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We propose new computational schemes and algorithms of the finite element method

for solving elliptic multidimensional boundary value problems with variable coefficients

at derivatives in a polyhedral d-dimensional domain, aimed at describing collective

models of atomic nuclei. The desired solution is sought in the form of an expansion in

the basis of piecewise polynomial functions constructed in an analytical form by joining
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Hermite interpolation polynomials and their derivatives on the boundaries of neighboring

finite elements having the form of d-dimensional parallelepipeds. Calculations of the

spectrum, quadrupole momentum and electric transitions of standard boundary value

problems for the geometric collective model of atomic nuclei are analyzed. Bibliography:

22 titles. Illustrations: 5 figures.

1 Introduction

The finite element method (FEM) has wide applications in solving elliptic boundary value prob-

lems. Despite the long history, especially in the development of the theoretical basis of this

method, questions remain open about constructive implementation of the method for rgw nu-

merical solution of multidimensional boundary value problems, which requires additional condi-

tions on the physical parameters or the desired properties of the approximate solutions. In FEM,

the desired solution is sought in the form of a basis expansion of piecewise polynomial functions

which are typically obtained by joining Lagrange interpolation polynomials [1] and provide the

continuous derivatives of the approximate solution only in finite elements, but not on their

boundaries, i.e., the solution has only generalized derivatives and belongs to the Sobolev space.

When describing boundary value problems with higher derivatives in the theory of elasticity,

hydro- and aerodynamics, meteorology, quantum mechanics, the desired approximate solution

must be continuous along with its derivatives. When constructing it, instead of the Lagrange

interpolation polynomials, Hermite interpolation polynomials [2]–[5] are used.

This paper presents new finite element schemes and algorithms, implemented in the computer

algebra systems (CAS) Maple, Mathematica, Matlab and in the Python, C++, Fortran languages

for solving multidimensional boundary value problems for elliptic differential equations with

variable coefficients at the derivatives describing collective models of atomic nuclei. To reduce

a boundary value problem in a polyhedral d-dimensional domain to an algebraic eigenvalue

problem, the desired solution is sought as an expansion over the basis of piecewise polynomial

functions constructed by joining Hermite interpolation polynomials and their derivatives at the

boundaries of adjacent finite elements in the form of d-dimensional parallelepipeds.

At the first stage, the Hermite interpolation polynomials in d variables on a d-dimensional

parallelepiped are constructed as the product of d Hermite interpolation polynomials of degree

p′ for each of the independent variables [6], which are calculated and tabulated in an analytical

form [7] by using the recurrence relations in [5, 8] implemented in CAS.

At the second stage, an algorithm is proposed for constructing a basis of linearly independent

piecewise polynomial functions in the analytical form from tabulated Hermite interpolation

polynomials on a given partition of the polyhedral region d of independent variables into finite

elements. For each piecewise polynomial function the algorithm indicates the numbers of Hermite

interpolation polynomials on adjacent finite elements by joining which this piecewise polynomial

function is obtained and between which the integrals are calculated giving the entries of the

stiffness and mass matrices. Using the obtained correspondence, the FEM scheme generates

suitable band structures of sparse matrices of stiffness and masses of the algebraic eigenvalue

problem which is solved by standard linear algebra procedures.

The performance of the developed finite element schemes, algorithms, and programs imple-

mented in CAS Maple, Mathematica, Matlab and in the Python, C++, Fortran languages is

demonstrated by solving benchmark boundary value problems for the five-dimensional anhar-
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monic oscillator [9] used in the geometric collective model of atomic nuclei [10, 11]. A comparison

of the CPU time of new versions of the developed algorithms and programs depending on the

dimension of the resulting algebraic eigenvalue problems is presented by using a conventional

personal computer.

The structure of the paper is as follows. Section 2 contains the statement of the d-dimensional

boundary value problem and the scheme for solving this problem by using FEM. In this section,

we describe the algorithm for constructing the basis of piecewise polynomial functions of d

variables in the analytical form and calculating the matrices of the algebraic FEM problem. An

illustrative example for d = 2 is given. In Section 3, we formulate the boundary value problems

and presents examples of the solution to the boundary value problem for the geometric collective

model of the five-dimensional anharmonic oscillator by using the FEM scheme with Hermite

interpolation polynomials on rectangles. In Conclusion, the results obtained are discussed and

prospects are outlined.

2 Boundary Value Problem and Schemes of
the Finite Element Method

We consider the self-adjoint boundary value problem for the elliptic differential equation

(T + V (x)−E)Φ(x) = 0, T = − 1

g0(x)

d∑

i,j=1

∂

∂xi
gij(x)

∂

∂xj
. (2.1)

For the principle part of Equation (2.1) the uniform ellipticity conditions holds in the bounded

domain x = (x1, . . . , xd) ∈ Ω of the Euclidean space R
d, i.e., there are constants μ > 0 and

ν > 0 such that

μξ2 �
d∑

ij=1

gij(x)ξiξj � νξ2, ξ2 =
d∑

i=1

ξ2i ∀ξi ∈ R,

where the left inequality expresses the requirement of ellipticity, while the right one expresses

the boundedness of the coefficients gij(x). It is assumed that gji(x) = gij(x) and V (x) are

real-valued functions, continuous with their generalized derivatives of up to a given order in a

bounded polyhedral domain x = (x1, . . . , xd) ∈ Ω = Ω∪ ∂Ω ∈ R
d with boundary S = ∂Ω, which

ensures the existence of a nontrivial solution Φ(x), corresponding to the real eigenvalue E and

satisfying the Dirichlet and/or Neumann boundary conditions [5].

