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ABSTRACT
High accuracy splitting algorithms based on the unitary approximations of the evolution operator for the time-
dependent Schrödinger equation (TDSE) with a train of laser pulses are developed. The efficiency of the
algorithms is shown using typical examples of a hydrogen atom affected by a train of laser pulses in the dipole
approximation and an additional constant magnetic field. The stabilization effects are discussed.
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1. INTRODUCTION
Numerical solutions of the TDSE have found wide application in different quantum mechanical problems and
modern laser physics experiments. In particular, these experiments stimulate computer modeling of the dy-
namics of exotic few-body Coulomb systems affected by a train of laser pulses' . In this case a possibility of
constructing efficient splitting algorithms appeared35 . There are two requirements for the numerical methods
developed, namely, they should be stable and have high accuracy in both time and space variables.

In the present paper we formulate two methods for solving the TDSE that provide second- and forth-order
approximation in the time step based on the unitary splitting 67 The finite-element method is
used to construct numerical schemes of arbitrary accuracy in the spatial step8" . As examples we consider the
models of the two-dimensional oscillator in an ac electric field and Coulomb-like atoms in a constant magnetic
field and a train of short laser pulses.

2. STATEMENT OF THE PROBLEM AND GENERAL CALCULATION SCHEMES
Let us consider the initial problem for the multidimensional TDSE describing the dynamics of a model atoni in
the external field in the time interval t [t0 , T]

i t) H( t)(, t) , t0) =o( , t) 111 (Rn) x [to , T] , o(r H1 (Re) , (1)

where
1

H(9,t) = H0( + Q(t), with Ho(1) = + V(r'). (2)

Here Ho(r is the Hamiltonian of a free atom with the continuous potential V(, and the time dependent
potential function Q(, t) describes the interaction of the free atom with the external field F(t) in the dipole
approximation Q( t) = i?P(t). The normalization condition looks as

III = f l,t)2d= 1, t E [t0,T]. (3)
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Let us consider the formulated problem (1) on the uniform grid 1 = {to, tk+1 = tk + T, k = 0, 1, K, tK
T}, with the time step T. The solution ''(tk+1) tk+1) is expressed in terms of the solution L'(tk) by
means of the unitary evolution operator U(t, to),

5(tk+1 ) = U(tk+1 , tk)b(tk). (4)

The unitary operator U(tk+1 , tk) can be represented in the following way6

U(tk+1,tk) = lim U(tk+l,tk), u(N)(tk+l,tk) = exp (—irG) , —irG = rA(r), (5)N—oc
j=1

where A ('i-) is the anti-Hermitian operator which consists of multiple integrals of commutators of the Hamil-
tonian H(f, t) at different moments of time . For N = 1 one has the known Crank-Nicholson scheme with the
truncation error 0(T2) with respect to the time step r,

(i+ iG) k+1 (_ iG) k kbk+lII = I(I, (6)

with
G = H(tk+l/2), = (t0), tk+1/2 = tk + . (7)

As it is well known6 , for N = 2 the operator G has the form

2 _ y2 32Q(? tk+1/9) Y2 ( 1 ( 3Q(j tk+1/2) I 3Q(?, tk+1/2)Gk _ H(i , tk+1/2) +
3t2 •r 3t ) V 3t • (8)

Here we used the Taylor-series of Q(r,t) in the vicinity of the point t1,2 with the truncation error 0(r4) with
respect to the time step 'r. By means of the following transformation:

G exp (-DQfr,tk+h/2)
) (tk) = exp

V,tk+l/2)
) Otk + Q(4),

2 _ y2 a2Q(tk+l/2)
(

Gk H(r,tk+l/2) + 0t2

we can replace the operator G with simpler operator G . From here with the help of the Padd approximation
for the unitary operator U(tk+1, tk) we have an implicit two-ply scheme with the truncation error 0(T4) with
respect to the time step r,

