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ABSTRACT

A new effective method of calculating the wave functions of discrete and continuous spectra of a hydrogen atom in
a strong magnetic field is developed based on the Kantorovich approach to the parametric eigenvalue problems in
spherical coordinates. The two-dimensional spectral problem for the Schrédinger equation with fixed magnetic
quantum number and parity is reduced to a spectral parametric problem for a one-dimensional equation for
the angular variable and a finite set of ordinary second-order differential equations for the radial variable. A
canonical transformation is applied to approximate the finite set of radial equations by means of a new radial
equation describing an open channel. The rate of convergence is examined numerically and illustrated with a set
of typical examples. The results are in good agreement with calculations by other authors.
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1. INTRODUCTION

Recent Monte-Carlo estimations of the influence of the strong magnetic field on the spontaneous recombination
of antihydrogen in the cold positron-antiproton plasma conditions of the ATHENA! and ALPHA? experiments
(CERN) have shown that further quantum mechanical analysis is needed.> At the first stage of the implemen-
tation of this analysis we developed the Kantorovich method (known in physics as the adiabatic approach) and
first applied it to the problem of low-lying excited states of a hydrogen atom in a magnetic field in spherical
coordinates? and the benchmark three-body scattering problem on a line.% ¢

Recently the adiabatic representation in cylindric coordinates was applied to reveal the basic decay mecha-
nisms of Rydberg states with high magnetic quantum numbers in the magnetic traps.” It has been shown that
the exhaustive analysis of the complex electron dynamics at smaller magnetic numbers is impossible without
taking the non-adiabatic coupling into account.® However, high-accuracy calculations in cylindric coordinates is
a rather cumbersome problem except the cases of high magnetic numbers or dominating magnetic field.° Hence,
the use of spherical coordinates is preferable when the contributions of Coulomb and magnetic fields to the
average potential energy are comparable..!?

In the present paper we develop the Kantorovich approach with the boundary condition of the third type in
the form appropriate for the R-matrix calculations of atomic hydrogen photoionization in a strong magnetic field
using a uniform orthogonal parametric basis of the angular oblate spheroidal functions!! in spherical coordinates
only instead of the combined nonorthogonal basis of Landau and Sturmian functions in both cylindrical and
spherical coordinates.!? We also calculate a manifold of the excited states with the principle quantum number
N=9 of a hydrogen atom in the magnetic field of 3 T that may be interesting for laser-stimulated recombination
in a trap!® .

The paper is organized as follows. The 2D eigenvalue problem for Schrédinger equation of the hydrogen
atom in an axially symmetric magnetic field, written in spherical coordinates, is considered in Section 2 together
with the appropriate classification of states. The reduction of the 2D eigenvalue problem to a 1D eigenvalue
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problem for the set of closed radial equations via three steps of the Kantorovich method is described briefly in
Section 3. These steps of the implementation of the Kantorovich method are considered in detail in Sections 4
and 5. The method is applied to the calculation of low-lying states in Section 6 where the rate of convergence is
demonstrated explicitly for typical examples and the results are compared with the best of the known ones. In
Section 7 the conclusions are made and the possible future applications of the method are discussed.

2. STATEMENT OF THE PROBLEM

The Schrédinger equation for the hydrogen atom in an axially symmetric magnetic field B = (0,0, B) in the
spherical coordinates (r,8, @) can be written as the 2D equation

10 2 0 1 9 3] 27 _ ‘
a (7"2 0r or t sing r2sin6 06 St n039) ¥(r6) - T‘I’(r’ 0) +V(r,0)¥(r,0) = e¥(r,0), (1)

in the region : 0 < r < 0o and 0 < # < 7. The potential function V(r,8) is given by
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~v2r?sin? 6,

V(r6) = ;

2 sin” @ tmt
where m = 0, %1, ... is the magnetic quantum number, v = B/By, By = 2.35x 10°G is a dimensionless parameter
which determines the field strength B, and the atomic units (a.u.) i = m, = e = 1 are used, assuming the mass
of the nucleus to be infinite. In these expressions € is twice the energy, e = 2F (in Rydbergs, 1Ry=(1/2)a.u.),
of the bound state |mo > at fixed values of m and z-parity, o = £1, and ¥ is the corresponding wave function,
U =U,,(r60) = (¥n(r,0) + oP,(r,m — 0))/2. Here the sign of z-parity, ¢ = (—1)V°, is determined by the
number of nodes Ny (even or odd) in the solution ¥ with respect to the angular variable # in the interval
0 < 6 < 7. We will also use the units » = m, = e = v = 1 and the corresponding scaled radial coordinate
7 =r/+/7, the effective charge Z=2 /7 and the scaled energy € = €/~.