In FEM, the polyhedral domain

Ω = Ωh(x) =

Q⋃

q=1

Δq, Ω ⊂ R
d, (2.2)

is divided into subdomains Δq, called finite elements, in each of which the local basis functions

ϕ̂κp′
rq (x), x ∈ R

d, the Lagrange interpolation polynomials or Hermite interpolation polynomials

of degree p′ are introduced. Here, we use the multiindex notation, κ determines the derivative

order and direction, whereas r is the local number of a node.

The piecewise polynomial functions Np′
l (x) ∈ Cκ

c
of degree p′ with continuous derivatives

of up to a given order are constructed by joining the polynomials ϕ̂κp′
rq (x) on the finite elements
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Δq ∈ Ωh(x)

Np′
l (x) ≡ Nκp′

s (x) =

Q⋃

q=1

{ϕ̂κp′
rq (x)|x ∈ Δq}, (2.3)

where l is determined in terms of multiindices κ = κ1, . . . ,κd and r = r1, . . . , rd; the node

number s = (s1, . . . , sd) is related to the local number r of the same node and the finite element

number q. Usually, in FEM with Hermite interpolation polynomials, the piecewise polynomial

functions Nκp′
s (xs′) satisfy the conditions

Nκp′
s (xs′) = δss′δκ0,

∂|κ′|

∂xκ′ N
κp′
s (x)

∣∣∣
x=xs′

= δss′δκκ′ ,
∂|κ′|

∂xκ′ =
∂κ

′
1

∂x
κ
′
1

1

· · · ∂κ
′
d

∂x
κ
′
d

d

.

The expansion of the sought solution Φh
m(x) from the Sobolev space H κ

c+1�1
2 (Ω) in the

basis of piecewise polynomial functions Np′
l (x),

Φh
m(x) =

L∑

l=1

Np′
l (x)Φh

lm, (2.4)

reduces the problem (2.1) to the generalized algebraic eigenvalue problem

(A−BEh
m)Φh

m = 0, (Φh
m)TBΦh

m = 1, (2.5)

with respect to the unknowns Eh
m and Φh

m. The problem (2.5) is solved by standard numer-

ical methods implemented as either built-in procedures, for example, Eigenvector() procedure

in Maple, Eigensystem() procedure in Mathematica, eigs() procedure in Matlab, or subrou-

tines in a compilable language, for example, the Python subroutine scipy.linalg.eigh() (see

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.eigh.html), the C++ subrou-

tine ARluSymGenEig() (see https://github.com/opencollab/arpack-ng), or the authors’ modi-

fied version of the Fortran subroutine sspace() [1] for sparse matrices.

The entries of the symmetric L×L-matrices of stiffness A = (Ap′
ll′) and mass B = (Bp′

ll′) are

the integrals

Ap′
ll′ =

∫

Ω

Np′
l (x)Np′

l′ (x)U(x) g0(x)dx+

d∑

i,j=1

∫

Ω

∂Np′
l (x)

∂xi

∂Np′
l′ (x)

∂xj
gij(x)dx =

Q∑

q=1

ap
′q

ll′ ,

ap
′q

ll′ =

∫

Δq

ϕ̂κp′
rq (x)ϕ̂κ

′p′
r′q (x)U(x) g0(x)dx+

d∑

i,j=1

∫

Δq

∂ϕ̂κp′
rq (x)

∂xi

∂ϕ̂κ
′p′

r′q (x)

∂xj
gij(x)dx,

Bp′
ll′ =

∫

Ω

Np′
l (x)Np′

l′ (x)g0(x)dx =

Q∑

q=1

bp
′q

ll′ , bp
′q

ll′ =

∫

Δq

ϕ̂κp′
rq (x)ϕ̂κ

′p′
r′q (x)g0(x)dx

(2.6)

which are calculated on finite elements Δq ∈ Ωh(x) by quadrature formulas of order p′ + 1.

The estimates for the approximate solution Eh
m, Φh

m(x) ∈ H κ
c+1�1

2 (Ωh) with respect to the

exact solution Em, Φm(x) ∈ H 2
2 (Ω) are as follows [1]:

|Em − Eh
m| � c1h

2p′ , ‖Φm(x)− Φh
m(x)‖0 � c2h

p′+1, (2.7)
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where h is the maximum size of the finite element Δq, p
′ is the FEM scheme order, c1 > 0 and

c2 > 0 are coefficients independent of h,

‖Φm(x)‖20 =
∫

Ω

g0(x)Φm(x)Φm(x) dx. (2.8)

The Hermite interpolation polynomials ϕ̂κp′
rq (x) depending on d variables of the finite element

Δq shaped as a d-dimensional parallelepiped

x = (x1, . . . , xd) ∈ [xq1;min, x
q
1;max]⊗ · · · ⊗ [xqd;min, x

q
d;max] = Δq ⊂ R

d (2.9)

in grids xr = (x1r1 , . . . , xdrd), ri = 0, . . . , p, i = 1, . . . , d, are defined by the relations [2, 3]:

ϕ̂κp′
rq (xr′) = δr1r′1 · · ·δrdr′dδκ10· · ·δκd0,

∂|κ′|

∂xκ′ ϕ̂
κp′
rq (x)

∣∣∣
x=xr′

= δr1r′1 · · ·δrdr′dδκ1κ
′
1
· · ·δκdκ

′
d
,

r = (r1, . . . , rd), κ = (κ1, . . . ,κd), κi = 0, . . . ,κmax
r − 1.

(2.10)

The Hermite interpolation polynomials ϕ̂κp′
rq (x) in d variables are calculated in the analytical

form as the product of Hermite interpolation polynomials ϕκsp′
rsq (xs) of degree p

′ in each variable

ϕ̂κp′
rq (x) =

d∏

s=1

ϕκsp′
rsq (xs). (2.11)

Note that the Hermite interpolation polynomials ϕκp′
rq (x) with their derivatives of up to order

(κmax
r −1) in each variable, which are required for constructing ϕ̂κp′

rq (x) in (2.11), are determined

by (2.10) at d = 1. They are calculated and tabulated in advance analytically by means of

recurrence relations implemented in CAS [5, 8].

