0.859 772 441 (3) 0.165 261 973 (6)
8 1.125 392 776 (1) 0.182 300 474 (6) 0.859 787 833 (7) 0.165 262 991 (9)
10 1.125 397 502 (9) 0.182 300 725 (2) 0.859 794 289 (0) 0.165 263 418 (0)
12 1.125 399 854 (7) 0.182 300 849 (8) 0.859 797 533 (8) 0.165 263 631 (9)
[6] 1.125 422 341 (8) 0.182 301 494 (7) 0.859 832 622 (6) 0.165 264 273 (1)

6 Applications Algorithms for Solving the Eigenvalue
Problem

The efficiency and accuracy of the elaborated SNA and of the corresponded
numerical scheme derived are confirmed by computations of eigenenergies and
eigenfunctions for the low-excited states of a hydrogen atom in the strong ho-
mogeneous magnetic field. These algorithms are used to generate an input file of
effective potentials in the Gaussian points z = zk of the FEM grid Ωp

h(z)[zmin =
0, zmax] and asymptotic of solutions of a set of longitudinal equations (12)–(16)
for the KANTBP code [5]. In Table 2 we show convergence of the method for
the binding energy E = γ/2 − E (in a.u.) of the even wave functions at m = −1,
γ = 10 and γ = 5 versus the number jmax of coupled equations (40). The cal-
culations was performed on a grid Ωp

h(z) = {0(200)2(600)150} (the number in
parentheses denotes the number of finite elements of order p = 4 in each interval).
Comparison with corresponding calculations given in spherical coordinates from
[1,6] is shown that elaborated method in cylindrical coordinates is applicable for
strength magnetic field γ > 5 and magnetic number m of order of ∼ 10. The main
goal of the method consists in the fact that for states having preferably a cylin-
drical symmetry a convergence rate is increased at fixed m with growing values of
γ � 1 or the high-|m| Rydberg states at |m| > 150 in laboratory magnetic fields
B = 6.10T (γ = 2.595·10−5 a.u.), such that several equations are provide a given
accuracy [7].

7 Conclusion

A new effective method of calculating wave functions of a hydrogen atom in
a strong magnetic field is developed. The method is based on the Kantorovich
approach to parametric eigenvalue problems in cylindrical coordinates. The rate
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of convergence is examined numerically and illustrated by a set of typical exam-
ples. The results are in a good agreement with calculations executed in spherical
coordinates at fixed m for γ > 5. The elaborated SNA for calculating effective
potentials and asymptotic solutions allows us to generate effective approxima-
tions for a finite set of longitudinal equations describing an open channel. The
developed approach yields a useful tool for calculation of threshold phenomena
in formation and ionization of (anti)hydrogen like atoms and ions in magnetic
traps [2,7] and channeling of ions in thin films [15].

This work was partly supported by the Russian Foundation for Basic Re-
search (grant No. 07-01-00660) and by Grant I-1402/2004-2007 of the Bulgarian
Foundation for Scientific Investigations.
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