The function ¥ satisfies the following boundary conditions in each mo subspace of the full Hilbert space:

.. 0¥ . _ .
gl_r)rtljsmew =0, if m=0, and ¥(r,0)=0, if m#0, (2)
oy, « .
50 ——(r, ) 0, 0<r<oo, forthe even parity state (¢ = +1), (3)
U (r, g) =0, 0<r<oo, fortheodd parity state (c = —1), (4)
ov
2 —
e =0 ®)

The discrete spectrum wave function obeys the asymptotic boundary condition which can be approximated by
the boundary condition of the first type at large r = rpqz

lim r’¥ =0 —=  U(rpe.,) = (6)

=00

Here the energy € = €(rmax) plays the role of the eigenvalues of the boundary problem (1)-(6) determined by the
variational principle, with the additional normalization condition in the finite interval 0 < r < rq4,

Tmaz w/2
II(¥,¢) =0, 477/ / 72 sin 0| ¥ (r,0)|%drdf = 1, (7)
0 0

where IT = II(¥, €) is a symmetric functional defined by

m/
/ me< 2097 (r,6) 0¥(r,6) | 0¥ (r,0) 9U(r,0) —(2Z7‘—V(r,0)r2+6r2)|\Il(r,0)|2) drdd. (8)
0
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In the Fano-Lee reaction matrix R theory'4 the continuum wave function ¥(r, #) obeys the boundary condition
of the third type at the fixed values of energy € and radial variable 7 = rmax
o0%¥(r,0)
or

Here the parameters A = A(Tmax, €), determined by the variational principle, play the role of eigenvalues of a
logarithmic normal derivative matrix of the solution of the boundary problem (1)-(5), (9)

—A¥(r,0) =0, r=rmax- (9)

w/2
II=T1I(P,¢) = 477)\rmax/ sin 0¥ (rmax, 0)|>d6. (10)
0

Standard theorems'® ensure the existence of a function A(rmay) such that Eq. (9) is satisfied at any finite
P = Fmax < 00.16

3. REDUCTION OF THE 2D PROBLEM BY THE KANTOROVICH METHOD

Consider a formal expansion of the total wave function ¥ and the partial solution ¥7*?(r, 6, /€) that corresponds
to the state [moi > using the finite set of one-dimensional basis functions {®7*7(6;7)}i"{°

lmma:cl
Vel )= S 3 ey “"“” Z VI (r,0, 0, /)7 (857 — 00), (11)
m’:—lmmaw| o=0,€e =1

Immaz, Jmaz

V0oV =Y 9‘%’2_";—‘”)\1;?%,9,@, VP = 3 OB ().
j=1

m=—|Mmaal|
The matrix functions x(r) = {x®(r Zz;’ composed of the vector functions, (x¥)7 = ( (r) . xjmu (r)
are unknown, and the surface functlons (@0;r)T = (@1(8;7),...,%®;,..(0;7)) form an orthonormal basis for
each value of the radius r which is treated here as a parameter.

In the Kantorovich approach the functions ®;(6;r) and the potential curves E(r) (in Ry) are determined as
the solutions of the following one-dimensional parametric eigenvalue problem:

8 ., 0%(6;r)

_9 2 g ) — : .
% siné 20 +r°sinfV (r,0)®(8;r) = E(r) sin6®(8; r), (12)
with the boundary conditions

lim si 06—4)—0 if =0, and ®0;7) =0, if m#0 (13
GI—IR)SIII 30 =V, m =, ) — Yy ) )

0% .
ﬁ(?r) =0, 0<r<oo, fortheeven parity state (c = +1), (14)
@(g;r) =0, 0<r<oo, fortheodd parity state (c = —1). (15)

Here the sign of z-parity 0 = (—1)™V¢ is defined by the (even or odd) number of nodes N in the solution ® with
respect to the angular variable 8 in the interval 0 < § < 7. Since the operator in the left-hand side of (12) is
self-adjoint, its eigenfunctions are orthonormal

w/2
®,(p; Q)> = 477/ sin@®;(0;r)®;(6;r)dd = 6;5, (16)
Q 0

< 2:((55 )

where §;; is the Kronecker é—symbol. The problem (12)-(15) is solved for each value of the field parameter,y,
ie. ®(0;r) = ®(6;r,7) and E(r) = E(r,v), and for each value of the radial variable r € w,, where w, =
(r1,72y...,Tk,...) is a given set of values of r.
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Table 1. Comparison of the classification of a free hydrogen atom in the spherical coordinates with the adiabatic
classification of a hydrogen atom in a magnetic field with strength « in the spherical and cylindrical coordinate systems,
respectively.