As a known example of such calculation and tabulation, we present the interpolation polyno-

mials ϕκp′
rq (x) of degree p′ = 3 in one variable: the Lagrange interpolation polynomials at p = 3

and κmax = 1
ϕ03
0q(x) = −(9/2(x− 1/3))(x− 2/3)(x− 1),

ϕ03
1q(x) = (27/2)x(x− 2/3)(x− 1),

ϕ03
2q(x) = −(27/2)x(x− 1/3)(x− 1),

ϕ03
3q(x) = (9/2)x(x− 1/3)(x− 2/3)

(2.12)

and the Hermite interpolation polynomials at p = 1 and κmax = 2

ϕ03
0q(x) = (x− 1)2(1 + 2x),

ϕ13
0q(x) = (x− 1)2x,

ϕ03
1q(x) = x2(3− 2x),

ϕ13
1q(x) = x2(x− 1).

(2.13)

Figure 1 presents examples of the piecewise polynomial functions (2.3) of two variables

Np′
l (x) = Np′

l (x1, x2) = Nκ1κ2p′
l (x1, x2), obtained by joining local functions ϕ̂κ1κ2p′

r1r2q (x1, x2),

742



specified by the product (2.11) of the third degree polynomials ϕκp′
rsqs(xs) in (2.12) and (2.13) in

each variable. On the piecewise polynomial functions composed by joining Lagrange interpola-

tion polynomials (in contrast to Hermite interpolation polynomials), one can see sharp bends,

which means the discontinuity of the first order derivative.

Figure 1. The piecewise polynomial functions Nκ1κ2p′
l (x1, x2): (a) N003

16 (x1, x2) and

(b) N003
13 (x1, x2) =1 at (x1, x2) = (0, 0), composed by joining local functions which

are the products of (a) the Lagrange interpolation polynomials and (b) the Hermite

interpolation polynomials of the third degree at Q = 4.

Let the problem (2.1) be solved on a finite element grid Ωh defined by (2.2) consisting

of parallelepipeds Δq defined by (2.9) and, on each of them, specified by the local functions

ϕ̂κp′
rq (x) ordered by the node number r = (r1, . . . , rd), the order and direction of the derivative

κ = (κ1, . . . ,κd). The grid nodes are numbered by the global s = (s1, . . . , sd) and local r

numbers and the number of the finite element q. For the sake of convenience the local functions

ϕ̂t(x) ≡ ϕ̂κp′
rq (x) a re numbered by the global number t = 1, . . . , T . Then the dependence between

the set q, r,κ, s and the numbers l = 1, . . . , L and t = 1, . . . , T is determined by the algorithm

Algorithm:

• for q = 1, . . . , Q do

• for all r and κ do

• t ≡ t(q, r,κ) := t+ 1

• if ∃q′, r′,κ′: s(q′, r′) = s(q, r) and κ
′ = κ

• then l ≡ l(q, r,κ) := l(q′, r′,κ′)
• else l ≡ l(q, r,κ) := l + 1

• end if

• end do

We note that the condition in the algorithm is fulfilled only for the nodes enumerated by

means of q, r, κ which are at the boundary of the finite elements considered earlier; in this case,

the numbers q′, r′, κ′ are known in advance and define the same node, but on the finite element

with the minimal number.

As an illustrative example, let us consider the construction of the basis of piecewise polyno-
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mial functions (2.3) on the square [−1, 1]⊗ [−1, 1] divided into Q = 4 finite elements. Figure 2

shows the correspondence between the index l = 1, . . . , L of the set of basis piecewise polyno-

mial functions Np′
l (x) and the set of indices q, r, κ, s characterizing the local functions ϕ̂κp′

rq (x)

ordered by the index t = 1, . . . , T : the Lagrange interpolation polynomials of degree p′ = 3

at p = 3 and κmax = 1 at L = 49 and T = 64 and the Hermite interpolation polynomials of

degree p′ = 3 at p = 1 and κmax = 2 at L = 36 and T = 64, which is determined according to

Algorithm.

Figure 2. Illustration of constructing the basis of piecewise polynomial functions

Np′
l (x1, x2) = Nκ1κ2p′

l (x1, x2), l = 1, . . . , L by joining the local functions ϕ̂κ1κ2p′
r1r2q (x1, x2)

for four (Q = 4) finite elements Δq: (a) Lagrange interpolation polynomials and (b) Her-

mite interpolation polynomials of the third degree. The heavy lines are the boundaries

of finite elements, and the thin lines are zeros of piecewise polynomial functions.

The structures of the L × L-matrices A or B in the algebraic problem (2.5) for Lagrange

interpolation polynomials and Hermite interpolation polynomials of the third degree on the

square [−1, 1]⊗[−1, 1] divided into four (Q = 4) finite elements are shown in Figure 3. Comparing

with Figure 2, we see that the indices l and l′ of the nonzero entries are related with piecewise

polynomial functions containing the local functions on one of the finite elements.

Figure 4 presents the structures of matrices when dividing the square into Q = 3 × 3 = 9

and Q = 4 × 4 = 16 finite elements and using the piecewise polynomial functions obtained by

joining the Hermite interpolation polynomials at p′ = 3. The matrix is divided into 4×4 blocks,

because four piecewise polynomial functions correspond to one node, and with an increase in Q

the block-banded structure is clearly manifested.

