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We suggest and analyze a combination of a damped Newton’s method and a simplified version of
Newton’s one. We show that the proposed iterations give two-sided approximations of the so-
lution which can be efficiently used as posteriori estimations. Some numerical examples illu-
strate the efficiency and performance of the method proposed.

1. Introduction

In the last decade, new iterative methods containing parameters for a numerical solving
of nonlinear equations have been developed by many authors. The role of these parameters
play, for example, a damped parameter in Newton type methods [1-6], interpolation nodes in
inverse polynomial interpolation methods [7,8]. They can be controlled not only by the con-
vergence order, but also by the convergence behavior. One of the advantages of such methods
is that they give two-sided approximations of the solutions which allow one to control the error
at each iteration step [3,6,8]. In this paper we will consider a combination of the damped New-
ton’s method and the simplified Newton method. The extended version of this paper will be
published elsewhere.

Let a,beR, a<b, f:[a,b] > R and consider the following nonlinear equation
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Ax)=0. (1)

Assume that f(x)e C3[a,b], f'(x)#0, xe[a,b] and Eq. (1) has a unique root x e [a,b].
For a numerical solution of (1) we propose the following iterations

f(x2n)

Xon+l = Xon — Ty f,(x )7
2n

n=0.1,.., (2a)

Xonia = Xoni1 = O f (X241 )- (2b)

Here 1,0 and o, are the iteration parameters to be determined properly. It should be men-

tioned that the first iteration (2a) is a continuous analogy of Newton’s method (or damped
Newton’s method), while the second ones (2b) is simple iterations. In [6] proved was a two-
sided approximation behavior of iterations (2) with

1
o f,(x2n+l)’ )

and it was shown that the convergence rate of this iterations is 4 when t, -1 as n —o0.

On the other hand, the iterations (2) can be considered as simple iterations

X1 = P(¥20)s Xons2 =q(X001) = C](P(x2n ))= n=0,1,.., “4)
for two equations

x=p(x)=0, x-g(x)=0, (%)

which are equivalent to the above equation (1) and with functions

p(x)zx—rj{,(();)), q(x)zx—mf(x). (6)
2. The convergence of the proposed iterations
Suppose that [6]
) pofsan| L o)<l eefan] ™

where M, = max]‘ f ”(x)‘ . Then it is easy to show that the function p(x) satisfies

xe[a,b
0< p'(xy,)<1, n=0,1,... (8)

under condition
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T E:|O, 1 {, a2n=M2M. 9)

n
—dyy

A sufficient condition for g(x) to be decreasing is

o,/ (X2,11)> 1, n=0,1.. (10)

It should be noted that the conditions (8) and (10) were used first in [7,8] for bilateral approxi-
mations of Aitken-Steffensen-Hermite type methods.

Using Taylor expansion of f(x,,,,) at point x,,,, and (2b) we obtain

f"(§2n)
2

f(x2n+2)
f(x2n+l)

where azn = 9x2n+2 + (1 - 9)x2n+1, 0e ]0,1[

=1—-w, " (x2,41)+ f(%2011) 07, (11)

Lemma 1. Suppose that

f”(éZn)f(x2n+l)<09 I’l:O,l, (12)

and the inequality (10) holds. Then

f(x2n+2)
f (x2n+1 )

Proof. By (12) and (10) it follows from (11) that

<0, n=0,1,.. (13)

f(x2n+2) '
—<l-0,f(x <0. (14)
[ (%241) S ()

The Lemma is proved. O

Analogously, using Taylor expansion of f(x,,,;) at point x,,, and (2a) we obtain

f(x2n+l):1_,l7 n T

Sla) 2 (1))

n=0,1,.. (15)

where 1,, =axy,, +(1-a)x,,, ael0,]].
Lemma 2. Suppose that the inequality (7) holds. Then

f (x2n+1 )

0, =0,1,... 16
f(x2n) ) " ( )

under condition
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=124y, —1+,/1+4a2nl7g[1’2[. 17

1,€l, = ,
ayy ary

Proof- From (15) we obtain

f(x2n+1)
f(x2,)

<1—rn+"§" 2 <0. (18)

n =

From this it follows (16) under condition

1-1-2a,, 1+ 1-2
rn{ “n D |, (19)
a

1
2n Aoy

On the other hand, as shown in [5], the iteration parameter t,, must be taken from the t-region
of convergence of iteration (2a)

T, G}O,_1+V1+4a2”{g]0,2[. (20)

a

n

Hence the inequality (16) is valid for t, € 1,,, and I, is not an empty interval because of (7).

The Lemma is proved. 0
Now we are ready to prove the following theorem when f{(x) is increasing and convex on the in-
terval xe[a,b].

Theorem 1. Let x, }x*,b}, and f(x) satisfies the following conditions:

i) f’(x)>0, xe[a,b],
iiy) f"(x)>0, xe[a,b],
iiiy) the inequality (7) holds.