X N I m o Ny N, N, N, e J
1 1 s 0 1 0 0 0 0 ~ 1
1 2 s 0 1 0 1 o0 1 |
1 2 p 0 -1 1 0 0 0 4 1
1 2 p -1 1 0 0 0 0 ~ 1
1 2 p 1 1 0 0 0 0 3y 1

Note, that the solutions of this problem with shifted eigenvalues, E;(r,v) = E;(r,) —ymr2, correspond to
the solutions of the eigenvalue problem for oblate angular spheroidal functions!! with respect to the variable
7 = cos6:

.0 2 2\ 2 2
TR ( w+(5)a —n2>) Br;) = B() (7). a7)

1-9

This means that for small 7 the asymptotic form of the eigenvalues E;(r), j = 1,2,3, ... at fixed values m and o
is defined by the values of the orbital quantum number, ! = s,p,d, f,...: E;(0) =1(l+1),1=0,1,2,3,..., where
j = (I—|m|)/2 + 1 for even z-parity states, o = +1 = (=1)!~I™! ‘and j = (I — |m| + 1)/2 for odd z-parity states,
o = —1 = (=1)!~I™|. Taking into account that the number of nodes Ny of the eigenfunction ® at fixed |m/| and
o= (——l)NG as a function of the parameter r is preserved, we get the one-to-one correspondence between these
sets, i.e., Ng =1 — |m|.

For large r the asymptotic form of eigenvalues E;(r), j = 1,2,3,... at fixed values of m and o is defined
by the values of the transversal quantum number, N,: lim, o E;(r,7)r2 = €*(y) = y(2N, + |m| + m + 1),
N, =0,1,2,3,..., where j = N, + 1 (see Fig. 1). The values of the transversal quantum number N,, i.e.,
the number of nodes of the eigenfunction ® with respect to the transversal variable p = rsinf on semi-axis,
are expressed via the number of nodes Ny of the solution ®: N, = 1/2- Ny for the even z-parity states,
0 =+1=(=1)Ne,and N, = 1/2- (Ny — 1) for the odd z-parity states, o = —1 = (—1)V¢. Such a transversal
classification also reveals a violation of degeneracy of the states with azimuthal quantum numbers, +m, having
the same module |m| that holds for the angular oblate spheroidal functions, i.e.,

. ~ . —2 _
Jim B (r,y)r™ = (2N, + [m| +1). (18)

Taking into account the above-mentioned correspondence rules between the quantum numbers | — |m|, Ny, N,
and the number j at fixed values of m and o, we use the unified number, j, without pointing out explicitly a
concrete type of quantum numbers. These rules are similar to the conventional correlation diagrams for potential
curves of a hydrogen atom in the uniform magnetic field or a helium atom.

After substituting the expansion (11) into the variational problem (7), and using Eqs. (12), (15), (16) and
the identity

/2 (07 0. (- ‘ .
4n / <sinoaq’gg’ r) a«p%(g, ") 2 sin 6V (r, 6)%i(r, 0)®; (6; r)) 9 = waﬁ, (19)
0

which follows from these equations, the solution of the above problem is transformed into the solution of an
eigenvalue problem for a system of jjq, ordinary second-ordqr differqntial equatiqns for determining the energy
¢ and the coefficients (radial wave functions) (x@(r))T = (x\” ("), x$"(7), ..., X;Zﬂ (r)) of the expansion (11)
dx @) 1 d[r? (@ ) (@)
X 1 [r2Q(r)x\¥] = e Ty, lim 2 ox _
dr r2 dr r—0 or

©]
glddx” U

r2 dr dr r2 X(i) +Q(r)

0, (20
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Figure 1. The behavior of the potential curves E;(r), j = 1,2,... at m = 0 and -y = 1 for some first even j = (I—|m|)/2+1
(marked by the symbol “e”) and for odd j = (I — |m|+1)/2 states. The dotted lines show the asymptotic behavior of the
potential curves at large .