We calculate the FEM integrals (2.6) by the Gauss quadrature formulas of order p′ + 1

ap
′q

ll′ =
∑

v

Gκκ
′

q Φvrr′κκ′U(xv) g0(xv) +
∑

v

d∑

i,j=1

Gκκ
′

qij Φvrr′κκ′;ij gij(xv),

bp
′q

ll′ =
∑

v

Gκκ
′

q Φvrr′κκ′qg0(xv), (2.14)
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Figure 3. Structures of the L× L-matrices A and B (nonzero entries are marked with

grey) when using the piecewise polynomial functions constructed by joining the local

functions on four (Q = 4) finite elements Δq: (a) Lagrange interpolation polynomials

(L = 49) and (b) Hermite interpolation polynomials (L = 36) of degree p′ = 3.

Figure 4. Structure of the L×L-matricesA andB for Hermite interpolation polynomials

of degree p′ = 3, (κmax, p) = (2, 1) on the square [−1, 1]⊗ [−1, 1] divided into (a) Q = 9

(L = 16× 4 = 64) and (b) Q = 16 (L = 25× 4 = 100) finite elements.

Φvrr′κκ′ = wvϕ̂
κp′
rq (yv)ϕ̂

κ
′p′

r′q (yv), Φvrr′κκ′;ij = wv
∂ϕ̂κp′

rq (x)

∂xi

∣∣∣∣
y=yv

∂ϕ̂κ
′p′

r′q (x)

∂xj

∣∣∣∣
y=yv

.

Here, we use the local coordinates y = (y1, . . . , yd) ∈ [0, 1] ⊗ · · · ⊗ [0, 1], in Δq related to the

coordinates (2.9) by xi = xqi;min + yi(x
q
i;max − xqi;min), i = 1, . . . , d, where yv and xv are the

Gaussian nodes in the local and global coordinates, wv are the Gaussian weights in the local
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coordinates, Gκκ
′

q and Gκκ
′

qij are factors that appear due to the transformation to the local

coordinates and for the finite elements on the parallelepiped Δq have the form

Gκκ
′

q =
d∏

u=1

(xqu;max − xqu;min)
1+κu+κ

′
u , Gκκ

′
qij =

Gκκ
′

q

(xqi;max − xqi;min)(x
q
j;max − xqj;min)

.

Note that the products Φvrr′κκ′ and Φvrr′κκ′;ij of the values of the local functions ϕ̂κp′
rq (yv)

and their derivatives
∂ϕ̂κp′

rq (x)

∂xi

∣∣
y=yv

at the Gaussian nodes yv and with the Gaussian weights wv

were calculated in advance, in contrast to the initial version of the program, and were stored

in appropriate arrays, which significantly reduces the time needed to calculate matrices of the

algebraic problems.

Figure 5. (a) The block-banded structure of the matrices A and B for Hermite inter-

polation polynomials of degree p′ = 3, (κmax, p) = (2, 1) corresponding to the grid (3.6)

for I = 0 and the number of finite elements Q = 10 × 10 = 100. (b) Illustration of

constructing the basis of piecewise polynomial functions Np′
l (x1, x2) = Nκ1κ2p′

l (x1, x2),

l = 1, . . . , L = 121× 4 = 484, by joining the local functions ϕ̂κ1κ2p′
r1r2q (x1, x2) for Q = 100

finite elements Δq. The lines are boundaries of finite elements as in Figure 2, but the

numbers l are given only for ones divisible by 4.

3 Boundary Value Problem of Geometric Collective Model

In [11, 12], algebraic versions of the geometric collective model were developed, which were

implemented as programs in CASMathematica and in the Fortran language for numerical solving

the boundary value problem for the five-dimensional anharmonic oscillator with purely discrete

spectrum of energy eigenvalues EI
n : EI

1 < EI
2 < EI

3 < · · · describing the rotational-vibrational

energy bands of atomic nuclei with spin I in the form of an integer angular momentum. Using

the expansion of the sought solution of the geometric collective model in the basis functions

of the five-dimensional harmonic oscillator with purely discrete, but degenerate spectrum that

requires an additional Gram–Schmidt orthogonalization, we can reduce the boundary value
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problem to an algebraic eigenvalue problem [9]. The basis functions are parametrized by the

internal variables x1 = β2, x2 = γ and Euler angles x3 = θ1, x4 = θ2, x5 = θ3 in the internal

coordinate system and are associated with irreducible representations U(5) ⊃ O(5) ⊃ O(3) of

the noncanonical chain of groups [9].

The eigenfunctions ΨIM
n (β, γ, θi) of the five-dimensional oscillator of the geometric collective

model have the form

ΨIM
n (β, γ, θi) =

∑

K

ΦI
nK(β, γ)D

(I)∗
MK(θi), (3.1)

where ΦI
nK′(β, γ) are the components, D

(I)∗
MK(θi) are the orthonormalized Wigner functions

D
(I)∗
MK(θi) =

√
2I + 1

8π2

D
(I)∗
MK(θi) + π̂(−1)ID

(I)∗
M,−K(θi)√

2(1 + δK0)
,

π̂ = ±1 is the parity, π̂ = +1 for quadrupole deformations (π̂ = −1 for general deformations

[13]), K = 2 mod(I, 2), . . . , 2�I/2�.
The boundary value problem for the geometric collective model at fixed integer numbers I

and −I � M � I reduces to a boundary value problem for a system of two-dimensional partial

differential equations, the number of which is equal to I/2 + 1 for even I and (I − 1)/2 for odd

I, coupled by a three-diagonal matrix [10]. Substituting (3.1) into (2.1) and averaging over the

basis D
(I)∗
MK(θi), we obtain an equation for the geometric collective model with respect to the

components ΦI
nK ≡ ΦI

nK(β, γ) and eigenvalue EI
n (MeV) in the form

∑

K′

[(
T +

2B2

�2
(V̂ − EI

n)
)
δKK′ + T I

KK′

]
ΦI
nK′ = 0,

T =
−1

β4 sin(3γ)