(ir2 8Q(itk+1/2)'\ k
W =exp
(i i) pk+1/2 = (i —

Y*O2) 1pk\ II+hII - (10)
(i + k+1 = (i+ k+1/2

—

k+1 = exp (_ 3Q(tii2)) k+1

where ,k+1/2 is an auxiliary function and c = i/J — i.
We apply these schemes to exactly and not exactly solvable models for showing their efficiency and stability.
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2.1. Exactly solvable model: two-dimensional oscillator
The TDSE for a two-dimeiisional oscillator (or a charged particle in a constant uniform magnetic field) in the
external governing electric field with the components E1 (t) and E2 (t) not equal to zero in the finite time interval
t E (0, T] in the dipole approximation and atomic units has the form'2

.0 1(82 32\ iw( 8 3\
iq5(x,y,t) + —) q(x,y,t) + -- (x— —Yb--) q(x,y,t)

+(x2 + y2)(x,y,t) — (xE,(t) + yE2(t))(x,y,t).

The transformation to the coordinate frame rotating with the frequency w/2

(wt\ . (wt'\ (wt\ . (wt\x =xi cosj) +y Y cos) —xi (12)

leads to the following equation

a 1(32 D2\ w2
iq(xi,y,,t) = — + —) çb(x,,y,,t) + —-(x +y)cb(xi,y,,t)

(13)

+(fi(t)x, + f2(t)yi)çb(x,,y,,t),

where

fi(t) = -Ei(t)cos () +E2(t)sin() , f2(t) = -Ei(t)sin() - E2(t)cos() . (14)

In the polar coordinates
x1 = rcos(O), Yi rsin(9), 0 < 0 < 2rr (15)

this equation has the form

iç(r,O,t) = - ( -r : 22) q(r,O,t)
22

(r,O,t)
(16)

+(f,(t) cos(9) + f2(t) sin(8))r(r,O,t).

Using the Galerkin projection of the solutions by means of the basis of the angular functions D (9)

(r,9,t) = (r,t)D(9), (17)

where
1 1 1

D0(9) = D23(O) =
7=cos(jO),

D23_,(O) =
7=sin(j9),

j >0, (18)

we arrive at a set of ordinary differential equations for unknown coefficients {X (r, t)}_1 in the interval t e [0, T]

= + Hik(rt)) Xk(r,t),
(19)

lim (r, t) = 0 and Xi (rmax, t) = 0,
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with

w27.2 1 j+1 2
8+27 3k,

f2(t), min(j,k) = 0, max(j,k) = 1,

f1(t), min(j,k) = 0, max(j,k) = 2,

Hk (7', t) = ;: (20)
f2(t), mod(min(j, k), 2) = 0 and max(j, k) = min(j, k) + 1,

—f2(t), mod(min(j, k),2) = 1 and max(j,k) = min(j, k) + 3,

f1(t), mod(j — k,2) = 0,

0, otherwise.

The initial functions Xi (r, t) at t = 0 (in the case Ii (0) = 12 (0) = 0) are chosen in the form

o(r,0) = exp (_r2) (r,0) 0, j > 0. (21)

The transformation to the projective variable, p : r =R(t)p, and to the envelope,(p t) , of the

Xi (r, t) = exp
{ R(t) dR(t)2 } t) (22)

reduces the above set of equations (19) to the following one:

4e(p,t) = : (-oik2R(t) + H(Pt)) ek(p,t),
(23)

lim p—(p,t) = 0 and j(prnax,t) 0,
p—*O op

where

H(p,t) = H(p,t) + R(t)dt)p2, H(p,t) = Hjk(p,t), j k. (24)

Note, that this representation provides some appropriate localization and smoothness of the envelope by the
projective variable. For this problem we use the Crank-Nicholson scheme and the formula (6) is rewritten on
the uniform grid hot

A(p, tk+1/2)(p, tk+1) =A* (p, tk+1/2)e(p, tk), (25)
where 5t/ 1 (0)

Ajk(p,tk+1/2) = 5jk + —- -5k 2R2(t ——p— + Hk (Ptk+1/2)) , (26)

and (p, t) = (o(p, t), .N-1 (p, t))T.
The exact solution of Eq. (13) reads

&xt (x1, Yl, t) = exp (—A1 (t)x —A2 (t)y + 2B1 (t)xi + 2B2 (t)yi —Ci (t) —C2(t)), (27)

where the functions A3(t), B(t), C3(t), j = 1,2 satisfy the Cauchy problem

d w

iA(t) = 2A(t) —

—i-, A(0) =

iB(t) = 2A(t)B(t) + k) B(0) = 0, (28)

iC(t) = —A(t) + 2B(t), C(0) = 0.