Here I, U(r), and Q(r) are finite jmaz X jmas matrices, whose elements are given by the relations (see Figs. 2-3)

. . /2 ) .
U,(’I) = M&J +27Zr + TzHij(T), H,-j(r) = Hj,‘(T‘) = 47T/ Sin98<I>l Q&dﬂ,
2 0 87' 37‘
/2 0P
Q,'j(r) = —-jS(r) = —47‘(’/ sin0<I>i8—r]d0, Iij = (5,']‘, i,j = 1,2, . ajmaz- (21)
0

The discrete spectrum solutions are governed by the asymptotic boundary condition and orthonormality condi-
tions

im r2x® =0 = x®(rmax) =0, / r2(x® (r)"xY) (r)dr = §;;. (22)
0

7—00

For the continuum solution x()(r)) we can alternatively require that the projections of (9) onto all adiabatic

functions hold
< ®;(r;0)

that leads to the third-type boundary conditions at fixed values of energy e and radial variable r = 7y«

oU(r,6) A‘I'(r,0)> =0, =T, 23)
or Q

O (r e .
(XT()(X( )) 1(7') -Q(r) - /\z> X(l)(r) =0, 7=Tmax- (24)
From here on \; and x(? (rmax) Will be the set of eigenvalues A = {(Siin,}gp:-'il corresponding to the set of
eigenvectors X (Tmax) = {)((")(rmax)}ﬁ\’:”fr ' of the eigenvalue problem
dX(Tmax
(dT - ) - Q(Tmax)X(Tmax) = X(Tmax)A, (25)

that can be reduced to the following one by averaging the variational problem (10):

(IMa — TrznaxXT(TmaX)X(rmaX)A =0.
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Here x(Tmax) is normalized as follows

rzmaxXT(TmaX)X(TmaX) =L (26)
Multiplying (25) from the right by 72, X7 (*max) and using the relation between the transposed and left pseudo-
inverse of X(Tmax),

X_l (Tmax) = 7':2naxXT(7'maX)7 (27)

yields the relation between X (rmax) and its derivative

% = Px(Tmax), P= Trznax (X(Tmax) AXT (Pmax) + Q(Tmax)X("'max) XT(rmax)) . (28)

Below we will consider the P matrix of dimension jimaz X jmaz, which is a constant matrix for any normalization
of X (Tmax)-
The application of the Kantorovich approach makes the above problems equivalent to the following ones:

e Calculation of the potential curves E;(r) and the eigenfunctions ®;(6;r) of the spectral problem (12)-(15)
for a given set of r € w, at fixed values |m| and vy = 1.

o®
e Calculation of the derivatives o and computation of the corresponding integrals (see (21)), necessary for
obtaining the matrix elements of radial coupling U;;(r) and Q;;(r).

e Calculation of the scaled energies € and radial wave functions x(r) as solutions of one-dimensional eigenvalue
problem (20)-(25) at fixed values m, v = 1 and effective charge Z = Z/,/7, analysis of the convergence of
these solutions depending on the number of channels j;q, and recalculation of the scaled energies to the
initial ones € = €.

e Calculation of matrices A, P and the reaction matrix R (using Eqgs. (28), (36)) corresponding to the radial
wave functions x(r) as the solutions of one-dimensional eigenvalue problem (20)-(25) at the fixed values
of m,vy=1and Z=12Z /+/7, and the scaled energies €. Examination of the convergence of these solutions
depending on the number of channels jqz-

Note, that in the diagonal approximation i = j of the problem (20)—(21), the so-called adiabatic approxi-
mation, the number of nodes N, of the solution x(r) with respect to the slow radial variable r on semi-axis for
small values of the parameter v corresponds to the radial quantum number N, = N —1 — 1 of a free hydrogen
atom in the bound state characterized by a conventional set of quantum numbers (N I m A = (=1)!) and the
binding energy —e;(y =0) = _ego) = Z/N? (in Ry).

Recalling that the number of nodes Ny of the solution ® with respect to the fast angular variable, 6, at fixed
|m| and o = (—1)™¢ as a function of the slow parameter, r is conserved, i.e., Np = [ —|m|, we have the one-to-one
correspondence between the quantum numbers (N 1) of the free atom at v = 0 and the adiabatic ones {N, Ny}
of the perturbed atom at vy # 0.

For large values of the parameter y the adiabatic radial number N, corresponds to the longitudinal quantum
number N\ of a hydrogen atom in the strong magnetic field at fixed m and the sign of 0 = +1, i.e., the number
of nodes of the solution x(|z|) with respect to the longitudinal variable z = rcosf on semi-axis. This means
that the solution x(z) on an axis is defined as follows: Xms(2) = (Xm(p, 2) + oxm(p, —2))/2, or reduced to the
solution x(|z|) of the conventional eigenvalue problem on a semi-axis, using the Neumann and Dirichlet boundary
conditions at z = 0 for the even ¢ = +1 and odd ¢ = —1 solutions, respectively.