( ∂

∂β
β4 sin(3γ)

∂

∂β
+

∂

∂γ
β2 sin(3γ)

∂

∂γ

)
, (3.2)

T I
KK = 2B2

[
(I(I + 1)−K2)

(
1

4J1
+

1

4J2

)
+

K2

2J3

]
,

T I
KK′ = 2B2

( 1

8J1
− 1

8J2

)
CI
KK′ , K ′ = K,

where

CI
KK′ = δK′K−2C

I
KK−2 + δK′K+2C

I
KK+2,

CI
KK−2 = (1 + δK2)

1/2 × [(I +K)(I −K + 1)(I +K − 1)(I −K + 2)]1/2,

CI
KK+2 = (1 + δK0)

1/2 × [(I −K)(I +K + 1)(I −K − 1)(I +K + 2)]1/2,

B2 = 2B2/
√
5 (in 10−42 MeV · s 2 ∼ �

2/MeV) is the mass parameter, β is the dimensionless

independent variable, � = 6.58211828 (in 10−22 MeV · s), and Ẽ = E2B2/�
2 is the dimensionless

energy. The moments of inertia are denoted by Jk = 4B(k)β
2 sin2(γ−2kπ/3), k = 1, 2, 3, B(k) are

the components of the mass tensor along the center-of-mass principal axes of the atomic nucleus,

(B(k) = B2 for the geometric collective model). The potential function of the anharmonic
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oscillator V̂ ≡ V̂ (β, γ) of the geometric collective model is given in the form [11]

V̂ = C2
1√
5
β2 − C3

√
2

35
β3 cos(3γ) + C4

1

5
β4 − C5

√
2

175
β5 cos(3γ)

+ C6
2

35
β6 cos2(3γ) +D6

1

5
√
5
β6. (3.3)

The bounded components ΦI
nK(β, γ) satisfy the homogeneous Neumann and/or Dirichlet bound-

ary conditions at the boundary points of the intervals γ ∈ [0, π/3] and β ∈ [0, βmax] and the

orthogonality and normalization condition

βmax∫

β=0

π/3∫

0

β4 sin(3γ)
∑

K

ΦI
n′KΦI

nKdγdβ = δn′n. (3.4)

The boundary value problem for the system of two-dimensional equations (3.2)–(3.4) was solved

by means of program 2DFEM, implementing the calculation scheme and algorithm from the

above sections using the two-dimensional local functions (2.11) composed of the Hermite inter-

polation polynomials (2.13). For a test the lower part of the energy spectrum EI
n of the atomic

nucleus 190Os was calculated with the parameters of mass B2 and potential V̂ (β, γ) from [14]:

C2 = −363.64, C3 = −372.59, C4 = 19391.8, C5 = −19246.82,

C6 = 80003.64, D6 = −70794.69, B2 = 2/
√
5× 173.035.

(3.5)

Using the program 2DFEM with the Hermite interpolation polynomial, p = 1, κmax = 2, p′ = 3

the results for 2D boundary value problems (3.2)–(3.4) were obtained on the grid Ωh
βγ :

Ωh
βγ = Ωh

β ⊗ Ωh
γ , Ωh

β = [0.0, 0.035, . . . , 0.35], Ωh
γ = [0, π/30, . . . , π/3]. (3.6)

Figure 5 shows the structure of the matrices A and B of the algebraic problem (2.5) corre-

sponding to this grid for I = 0 and the number of finite elements Q = 10× 10 = 100 for which

the block-banded structure is clearly manifested in comparison with Figure 4. For I � 2 each

cell is a K ×K matrix, where K = I/2 + 1 for even I and K = (I − 1)/2 for odd I of the 2D

equations (3.2).

Table 1.

procedure/subroutine type of problem (2.5) filling the matrices eigenvalues

Eigenvector() general fully populated square all

Eigensystem() general fully populated square subset

eigs() general fully populated square subset

scipy.linalg.eigh() complex Hermitian or fully populated subset

real symmetric lower triangular

ARluSymGenEig() real symmetric lower triangular subset

sparse packed storage

sspace() real symmetric upper triangular subset

sparse packed storage
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Table 2.

I n ΔE band Exp TM TW TM TW TT TP TC TF K Lβγ

[14] [7] [7]

0 1 0.0 gs 0+ 0.0000 26 26 8 6 0.40 1.25 0.03 0.06 1 484
0 2 1.0427 β 0+ 0.9118

2 1 0.2485 gs 2+ 0.1867 87 98 16 26 0.42 2.27 0.12 0.14 2 968
2 2 0.7977 γ 2+ 0.5580
2 3 1.5366 β 2+ 1.1147

3 1 1.2029 γ 3+ 0.7560 25 24 7 8 0.13 1.08 0.03 0.03 1 484

4 1 0.6060 gs 4+ 0.5479 182 203 36 54 0.73 3.27 0.24 0.27 3 1452
4 2 1.2701 γ 4+ 0.9554
4 3 1.8141 β 4+

5 1 1.7132 γ 5+ 1.2039 84 84 12 13 0.25 1.86 0.12 0.11 2 968

6 1 1.0504 gs 6+ 1.0504 296 325 66 81 1.03 4.16 0.40 0.39 4 1936
6 2 1.7932 γ 6+ 1.4742
6 3 2.4272 β 6+

7 1 2.2832 γ 7+ 169 159 30 22 0.44 2.51 0.24 0.16 3 1452

8 1 1.5663 gs 8+ 1.6665 447 446 118 91 1.26 4.80 0.51 0.47 5 2420
8 2 2.3721 γ 8+ 2.0900
8 3 3.0806 β 8+

9 1 2.9070 γ 9+ 281 257 53 24 0.66 3.16 0.42 0.25 4 1936

10 1 2.1431 gs 10+ 2.3570 624 519 187 67 1.50 5.23 0.74 0.50 6 2904
10 2 3.0034 γ 10+ 2.7720
10 3 3.7749 β 10+

4 Discussion of the Results

To solve elliptic multidimensional boundary value problems with variable coefficients of

derivatives, high-precision FEM schemes have been developed with piecewise polynomial ba-

sis functions constructed by joining Hermite interpolation polynomials and their derivatives on

the boundaries of neighboring finite elements shaped as parallelepipeds.