102     Proc. of SPIE Vol. 5476



Here the exact solution of the first differential equation is A3 (t) w/4 in the whole time interval t e [0,TJ.
Note, that this problem has an exact solution for a particular choice of the field E1,2(t) = al,2 sinw1,2t which

provides a good test example to examine the efficiency of the numerical algorithms and the rate of convergence
of the projection with respect to the number N of radial equations and to the time T. The needed projections
of the exact solution onto the radial ones have the form

ext(r t) = f2D (O)ext (T,0, t)dO. (29)

We compare some numerical results with the exact ones in Section 4.1.

2.2. Model not solvable exactly: a three-dimensional Coulomb atom
As it is known, S-shaped pulses are a widely used approximation for electric-field pulses that are much shorter
than the classical orbital period. The Hamiltonian of the kicked hydrogen atom in atomic units13 has the form

H = H0 +xt, with H0 — , Vext P S(t kT), (30)

where S is the number of kicks applied, T is the period, and P is the external field.

Between the pulses we have a conservative system and the wave packet propagates in correspondence with
the simple field-free conservative Hamiltonian H0 of the hydrogen atom, i.e., the wave packet evolves according
to the time-dependent Schrödinger equation

i3(t) H0(t), (t) H'(R3) x [(k — 1)T,kT]. (31)

If the field direction is the same for all pulses, e.g., along the z axis, the system has rotational symmetry with
respect to this axis arid, hence, the corresponding component (here tire z-component) of the angular momentum
is conserved. The electric field causes strong coupling of bound states to the continuum leading to ionization.
This is the irrairi computational challenge, which, however, can be straightforwardly mastered by means of
space-discretization methods. Due to the discretization, the wave packet will not be approximated by a globally
defined basis or by bound states and thus the well-known problem of finding suitable bases is "simply" reduced,
first, to selecting sufficiently large coordinate space, which allows wave packet propagation without reflection
at the borders, and, second, to selecting suitable interpolation polynomials on the space grid.

The formal solution for the time development of the discretized wave functions çb(t) 'b(f, t) evolving under
the time-independent Hamiltonian is given by

(t + 6t) = exp(—i Ho5t)'i/'(t). (32)

Inserting (10) into (32) leads to an implicit system of algebraic equations

( - aHo) = (i- 6t
c*H b(t),/

(33)

(i + a*Ho) (t + St) = (i+ Ho) ,
which have to be solved for each time step 6t. Here '/' is an auxiliary function.

To explain the computational procedure for periodic S pulses, we restrict the discussion below to the
Schrödinger equation for a single pulse directed along the z axis

3(r, t) = (H0 + PS(t -T)),t). (34)

Proc. of SPIE Vol. 5476     103



Several pulses are then simply computed by repeating the computational steps described below for a single
pulse. Thus, the same method allows also one to describe systems with non-periodic, randomly distributed
pulses, pulses of varying strength, or pulses directed in the opposite directions.

We use the following expressions for expressing the wave function 15(i?, T+) directly after the pulse t =T+

I çT+b(T) = exp f —iHo(T — T_) — ifF / 6(t — T)dt ) (T_), (35)
'\ JT_ J

via the wave function b(i T_) just before the pulse. From here, obviously, T —T_ -+ 0 and f S(t — T)dt 1.

Hence, the formula (35) is equivalent to the formula

(T) = exp (_iP) (T_). (36)

For practical calculations we used the analogous formulae (33)

(I _ = (I
_

la*P) (T),

(I + a*P) 'Ø(T) = (i+ ) '
which preserve unitarity and are correct in order (ii)4 at finite 1 to formula (36).