Taking into account the above correspondence rules with such an adiabatic set [N|.| N,] and the asymptotic
behavior of eigenvalues E;(r) at large r, we can express the binding energy £ via the eigenvalues € of the
problem (20)-(21) as follows: £ = (el () — €)/2 (in a.u.), where €’ (y) is the full threshold shift €, (v) =

¥(2N, + |m| + m + 1) or the reduced one € (v) = y(|m| + m + 1), respectively (see, for example, Table 1).

mo
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4. ASYMPTOTIC BEHAVIOR OF SOLUTION

We write the set of differential equations (21) at fixed values m, o and € = 2F in the explicit form

S L4 aduin) %in (r) = (6 - (T)) Xji(r) + Hjj (r)xi(r)

r2 dr dr r r?
Imazx 2
dxii(r 1 d(r*Qjj (r)x;i(r) . )
= E _ij' (7’) : ( ) - Hjj' (T)Xj'i(’l‘) Y ( 2 z ) v 5L =1 0 Jmas- (29)
Py dr r dr

At small r the asymptotic values of the matrix elements E;, H;; and Q;;/, characterized by | = 25 — 2 + |m]| for
even states and by | = 25 — 1 + |m| for odd states, have the form

A2 41— 14 |m>  A%4® (200 + 202 + 33)|m|*
2 (20 -1)(20+3) 8 (21—3)(20 — 1)3(21 + 3)3(2L + 5)
48 (—241% — 481° + 212 + 261 — 30)|m|? + 416 + 121° — 31* — 261° + 21 + 171 — 3
8 (21 - 3)(2l — 1)3(21 +3)3(20 + 5)
Ques = 23 /(U4 1)2=[m[2/(l + 2)2—|m|2 TV (L+1)2=m]2/(1 + 2)2=|m[2(4|m|? - 1) + oG
2 V2I+ 120+ 3)2V21 + 5 2 (21 — 1)V21 + 1(21 + 3)4v2T + 5(21 + 7) v
r7 U +1)? = m2/(1+2)% = [m]2/(L+3)2 = [mP /(L + 4)* — [m[? + 0@

E, 11+ 1) +ymr? +

+ O(T"Q),

Qurs = s V2I+ 1(20+ 3)2(20 + 5)2(21 + 7)2v/21 + 9
4,.6
Hy = %((1614+32l3+248l2+232l+201)|m|“+(—10l2—22414—96l5+1181—288l3—32l6—195)|m|2

+1618 + 6417 +461+4015 — 1271 —1041° + 711> — 61° —6) / ((21—3)(21— 1)4(2l+3)4(2l+5)) +0(r'9),

" _ 747'6 VI+1)2 = m]2/(1+2)? = m]2\/( +3)2 = [m[2\/(I +4)2 — [m|2 L OE0)
l+4 4 V20U +1(20+3)2(20 +5) (2L + 7)2V20 + 9 '

This asymptotic behavior of the effective potentials allows us to use the above boundary conditions at r — 0 to
find regular and bound solutions.

At large r the asymptotic form of the matrix elements by inverse power of r (i.e., without exponential terms)
is of the form

r72Ep(r) = EQ +r2EQ) +r 4E<4 +77SE®) +r8E® 4 . (30)
Qnt,nr (7‘) = —lQm,nr+r 3Qn1 Ny QS;), . Hnt,nr (7’) = r_zH}z?)n +7‘_4H7(7,‘11,) _eHr(z? Ny + .
In these formulas the asymptotic quantum numbers ny, n, denote the transversal quantum numbers Ny, N, ! that

are connected with the unified numbers j, j' by the above mentioned formulas n; = j — 1, n, = j' — 1. Below we
display the matrix elements with m = 0; ) is an antisymmetric matrix with the elements

Q;l,)n, = (n+Ddn+1,n, — (nr + 1)y n, 41,
QY. = (n+ D) +2)0n420,/(27) = (nr + 1)1y +2)8n,n,42/(27)
+(ni 4+ 1)20n 41,0, /7 — (0 + 1200 nt1 /7,
QY. = (u+1D)(u+2)(u+3)0n43n,/(47%) = (nr + 1) (0 + 2) (1 + 3)0n,,n, 43/ (472)