We describe a new version of the algorithm for constructing d-dimensional basis piecewise

polynomial FEM functions in the analytical form, which will be used in the development of soft-

ware tools in CAS Maple, Mathematica, Matlab and in the Python, C++, Fortran languages for

solving multidimensional boundary value problems with variable coefficients at partial deriva-

tives.

Table 1 shows the main differences between the built-in procedures Eigenvector(), Eigen-

system(), and eigs() in Maple, Mathematica, and Matlab respectively and library subroutines

scipy.linalg.eigh(), ARluSymGenEig(), and sspace() in the Python, C++, and Fortran languages

respectively, i.e., type of computed generalized algebraic eigenvalue problem (2.5), matrix fill-

ings, and number of calculated eigenvalues. Note that the subroutine sspace() in Fortran is

designed to solve the problem (2.5) with real symmetric block-diagonal (banded) matrices and

find the lower part (subset by index) of the eigenvalues; this has been modified by the authors

of this paper to the case of sparse matrices. Such an implementation allows us not only to

significantly reduce the calculation time, but also makes it possible to solve the problem (2.5)

with a significantly higher dimension.

The new version of the algorithm is implemented in the form of the program 2DFEM to
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solve the boundary value problem arising in the geometric collective model of atomic nuclei. The

efficiency of the developed algorithms and programs is demonstrated by benchmark calculations

of the low part of the rotational-vibrational spectrum of the atomic nucleus 190Os presented

in Table 2 which demonstrates the high performance of the programs even on a conventional

personal computer (PC). Table 2 presents the energy eigenvalues ΔE: ΔEI
n ≡ EI

n − E0
1 (MeV)

relative to the energy of the ground state E0
1 = −1.0426 (MeV) for the states of atomic nucleus

190Os with parity π̂ = +1, calculated by the program 2DFEM of the present paper and ΔE

([7]) calculated by the trial version of the program 2DFEM from [7]. The parameter values of

the model (3.5) and the experimental data Exp are taken from [14]. The execution time (CPU)

is TM, TW, TT, TP, TC, and TF (seconds) respectively in CAS Maple, Mathematica, Matlab

and in the Python, C++, Fortran languages depending on the parameters of the boundary value

problems and the corresponding algebraic problems: the nuclear spin I, the number K of the

2D equations (3.2), and the dimension Lβγ , of eigenvectors of the algebraic problems (2.5).

All calculations were performed using Maple 2023, Mathematica 13, Matlab 2022, Python 3,

C++, and Fortran 90 on a PC with AMD Ryzen 9 3950X 16-Core Processor, 3.50 GHz, memory

128 Gb, Windows 10 Pro.

From Table 2 it is clear that the execution time (CPU) TM in Maple and TW in Mathematica

of the new 2DFEM program is 3–10 times shorter compared to the time of the trial version of

the program from [7]. The time TT in Matlab is much times shorter than TM and TW. We

also observe the expected result that the times TC and TF in the compilable languages C++

and Fortran respectively are significantly shorter than the time TP in the compilable Python

language.

Table 2 shows the results of calculations of the lower part of the energy spectrum EI
n by the

2DFEM program that are in a good agreement, with accuracy of 10−4 MeV, with calculations

of the algebraic version of the fitting geometric collective model for the experimental spectrum

[11, 14]. The Runge coefficients

rh = log2

∣∣∣
(EI

n)h − (EI
n)h/4

(EI
n)h/2 − (EI

n)h/4

∣∣∣, (4.1)

where (EI
n)h, (E

I
n)h/2, (E

I
n)h/4 are the energies calculated by the program 2DFEM in doubly

condensed grids, gave estimates 5.29 ÷ 5.47, confirming the theoretical estimate (2.7) of order

2p′ = 6.

The results of calculations of quadrupole moments Q(L, n) and electric inter-band and intra-

band B(E2) transitions are presented in Appendix.

We emphasize that programs implementing FEM have a significant advantage over the al-

gebraic version of the programs for the geometric collective model that implement the method

of expanding the desired solution in the basis functions of a harmonic oscillator with addi-

tional variational parameters of mass B′
2 and stiffness C ′

2, since FEM does not have additional

variational parameters of piecewise polynomial functions. In addition, the 2DFEM program is

applicable to solve a wider class of boundary value problems (2.1), with variable coefficients

gij(x) for derivatives, as well as for parameter values leading to the presence of several minima

of potential energy (3.3) as indicated in [7, 14].

The developed approach and programs provide a base for adapting the KANTBP 3.0 pro-

gram [15] and multidimensional FEM programs for solving the scattering problem [16, 17] and
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the problem of bound states of the rotational-vibrational spectrum, which are applicable in var-

ious generalizations of the geometric quadrupole collective model [14, 18] and the quadrupole-

octupole six-dimensional collective model of atomic nuclei [13, 19]. The FEM program can also

be used to study the properties of superheavy nuclei, using the approach proposed in [14].

Table 3.

Q(L, n) present calc [14] Exp

Q(L = 2, n = 1) 0.694 0.69 -1.18(3)

Q(L = 4, n = 1) 0.843 0.84

Q(L = 6, n = 1) 0.885 0.88

Q(L = 2, n = 2) -0.643 -0.64 0.9(4)

Table 4.