After changing the variables by r = np, t = n2r the equation (31) reads

=Ho(r), H0=——, (38)0T 2 p

and Eqs. (37) look like

(I rflP) = (i _ fla*) (i_),
;!

4
n -. (39)

(I+ F)(T+) = (I + F)
where T = T/rt2 and n is the principle quantum number.

For a linearly polarized laser field the solution reads

,) = 1: x(p,r)Yi°(O,), (40)

where Y' is a spherical function. After the substitution (40) the equation (38) is equivalent to a set of equations

axNp,r) ='! + H(p)) x(p,), (41)

with the boundary conditions

lim p2x(p, r) = 0 and XNprnax, r) = 0. (42)
p—*o t9p

In this case the formulae (33) and (39) on the uniform grid 1l- take the form

B(p) = B*(p)fl(p, Yk), B11 (p) = diii —
(_6iii

+H)())
C*(p)Xn(p,+i) = C(p), Cu' (p) = 8' + + H?())
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and

A(p) = A*(p)Xh1(p,_), A11(p) = oiii —
(44)

D*(p)Xn(p, = D(p)Th, D11 (p) = dii' +

where the matrix elements H? and can be written as

H(p) = (1(1±1) n) dii,, H(p) = npF2l + 1)(21' + 1)
(l+11+1)2_ (45)

and fl(p, r) = (x(pr), ..., (p, r))".
The initial state is given by

xr(p,O) = N1Rj(p), (46)
where ____________

R1(p) = 2(2p)1exp(-p) (n-l-1)! 1F1 (-n + 1 + 1, 21 + 2, 2p) , (47)

N1 are the normalized constants, and 1F1 is the confluence hypergeometric function. We used the following
orthogonal transformation between the parabolic and hydrogen states

n—i

in2m(Y) ii: A2(y), 471(y) At2nm(y). (48)
1=Ji-nJ i ,l2O

Here the matrix elements A read14

A12 — CT'2 F Im + 1 + 1 1 + mi + 1 —n2; 1
nOn nim 3 2 (49)

where C1,2 is the normalization factor

C'2 — (_1)1JmJ
(n — Im — 1)! / (21 + 1)(l + IrnI)!(mi + ml)!(n2 + mD!

(50)nlm
mi! V (n + l)!(l — ImD!(n — 1 — 1)!(ni)!(ri2)!

and 3F2 is the hypergeometric function.

For analytical evaluation of the wave package dynamics of the kicked hydrogen atom (34) we decompose the
time-dependent wave function t) in the basis of the eigenfunctions = ( 0) of the Hamiltonian H0
(31)

/(,t) = QA(t)bA, HobA EA/A, (51)

where \ is the set of quantum numbers, a(t) are the coefficients. Using (32), (36) and (51) one can easily find
the equations for QA(t)

aA(t + 6t) = exp(—iE8t)c(t), (52)

cA(kT+) = (AIexp(—WP)IA')cx'(kT_) E dAA'aA'(kT_). (53)

The matrix elements ái = ()exp(—i7)IA') between the parabolic functions ,n2,m of a free hydrogen atom
are known analytically'4 (the external field P = (0, 0, F) is directed along z):

1
= n1n2mnnm' EA = Enin2m =

2(n, + n2 + m + 1)2 (54)

Note that in the Eqs.(51) and (53) we summarize only the states with ii rimax and neglect the transitions
to states with n > max• We do not consider transitions to the states of the continuous spectrum and neglect
reverse transitions from the states of continuum to the discrete ones. The probability of a transition to the
state with quantum numbers A is equal to a,(t)f2.
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3. HIGH-ORDER APPROXIMATIONS OF THE FINITE-ELEMENT METHOD
The conventional substitution 'r) = e_iETXu(p) to the set of N equations (41) leads to the Sturm—
Liouville problem on the finite interval p [0, Pmax] for evaluating the initial states xGo, 0) = x, (p) and energy
eigenvalues E

(- a2a HV
(n))

x() = E(p),
(55)

Lp2x(p)
= 0 and Xt(Pmax) = 0

that is equivalent81' to the following variational Rayleigh-Ritz functional (the prime means the differentiation
in p):

[ xPxP6v + (p)H (P)Xv(P)] p2dp

R() = '='
N p . (56)

1L

Computational schemes of the high order of accuracy are derived from the variational functional (15) on the
basis of the finite-element method. The general idea of the finite element method'°' " (FEM) in one-dimensional
space is to subdivide the interval [0, Pmaxl into many small domains called elements. The size and shape of the
elements can be defined very freely so that physical properties can be taken into account.