+(n + 1) (g +2) 20y + 3)ny12,n,/(7?) = (07 + 1) (17 + 2) (2007 + 3)8p n, 42/ (77)
+(ni + 1)(13nf + 260 + 12)6n, 41,0,/ (472) — (ny + 1)(1302 + 260, + 12)6,, n, 41/ (472),

H is a symmetric matrix with the elements

H® = —(m+1(m+ 2)bn 42,0, — (Mr + 1)(nr + 2)0n npt2 + (2ni + 2n, + 1)5n:,nm

ne,nr
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Figure 2. Some radial potentials @;; for even (marked by symbol “e”) and odd parity at m = 0 and v = 1. The dotted
lines are asymptotic potentials at large r.

HY, = —(n+1)(n+2)(n +3)0nt3.m. /7 — (0 + 1) (nr + 2) (0 + 3)ny,n, 43/
—(nu + 1) (m + 2)(2nu + 3)0ny42,n, /7 = (N7 + 1)(nr + 2)(207 + 3)0n,n, 42/
+( + 1)(n,2 + 20+ 2)0n, 41,0, /7 + (N + 1)(nf +2n, + 2)0p, n 41/
+2(2n, + 1) (7 +np + 1)dpy 0, /7,
HS, = =3(n+1)(m+2)(u+3)(m+4)dn,14,n,/(47) = 3(np+1)(nr+2)(nr+3) (0 +4)6p, n, 44/ (477)
—(+ D) + 22 (u + 3)dn, 43,0,/ (V7) — (0 + D0y + 2)* (07 + 3)0pyn, 43/ (77)
—(m+1) (g +2) (1407 +42n;+31)6p, 12,0, /(27%) — (R +1) (0 +2) (1402 +420, +31) 6, 0. 12/ (27%)
+(ny + 1)%(5n] + 100y + 16)0n,+1,n,/(7?) + (nr + 1)*(502 + 100, + 16)0p, 1,41/ (77)
+(31n} + 6203 + 9502 + 64n,. + 16)5,, 0./ (277),

E corresponds to the diagonal matrix of potential curves, i.e., the eigenvalue of the parametric problem

EQ = y@2n+1),

E® = —2n%-2n-1,

EW = ~71(=2n® - 3n? — 2n —1/2),

E® = ~72(—5n* —10n® — 10n% — 5n — 1),

E® = ~73(—42n% —23/8 — 17Tn — 165n* /4 — 111n°/2 — 33n°/2).

Note, that at large r E](.z) + H ](]2) = 0, i.e., the centrifugal terms are eliminated and the radial solution has the

asymptotic form corresponding to zero angular momentum radial solutions, or to the one-dimensional problem
on a semi-axis :

kmaw >
exp(ep;,r +ralnr)d; (r), ¢, (r) = Z ¢;'{Zr"“. (31)

Xjio (T) = k=0

1o

As aresult of substituting the expansion (31) into (29) and equating the coefficients of expansion for the same pow-

ers of r we arrive at the set of recurrence relations with respect to unknown coefficients ¢§-’§o), Jio=1,..., fmaz-
The first four coefficients have the form
0)5 (0 0)\ ,(0
@2, 2B+ B¢l =0, (0}, — 2B+ E)4l0) =0,

¥, - 2B+ EQ)0L), + (@pija = 22)800), = ~2pi, Y. QU000
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Figure 3. Some potentials H;; for even (marked by the symbol “e”) and odd parity at m = 0 and v = 1. The dotted
lines are asymptotic potentials at large r.

(0%, = 2E + E;0)o5), + (2pi,a = 22)60) = ~2upi, @50, 600, — 2pi, 3 Q1 650, (32)
(2, — 2B + ED)OZ) + (2pi, 0 — 22 + 2pi, )LL), + (1o + a®)p0),
= ~2upi, ) Q)00 + D (@4}, (1—20) — HZ, )

(0%, — 2B + B\ )57 + (2pi,a— 22 + 20p )8lL) + (ra+ 0l = ~2p;, QY1) o).
QG (1= 200) = HR2) )00, = 2emi, 3 Q) o500, + 3 (Qg), (1= 2u0) = HIZ )G .
Here ji, k = 0,1,2, ..., knas take integer values, except i,, (jx = 1,2, ..., fmaz, jk 7 0)- In the summation we put

also ji # jr+1- From the first three equations of the set (32) we get the leading terms of the eigenfunction, the
eigenvalue and the characteristic parameter, i.e., the initial data for solving the recurrence sequence,

¢§.‘0’30 =0joiss P, =2BE—EY w5 p, =£\/2E-EY, a=Z/p,.