Lgs → Lgs present calc [14] Exp

Li = 0, ni = 1 → Lf = 2, nf = 1 1.093 1.09 2.34(6)

Li = 2, ni = 1 → Lf = 4, nf = 1 0.632 0.63 1.12(8)

Li = 4, ni = 1 → Lf = 6, nf = 1 0.636 0.64 1.50(23)

Li = 6, ni = 1 → Lf = 8, nf = 1 0.673 0.67 1.06(6)

Lβ → Lβ present calc [14] Exp

Li = 0, ni = 2 → Lf = 2, nf = 3 0.930 0.93

Li = 2, ni = 3 → Lf = 4, nf = 3 0.022 0.02

Li = 4, ni = 3 → Lf = 6, nf = 3 0.344 0.34

Li = 6, ni = 3 → Lf = 8, nf = 3 0.491 0.49

Lγ → Lγ present calc [14] Exp

Li = 2, ni = 2 → Lf = 3, nf = 1 0.424 0.42

Li = 2, ni = 2 → Lf = 4, nf = 2 0.392 0.39 0.70(3)

Li = 3, ni = 1 → Lf = 4, nf = 2 0.114 0.11

Li = 3, ni = 1 → Lf = 5, nf = 1 0.420 0.42

Li = 4, ni = 2 → Lf = 5, nf = 1 0.160 0.16

Li = 4, ni = 2 → Lf = 6, nf = 2 0.510 0.51 0.75(7)

Li = 5, ni = 1 → Lf = 6, nf = 2 0.063 0.06

Li = 5, ni = 1 → Lf = 7, nf = 1 0.545 0.55

Li = 6, ni = 2 → Lf = 7, nf = 1 0.088 0.09

Li = 6, ni = 2 → Lf = 8, nf = 2 0.588 0.59 0.52(15)

Li = 7, ni = 1 → Lf = 8, nf = 2 0.037 0.04

Table 5.

Lgs → Lβ present calc [14] Exp

Li = 0, ni = 1 → Lf = 2, nf = 3 18.31 18.3

Li = 2, ni = 1 → Lf = 2, nf = 3 0.36 0.4

Li = 2, ni = 1 → Lf = 4, nf = 3 0.61 0.6

Li = 4, ni = 1 → Lf = 4, nf = 3 3.20 3.2

Li = 4, ni = 1 → Lf = 6, nf = 3 0.47 0.5

Li = 6, ni = 1 → Lf = 6, nf = 3 2.30 2.3

Li = 6, ni = 1 → Lf = 8, nf = 3 0.38 0.4

Li = 8, ni = 1 → Lf = 8, nf = 3 1.71 1.7

751



Table 5 (continued).

Lgs → Lγ present calc [14] Exp

Li = 0, ni = 1 → Lf = 2, nf = 2 81.19 81.2 197(8)

Li = 2, ni = 1 → Lf = 2, nf = 2 201.36 201.4 227(8)

Li = 2, ni = 1 → Lf = 3, nf = 1 43.93 43.9

Li = 2, ni = 1 → Lf = 4, nf = 2 6.27 6.3 8.2(6)

Li = 4, ni = 1 → Lf = 4, nf = 2 141.80 141.8 229(14)

Li = 4, ni = 1 → Lf = 5, nf = 1 24.04 24.0

Li = 4, ni = 1 → Lf = 6, nf = 2 2.45 2.5 4.2(40)

Li = 6, ni = 1 → Lf = 6, nf = 2 121.43 121.4 240(6)

Li = 6, ni = 1 → Lf = 7, nf = 1 16.84 16.8

Li = 6, ni = 1 → Lf = 8, nf = 2 1.52 1.5

Li = 8, ni = 1 → Lf = 8, nf = 2 109.41 109.4

Lβ → Lγ present calc [14] Exp

Li = 2, ni = 3 → Lf = 2, nf = 2 16.23 16.2

Li = 2, ni = 3 → Lf = 4, nf = 2 29.15 37.1

Li = 4, ni = 3 → Lf = 4, nf = 2 191.67 191.7

Li = 4, ni = 3 → Lf = 6, nf = 2 1.27 11.7

Li = 6, ni = 3 → Lf = 6, nf = 2 185.44 185.4

Li = 6, ni = 3 → Lf = 8, nf = 2 0.25 5.7

Li = 8, ni = 3 → Lf = 8, nf = 2 171.16 171.1

A Appendix. Quadrupole Momentum and
Electrical Transitions

The electric quadrupole momentum of nuclear levelsQ(L, n) and the probabilities of electrical

transitions between levels of various bands B(E2) are defined in the laboratory system [20].

Matrix elements of the electric quadrupole operator are evaluated by transforming the operator

and collective eigenfunctions into the intrinsic frame. To simplify the formulas below, the reduced

matrix elements of the electric quadrupole operator are denoted by

〈ΦLf
nf ||Q2||ΦLi

ni
〉 =

√
2Li + 1

2Lf + 1
〈nf , Lf ||Q̂λ=2||ni, Li〉, (A.1)

where ΨL
n are eigenfunctions in the laboratory system.

A calculation of the reduced matrix elements of the electric quadrupole operator can be

performed within the intrinsic frame as follows:

〈nf , Lf ||Q̂λ=2||ni, Li〉 =
∑

Ki�0,even

(
C

LfKf=Ki

LiKi20

∫
ΦLi
niKi

Q′
2,0Φ

Lf

nfKi
dτ

+
√

1 + δKi0C
LfKf=Ki+2
LiKi22

∫
ΦLi
niKi

Q′
2,+2Φ

Lf

nfKf=Ki+2dτ

+
√

1 + δKi2C
LfKf=Ki−2
LiKi2−2

∫
ΦLi
niKi

Q′
2,−2Φ

Lf

nfKf=Ki−2dτ

)
, (A.2)
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where Kf = Ki + 2 � Lf , Kf = Ki − 2 � 0, C
LfKf

LiKi2K
are the Clebsh–Gordan coefficients, and

the operator Q′
2μ of electric quadrupole momentum in the intrinsic system (1 b = 100 fm2) is

expressed as

Q′
2,0 =

3ZeR2
010

−2b

4π

(
β cos(γ) +

2

7

√
5

π
β2 cos(2γ)

)
,

Q′
2,±2 =

3ZeR2
010

−2b

4π

( 1√
2
β sin(γ)− 1

7

√
10

π
β2 sin(2γ)

)
,

(A.3)

Z is the nucleus charge, R0 = 1.1A1/3 fm and A are the nucleus radius and mass.