Now we cover the interval L = [0, ,°max] with a system of subintervals L = [pji ,piJ in such a way that
L = u;=1 , where n is the number of subintervals. In each interval L\ determine the following nodes:

Pr Pj1 + T, V O,l,...,p l,p, (57)
, p

and the Lagrange elements {cr(p)}0

qP (
) _ (P - P,l) (p - P,-i)(P-P,r+i) • (p p)

(58),r P
(P.r P,ü)(P,r ,1) • (P,r — p,r_i)(P,r P,r+i) • • (pr

By means of the Lagrange elements q(p), at each node P,r we define the function N1(p) in the the following
way:

J q,0(p), p E Lii, —

10, pL1, —

{
r(P)' l=r+p(j—1), r=1,2,...p—1,

Nj(p) =
( cb,(p), p E j, (59)

cb,o(p), p E +i, 1 =jp, j = 1,2,...,n— 1,

1 0, pAUL+i,
f c5,(p), p E , —

0,
— p.

The functions {Nf(p)}f0, L = np form a basis in the space of polynomials of the p-th order. We approximate
each function x(p) of the global function x() (Xi(p), X2(p), .., XN(p))T by a finite sum of local functions

Nf(p)

x() = x Nf(p), X(P,r), (60)
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and substitute the expansion (60) into the functional (55) . From the minimum for this functional
we obtain that the vector solution h an eigenvector of the generalized algebraic problem

K h El M' ". (61)

The following estimations for FEM eigenfunctions of the problem (22) are valid8:

EJ — EI <c1(E)h2', (62)

4(p) - Xj(P) c2(E) h1 (63)

where h is the maximal step of the finite—element grid, j is the number of the corresponding solution, and
the constants c1 and C2 do riot depend on the step h. The stiffness matrix K and the mass matrix M are
symmetric and have band structure, and the M matrix is also positively defined. They have the following
form:

K'=k, (64)

where the local matrices k on the element and m are defined by the formulae

(k) = {v(q)'(,r)' + HV(p)qr}p2dTh
/.+1 J . (65),AP ,P 2—--d\ il/_Li, ILliJ_ Kj,q'Pj,r 2

p = pd_i +O.5h(1 +rj), q,r = O,l,...,p, p,v = 1,2,...,N.

Now let us denote by rg and W9 , g = 0, . . . , p the Gaussian'5 nodes and weights in the interval r [—1 , 1].
Then the integrals given above are calculated as

9=0 3

(66)

(m) = ,q (i),,.( )pWg,

whereP Pj—1 + O.5h(1 + i)g).
The reduction of Eqs. (43) and (44) on the finite interval p E [0, Pmax] with the Neumann boundary

conditions using the above realization of the FEM in Galerkin's formulation'6 leads to the following computation
scheme on the grid ci(r e [0, r,nax]):

(Mi) — icrK1')
h =

(Mi) iiia*K) Xh1Yk
between kicks T E (1k, T) (67)

(M') + a*K) x'(rk+1) =
(Mi)

+ crK) h,

and

(Mi) — cEK)
;h =

(Mi)
— 1*v) x't_),

atkickT<T<T 1 1
(68)

(Mi) + x) = (Mi)+
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Here the matrices M and K are given by Eqs. (64)-(65) and the matrix K is defined in a similar way

(69)

where the local matrix k on the element L is defined by

(k) = H)(p)qrp2d1), (70)

p = pd_i +0.5h1(1 +i), q,r =O,l,...,p, pu = 1,2,...,N.
These integrals are calculated by using the above notation for the Gaussian15 nodes ij and weights w9, g =
0, . . . ,p in the interval [—1,1]

(k) =
(71)

where p9 = Pj—1 + 0.5h3(1 + ij). Here we calculate the matrices M, K and K only once in the whole time
interval t E [0,T].