Substituting these initial data into the next equations of the set (32), we get a step-by-step procedure for
determining the series coefficients ¢>§'f3

20p;, Q') 1(Z% + Zpin)
(1 _ io ¥ jrio ¢(1) — _ Q(l) ¢(1) + Di, (33)
J1lo E,(?) _ E](?) 2olo ]Zl 26J1 7 J1to 2p;i),o
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1) (1 (1) 1 2) 1) 1
2 _ 2zp«toQ§2io¢§ogo 2upi, 25, Q]w1 1o 22Pio¢§~2)io N (= ZHj(zl Pi, + 2ZQ§~21 + ngzzop,o)
J2%0 0 0 0 0 0 0 0 0
2 E,(o) “E]('z) Ez(o) —E§2) Ez(o) —E]('z) 2pzo(E( ) ( ))
(1)
2 : i i (1) (1) 2 . 2)
¢\ =0 (Z% + 3 Zp;, — 2p}) s i 5 - > 2zQY, +3.QY) pi, —1H J’zp% 12‘ Z QN 62 2, ..
to J2

Substituting the (‘xplicit asymptotic form of the matrix elements (30) into (33), we get the exphclt expression of

these coefficients ¢ _ via the values of the number of a state (or channel) i, = n, + 1 and the number of current
equation j = 1,..., ]m,w Note, that if j,q.e > @, + k, then all nonzero terms in the above sums of Egs. (33)

I

should be included into the evaluation of each nonzero element ¢§2 of the order k. For example, at jmee > io+k
and k = 0,1, 2 such elements take the form

¢nonn
Dn,M
¢no—]no =1 %’
oM = |y z? __Z _ano(2n0+1),
teme [ 2p3, 203, g
¢ , P (no +1)
na+1no v )
¢ _ _no(no - 1)17?;0 _ no(no — 1)
no—21, 272 47 s
I I Zn, | 2n,m0"  mo  M,Z7
No—1n, 2Pn0’7 ,),2 2,)/ p%o7 ’
Z zZ? VA z4 2 122 (3no®+3n,+1)p% 2
P, = |1 3+54 Tt 5 T e +(no-;) _ n, > )p"°+n°+1,
oMo 4p;  8pn, 2p;,.  8pfS, 2p2 vy v 27
¢ _ Z(no+1)+2p%o(no+1)2 _no+1_ (Tlo+1)Z2
notine 2pn, s 2y PRy
e+ D)o+ 2)ph,  (no+ 1)(no +2)
¢no+2no - 272 - 4,), . (34)

The solution of the scattering problem with N, 4+ 1 open channels for pfo >0ati, =1,...,N, + 1, and with
remaining closed channels for pfc < 0atic = N, +2,..., jmas, is defined by two independent fundamental
asymptotic solutions x*, x (corresponding to the signs ’—’, '+’ of exp(Fp;,)) of Egs. (29) and the scattering

matrix S
Np+1

h . . .
X;’fo) —(20)” ij Z Xj.i'Sitio |+ G0 =1, Np+ 1, §=1,...; jmae,

It is defined also by two independent fundamental asymptotic solutions x*(r) = I(x), x°(r) = R(x) (corre-
sponding to ’sine’, ’cosine’) of Eqs (29) and the reaction matrix R

x? =x"(I-R), S=(1+:R)I—R)™", x=x"+xR.

Using the formula (28), we obtain the expression of the reaction matrix R via the above calculated matrix P:

(ch(rmax) - %) R= (% - PxS(rmao) . (39)

Note, that for the general case the left and right matrices of (35) are rectangular matrices. Therefore, multiplying

(35) from the left by the matrix
dx*(Tmax) !
*(Pmax
(Xs(Tmax) + Xd—’r‘a) ;é 0,
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we obtain the following formula for the reaction matrix: R
R=07"Y, (36)

where

T
0= (tran + ) (- )

dr
dx* (rmsn) | (4" (v
_ s X (Tmax X (Tmax) s
Y = (X (Tmax) + dr ) ( dr PX (Tmax))7

are square matrices of the dimension (N, + 1) x (N, + 1).