The matrix element of the electric quadrupole momentum of the operator Qλμ is expressed

in terms of the reduced ones ||Qλ|| by the Wigner–Eckart formula [21]

〈ΦLfMf
nf |Qλμ|ΦLiMi

ni
〉 = C

LfMf

LiMiλμ
〈ΦLf

nf ||Qλ||ΦLi
ni
〉, (A.4)

where the factor (−1)2λ(2Lf+1)−1/2 was included in the reduced matrix elements 〈ΦLf
nf ||Qλ||ΦLi

ni
〉

against to the conventional definition [22]. So, the matrix elements of the electric quadrupole

momentum (in units eb with factor 10−2) can be written as

Q(Ln) = QLn =

√
16π

5
〈n,L,M = L|Q20|n,L,M = L〉 =

√
16π

5
CLL
LL20〈Ln||Q2||Ln〉. (A.5)

The electric transitions B(Eλ;Lini → Lini) are expressed as the sum of the matrix elements

[20]

B(Eλ;Lini → Lini) =
1

2Li + 1

∑

MiMfμ

|〈nf , Lf ,Mf |Qλμ|ni, Li,Mi|〉|2 (A.6)

and via the corresponding reduced matrix elements (A.1) or (A.2) (in units e2b2 with factor

10−4)

B(Eλ;Lini → Lfnf ) =
2Lf + 1

2Li + 1
|〈nf , Lf ||Qλ||ni, Li〉|2 = 〈nf , Lf ||Q̂λ||ni, Li〉|2. (A.7)

Thus, to reduce the computer time, we evaluate the lower transitions B(Eλ;Lfnf → Lini)

through the calculated upper transitions B(Eλ;Lini → Lfnf ) by the formula

B(Eλ;Lfnf → Lini) =
2Li + 1

2Lf + 1
B(Eλ;Lini → Lfnf ). (A.8)

Tables 3–5 show the results of calculations of quadrupole moments Q(L, n) in eb units and

electric inter-band and intra-band B(E2) transitions in e2b2 and 103e2b2 units respectively by

the 2DFEM program that are in a good agreement with the calculations [14] for 190Os of the

algebraic version of the fitting geometric collective model for experimental data in terms of

spectrum, quadrupole momentum, and electrical transitions.

Acknowledgments

The authors thank Professors V. L. Derbov, P. O. Hess and Doctor L. L. Hai for fruitful

collaboration.

753



Funding

The work was financially supported by the Hulubei–Meshcheryakov Joint Institute for Nu-

clear Research program, the Russian Foundation for Basic Research and the Ministry of Ed-

ucation, Culture, Science and Sports of Mongolia (No. 20-51-44001), the Peoples’ Friendship

University of Russia (RUDN) Strategic Academic Leadership Program (No. 021934-0-000) and

the grant from the Ministry of Education and Science of Mongolia (No. ShuG 2021/137).

Declarations

Data availability This manuscript has no associated data.

Ethical Conduct Not applicable.

Conflicts of interest The authors declare that there is no conflict of interest.

References

1. K. J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall (1982).

2. I. S. Berezin and N. P. Zhidkov, Computing Methods, Pergamon Press, Oxford (1965).

3. R. A. Lorentz, Multivariate Birkhoff interpolation, Springer, Berlin (1992).

4. F. Lekien and J. Marsden, “Tricubic interpolation in three dimensions,” Int. J. Num. Meth.
Eng. 63, 455–471 (2005).

5. U. Vandandoo et al, High-Order Finite Difference and Finite-Element Methods for Solving
Some Partial Differential Equations, Springer, Charm (2024).

6. G. Chuluunbaatar et al, “Construction of multivariate interpolation Hermite polynomials
for finite element method,” EPJ Web of Conferences 226, Article No. 02007 (2020).

7. A. A. Gusev et al, “Hermite interpolation polynomials on parallelepipeds and FEM appli-
cations,” Math. Comput. Sci. 17, Article No. 18 (2023).

8. A. A. Gusev et al, “Symbolic-numerical solution of boundary-value problems with self-
adjoint second-order differential equation using the finite element method with interpolation
Hermite polynomials,” Lect. Notes Comput. Sci. 8660, 138–154 (2014)

9. M. Moshinsky and Y. F. Smirnov, The Harmonic Oscillator in Modern Physics, Harwood
Acad. Publ., Chur (1996).

10. D. Troltenier, J. A. Maruhn, W. Greiner, and P. O. Hess, “A general numerical solution of
collective quadrupole surface motion applied to microscopically calculated potential energy
surfaces,” Z. Phys. A. Hadrons and Nuclei 343, 25–34 (1992).

11. D. Troltenier, J. A. Maruhn, and P. O. Hess, “Numerical application of the geometric
collective model,” In: Computational Nuclear Physics. Vol. 1, pp. 105–128, Springer, Berlin
(1991).

12. A. Deveikis et al, “Symbolic-numeric algorithm for calculations in geometric collective model
of atomic nuclei,” Lect. Notes Comput. Sci. 13366, 103–123 (2022).

754
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