We define the following auxiliary time-dependent function:

N

Er2 (t, j) = :: I [xv (p, t) — (p, t)J* [x (p t) — x (p t)]p2dp, (72)
ii=1

where x' ( t) is the numerical solution with the time step h = 5t/23' and j=1,2,3. For the function Xv(P, t)
an approximate calculation with the time step t/8 can be used. By rrieans of the values Er(t,j) we can calculate
the convergence rate (t) of the calculation schemes (67) and (68) by means of the formula

Er(t 1) —Er(t 2)
(t) = log9

Er(t, 2) —Er(t,3)
(73)

In this case we must use the number of the Gaussian nodes p > 4.

Remark: For the two-dimensional case (See Section 2.1, Eqs. (25) and (26)) we used the following Crank-
Nicholson scheme on the uniform grid t:

(MP + iK) h(tk+l) = (MP - iK) etk (74)

and the matrices k and m are redefined as

(k = i:{2 (,q)'(,r)' +

— o 1 —id— P1 'l'j,q'Kj,r 2

Note, that in this case at each moment tk we must calculate the matrix elements HjV(p, tk+1/2), i.e., redefine
the matrices K. The formula (72) is also redefined

Er2(t,j) = _i(p,t)]*[(p,t) -i(p,t)]pdp. (76)
11=1
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Table 1. The test results of the integral errors Er(t) of Eq. (76). Here Nmax N the number of the differential
equations used, T is the time interval (in atomic units), t is the time and t(T) is the run time (in minutes) of the
computer calculations up to T=5 at PC Pentium IV 2.4GHz, 512 MB Windows XP.

Ninax \ t 0.2 1.0 2.0 3.0 4.0 5.0 trun(T)
1 1.30(-4) 6.48(-2) 4.48(-1) 6.88(-1) 6.90(-1) 5.92(-1) 1

3 5.02(-7) 5.76(-3) 1.15(-1) 2.56(4) 3.35(4) 3.99(-1) 3

5 5.20(-8) 6.28(-4) 3.85(-2) 1.29(-1) 1.92(4) 2.58(-1) 8
10 5.20(-8) 3.04(-6) 2.98(-3) 2.17(-2) 4.52(-2) 8.15(-2) 33
15 5.20(-8) 5.08(-7) 3.99(-5) 9.94(-4) 3.26(-3) 1.26(-2) 80
20 5.20(-8) 5.08(-7) 2.71(-6) 8.20(-5) 4.10(-4) 2.14(-3) 155
25 5.20(-8) 5.08(-7) 2.18(-6) 3.94(-6) 1.66(-5) 2.07(-4) 263

For the function ,(p, t) the exact solution can be used, see Eqs. (29) and (22).

Following this procedure we can formulate the following strategy: as we know analytically all functions HJV
and H) we first choose the FEM grid, then we calculate the matrix elements at the Gaussian points and finally
evaluate the integrals. This allow us to organize the calculation scheme as follows: let us consider the system
of N equations. We evaluate the values of all matrix elements for these N equations at the Gaussian nodes arid
store them in the external file.

From the above estimates one can see that we have a very high accuracy calculating the eigenvalues, the
bound states, and the corresponding wave functions. From this point of view the main error in the solution
depends only on the number of equations N and the computer precision used.

4.1. Two-dimensional oscillator
4. NUMERICAL RESULTS

In Table 1 we show the discrepancy Er(t) Er(t, 1) between the exact and numerical solutions determined by
Eq. (76) at the time step 5t = 0.0025 (See Section 2.1 and Eqs. (23), (24)) versus N and t = T; trun 5 the run

Figure 1: The dynamics of the eigenfunction of a two-dimensional oscillator . See comments in the text.