If the parameters T, and ®, are chosen such that

T, € |0, ! Nlb,, n=0,1.. (21)
1_a2n

and
oonf'(a)zl, n=0,1,.. (22)

then the following relations hold:

jl) xl<X3 <...<x2n+1<x*<x2n<...<x2<x0,

g lim x4 = lim xy, =x0
n—®0 n—>0
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Proof. By i) it follows that X €la,b[ is the unique solution of Eq. (1). From (8)—(10) the
functions p(x) and ¢(x) have no extremum on the own domain of definition, and p(a)>a,
p(b)<b, g(a)>a, q(b)<b because of f{a)<0 and f(b)>0. Therefore, all the approximations gener-
ated by (2a) and (2b) belong to [a,b], i.e. X5,,1, X5,.7 €la,b[, n=0,1,... . By assumption of
theorem f(xy)> 0. Then, according to Lemma 2, from (16) it follows that f{x;)<0. By ii;), f'(x)

is increasing on the interval [a,b]. According to (22), we have

1 S 1
S'(a) ()
which holds, for instance, for xy, i.e. the condition (10) is fulfilled for »=0. By virtue of ii;) and
f(x1)<0 the assumption (12) is valid for n=0. Then, according to Lemma 1, from (13) we obtain

Wy = , XE€ ]a,b[, (23)

(x2)>0. By induction on # from (13) and (16) one can show that

S () >0, f(x,41) <0, (24)

and also can prove (8) and (10) for all n=0,1,... .
Thus the sequence {x,,+;} generated by (2) (or (4)) is increasing and the sequence
{x2.+2} generated by (2b) (or (4)) is decreasing. Consequently we have

*
X <X3 <o <Xy <X <Xy, << Xy <X, (25)

1.e. j1) is proved. The jj;) follows from j;) passing to the limit n—o0. Since f{(x) is increasing
function on the interval [a,b] then we have

F)<f(6) << £ (Fann) < £ (X7) < 1 (x20) << £ (32) < £ (%), (26)
and
lim f (xy,1) = lim f(x3,) =/ (x") =0, 27)

It should be pointed out that the intersection of two intervals in (21) is not an empty set be-
cause of (7). The Theorem is proved. O

The remainder cases of behavior of f (x) are studied in a similar way. Indeed we con-

sider instead of Eq. (1) the auxiliary equation

g(y)=0, (28)

—f(y), ye[a,b], iff'(x)<0, f”(x)<0, xe[a,b],
g(y)=3-f(-»), ve[-b,—a], if f'(x)>0, f"(x)<0, xe[a,b], (29)
f(—y), ye[—b,—a], z'ff'(x)<0, f"(x)>0, xe[a,b].
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The function g(y) satisfies the conditions of Theorem 1.

Now we proceed to study of local convergence of proposed iterations (2).

Theorem 2. Assume that f(x)e ct [a,b], f'(x)#0, x€[a,b], and there exists the
unique solution x* € [a,b] of Eq. (1). Then the q-convergence order of the sequence {xn} gen-

erated by iterations (2) is at least 2, when t,, > 1 as n — .

Proof- Let e, = x, —x" . From (2a) and (2b) it follows that

£ (x20)= (")

62n+1 = eZn - Tn f,(x ) H (303)
2n

€ni2 = €41 ~ Oy (f(x2n+1)_f<X* )) (30b)

Using the Taylor expansions for f (x*) at points x,, and x,,,,;1n (30a) and (30b), respec-

tively, we obtain following when T, =1 as n —

2 .
82n+2=0<€2n), if ®, =const,

€nt2 = 0(63;1): if o, _(f’(x2n+l))

€ni2 = 0(@§n), lf ©, :(f’(x2n+l))

=0(ey,)s (31)

-1

The Theorem is proved. [
From the Theorem 1-2 it is clear that the best choice of parameters are for iterations (2):

1—1-2
TN T 2% >, o _;, (32)

A2n - " ()

1, =

3. Numerical results
We considered f(x)= exp(x)—2x2 —x /3 =0. This equation has 4 roots It is easy to

show that

a)f'(x)>0, f"(x)>0 ar xe[3.545], and x" €]3.5,43[,
b)f'(x)<0, f"(x)<0 ar xe[L15], and x" e|,1.5],
o f'(x)>0, f'(x)<0 at xe[-10], and x"e]-10],
d)f'(x)>0, f"(x)<0 at xe[-7,-5], and x* €]-7,-5].
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The iteration was terminated by stopping criteria

Numerical results presented in Table 1, confirm the theoretical behavior of convergence.
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Table 1. Numerical results.

n Example a)

X2n X2p41
0 4.300000000000000 3.907141947701772
1 3.941963026936173 3.940806198327124
2 9.940806911126752 3.940806911126253
3 3.940806911126253
n Example b)

X2n X2n41
0 1.500000000000000 1.140241823567237
1 1.152335575731209 1.152252502154623
2 1.152252502332163 1.152252502332163
3 1.152252502332163
n Example ¢): x, =—y,

X2n X2p41
0 —1.000000000000000 —0.505411786074046
1 —0.562559445147446 —0.561019258063384
2 —0.561019587389929 —0.561019587389879
3 —0.561019587389879
n Example d): x, =-y,

Xon X2n41
0 —7.000000000000000 —5.969049117475682
1 —6.000113568662283 —5.999793371863974
2 —5.999793380403996 —5.999793380403996
3 —5.999793380403996

X2 = Xapu| < E=1077

77

(33)
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