Proc. of SPIE Vol. 5476     109



Table 2. The values afr) and Er(r, j) for the Crank-Nicholson scheme at first six kicks. Here r = T/64, n = 5, l=6
and Pmax8O

N 1 2 3 4 5 6j
Er(r,1) 0.17123 0.34128 0.50887 0.67243 0.83054 0.98214

Er(r,2) 0.04128 0.08258 0.12389 0.16510 0.20612 0.24689
Er(r,3) 0.00828 0.01658 0.02491 0.03320 0.04146 0.04971

ciei-) 1.97713 1.97072 1.95963 1.94354 1.92303 1.89869

time (in minutes) of the computer calculations for the considered example of a1 = 0.6, a2 = 0.4, w = 1, wi =
0.8, W2 1.2, solved by means of the Crank-Nicholson scheme of the second-order accuracy in the time step 6t,
and R(t) = </'1 + 'y4t4, ,2 01 To approximate the solution (p, r) in the spatial radius p we used the finite
element grid 1l = {PrnirL = 0, (100), 1, (300), Pmax 10}, where the number in the brackets denotes the number
of finite elements in the intervals. Between each two nodes we apply the Lagrange interpolation polynomials up
to the fourth order. One can see that the discrepancy Er(T) decreases with increasing number N of equations
at the fixed time interval T and increases with the time interval T at a fixed number of equations Nmax N.

In Fig. 1 the eigenfunction of the oscillator (27) (exact) and its Galerkin projection (17) with N = 15
(approx) are shown. At small t the wave packet goes away from the origin of coordinates; therefore, for its
description at increasing T a larger number of equations is needed.

Indeed, a number of transitions to the unaccounted states k > N grows in time 1, meanwhile an upper
bound N < Nmax can be estimated because the wave packet propagation Eq. (27) is localized in a finite spatial
region. It means that one can reveal such parameterization of the external fields E1 (t) , E2(t) that leads to
transitions into prescribed states with the maximal probability at a time interval T and solve the problem of
control of the quantum system under consideration12 . To reduce the run time trun needed for more effective
computer simulation the splitting algorithms should be applied based on the appropriate approximations of
both the evolution operator and external fields.

4.2 . Three-dimensional Coulomb atom
We use the enclosed time grid for the first six kicks with the step 5r and examine the behaviour of the function
Er(T, j) (72). For the function r), the approximate calculation with time step ä'r/8 can be used. By
means of these values Er(, j) we can calculate the convergence rate ci(t) of the calculation schemes (67) and
(68) by means of the formula (73). To approximate the solution xr() in the spherical radius p we used
finite-element grid 11, = {Pmiri 0, (50), 10, (100), Pmax 80}. Between each two nodes we apply the Lagrange
interpolation polynomials of the sixth order.

In Tables 2 and 3 we show the values ci(r) and Er(r, j)determined by Eq. (72) for the Cranck-Nicholson and
implicit fourth-order schemes at the first six kicks with the field period T = 5357t0, field strength F = 2 x i0,
n = 5, 1max6 and Pmax8O. Here 6r = T/64 for the Cranck-Nicholson scheme and 5r = T/16 for the
implicit fourth-order scheme. Fig. 2 shows: a) the probabilities P19 = I (9, 1, 0I4'(t)) 2 and PrL1O =

=o 1(10, 1, 0!b(t))2 with b(0)) = In = 9, k = 0, m = 0), b) the autocorrelation function I(i5(t)In = 9, k =
0, m = 0)J, c) the autocorrelation function ftL(t)n = 9, 1 = 0, m = 0)1 depending on the number of kicks, and d)
the expectation value of the angular momentum (l)(t) for the initial wave packet 'cL'(O)) = ri = 9,1 = 0, 'rn = 0).

In the case of the magnetic field with strength i3 parallel to the z axis an additional quadratic Zeeman term
Vz should be added to H0, i.e.

H0 = — +Vz, V = 4fi2p2 sin2 G, (77)2 p 8
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Table 3. The values cfr) and Erfr, j) for the implicit fourth-order scheme at first six kicks. Here or = T/16, n = 5,
1rnax6 and rnax=8O

N 1 2 3 4 5 6
Er(r,1) 0.07030 0.14070 0.21122 0.28125 0.35029 0.41848
Er(T,2) 0.00473 0.00954 0.01441 0.01921 0.02395 0.02862
Er(r,3) 0.00028 0.00097 0.00176 0.00199 0.00183 0.00198
c-) 3.88197 3.93554 3.96044 3.92720 3.88293 3.87135

I<w(t)1n9,I=O,m=O>I

) 100 150 200

Number of kicks

I<v(t)1n9,k0,m0>I

50 100 150 200
Number of kicks

b).
- <I> with 1n9,l0,m0>

Figure 2: The dynamics of physical quantities of a kicked hydrogen atom. See comments in the text.

then the diagonal H° and nondiagonal H[ matrix elements in the equation (41) have the form

H° — 1(1 + 1) ii n4p2/32 ( (1 + 1)2 12
11 () —

22
+

8 4(l + 1)2 1 412 1

H°( )—— 8ii, p —
32(2l + 1)(2l' + 1) (l + ii + 1) 2,ll'-lI

Table 4 shows the multiplet n, ii = 0...n — 1, in) of the energy eigenvalues at n = 9 with = 0.002
and the comparison with the first-order perturbation corrections. Fig. 3 shows: a) the probabilities P9 =
=o (9, l, 0I(t))I2 and P10 = i:= (10,l, 0f(t))2, b) the autocorrelation functions (b(t)I(0)) and c) the
expectation values of the angular momentum (l)(t) for the initial Zeeman wave packets 'b(0)) = 9, v = 0, 0)
(l.h.s) and kb(0)) = 9, v = 8, 0) (r.h.s) depending on the number of kicks.

5. CONCLUSIONS
Stable numerical splitting schemes for solving the TDSE, possessing high accuracy with respect to both variables
t, x, are developed. New results are obtained for the long-range-potential TDSE with the magnetic field and
a train of ultra-short laser pulses, approximated by a set of 8-function kicks, using a PC without essential
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0.6

0.4

0.2

Number of kicks
a).

I .0

250 300

0.8

0.6

0.4

0.2

0.0
50

Number of kicks
d).

250 300 0

c).

50 100 150 200 250 300

n4p2/32 (1 + l' + 1)2 1 (78)
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Table 4. The eigenvalues of the Zeeman states n = 9, v, in = 0 of the hydrogen atom in the constant magnetic
field /3 = O.1472(—4) calculated for the set of 1 = 0, . . . 9 spherical functions, SEcaic (Ecaic _ E°)//32 corresponds to
the first-order corrections found by means of the perturbation calculation = E° + i32E. Below the factor x
in the brackets means (x) lOt.

iii Ecaic E° Ecaic
0 -6.172 798(-3) -6.172 839 (-3) 1529.11 1529.16
1 -6.172 797(-3) -6.172 839 (-3) 1545.01 1545.04
2 -6.172 747(-3) -6.172 839 (-3) 3384.07 3384.10
3 -6.172 728(-3) -6.172 839 (-3) 4080.42 4080.47
4 -6.172 689(-3) -6.172 839 (-3) 5536.15 5536.38
5 -6.172 641(-3) -6.172 839 (-3) 7315.02 7315.33
6 -6.172 582(-3) -6.172 839 (-3) 9476.34 9476.83
7 -6.172 514(-3) -6.172 839 (-3) 12006.50 12007.13

-6.172 435(-3) -6.172 839 (-3) 14902.72 14903.51

Figure 3. The dynamics of physical quantities of the kicked hydrogen atom in the uniform magnetic field. See comments
in the text.

computer resources. The approach proposed in this paper opens the way to apply the elaborated methods to
solving the TDSE for the system of second-order ordinary differential equations generated by the Galerkin and
Kantorovic methods for multidirneiisional problems'1 . The problems to which the proposed technique can
be applied include nonstationary phenomena in near-resonance self-action of modulated beams and ultra-short
pulse propagation in nonlinear absorbing and dispersive media.

Nimbr f kick Numbr cf kicks
a).

NLimber cf kicks

#,ith In=9.''=O.m=O>
b).

Number af kicks

With I9.'8.mO-

NLimbor cf kicks
250 300 0

c).

Niimber cf kicks
300
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