In terms of the above definitions the ionization cross-section is given by the formula

472

2
0w = — W (‘I’E,N,,,a,m |r cos 8| \I»'szo,]v,,=o,a:1,m:0>| )

v,

(YE,N, 0m |rcos0] U N, —o N,=0,0=1,m=0)
Jmas Tmaz
= Z / r’dry;i(E, Ny, 0 = —1,m = 0) (j|rcos 8| j') x;::(N. = 0,N, =0,0=1,m =0)

Gy'=1"0
where w = E — E(N, = 0,N, = 0,0 = 1,m = 0) is the frequency of radiation, E(N, = 0,N, = 0,0 = 1,m = 0)
is the energy of the initial bound state ¥n,—o,n,=0,0=1,m=0, and ¥Yg N, ,m is the continuum function with the
energy 2E (of the ejected electron) above the first threshold (N, = 0, ¢ = —1), eﬁ,’l‘(,j (7) = v or the second
threshold (N, = 1,0 = —1), €l .(7) = 3y. Note, that the continuum spectrum is beginning with 2& > v = 0.1;
till the second threshold, v < 2E < 3y we have only one open channel (N, = 0), while between the second and
the third thresholds, i.e., 3y < 2E < 5v, we have two open channels (N, =0 and N, = 1).

5. THE EFFECTIVE APPROXIMATION FOR KANTOROVICH METHOD (KM)

To obtain the effective approximation for the KM, we consider the system of close-coupled radial equations (20)
and neglect the coupling of the states |j > and |j/ > not connected with the open channel [0 >. This can
be useful for sufficiently large effective charge Z = Z/,/v, when the contribution of the adiabatic correction
is sufficiently small. It is useful from physical viewpoint to understand the asymptotic boundary conditions in
the open channel. We introduce the so-called effective adiabatic approximation (EAA), in which we project
these equations onto the open channel |[¢ >= |0 > by means of a canonical transformation. The new solution
xPew = x7e¥(r) is connected with the old solutions x;; = x;i(r) of the system (20) by the relation

12 -

Jmaz . () | . . [EO I
X =0 Taxg e 00T <l e ><r ¢S |G > X, (37)

Restricting the expansions of the exponents to the second order, i.e., expressing exp(iS(V)) ~ 141 5V + (:SM)2/2
and exp(iS?)) ~ 141 5®, we define the non-diagonal matrix elements of the generator S!) and S® in such a
way

a _ 1 d 1d
185 = (1= 6i)A; (Hij +Qij g+ pa;eriy) ; (38)
2 —

that the right-hand side of Eq. (20) is eliminated up to the accuracy of the order of O(max;; |A{j3), and determine
the inverse operator for the open channel |0)

Xi =Ti'xe™, x6® =Y Tojxj;  (0|T]0)=(0|T~'[0)=1=(0]0). (39)
J

Proc. of SPIE Vol. 6165 61650B-11



This leads to a projection of the above system of equations onto the channel |0)

3" Toi(HO - 2E);, T xie” = (Hig™ — 2B)x3™ =0,

ij
_Ld g | KO
r2dr p(r) dr w2 (r)r

X6 (r) + [Uess — 2Bl (r) = 0. (40)
The new solution ¥ = p~1/2 X2%(r) in such a diagonal representation satisfies the following equation
1 ~ .
—;5(7‘21,0')' + (V2" + p[Ueg +6U —2E[p =0,  limr2 == = 0. (41)

where the modified scalar product and adiabatic potential are defined by

<ply >= / drrupp,  Una= Vi = 2.
0

The effective potential U, #£(r) is defined as a sum of the adiabatic potential U,a(r) and the effective nonadiabatic
correction 6U (1), p(r) can be regarded as an effective mass, defined as the inverse of the sum of unity and the
effective mass correction W;(r):

) = 1WA, Wil = —4 3 Q@A (),

jma:c _ _ 2 _ 3
oU(r) =3 T (AGVE + AFVE + AFVE). (42)
Here we use the expressions

4
ViD= 30 V) = H - (@) 4 2Qu ) - 2Q4Q.,

3 2,

VP =30 V) = HyQu (B — A + QuQij(S + 384) + Q4 (S + A,

V) = QLT + AN — 240, Aij = Aij(r) =Vii = V5, i = By(r) = Vi + V.

In the above formulas all the terms are functions of r, and the symbol ”’” denotes a derivative with respect to
r. At large r the leading terms of W;;(r) and 6U(r) calculated using the asymptotic basis functions read as
Wii(r) = W /r2 + 0(1/r?), U(r) = U /rt + O(1/r®), where —W2* =< i|p?|i >= 4(n + 1/2)/7 is the mean
value of the transversal variable, p?> = (rsin )2, characterizing the electron precession around the z axis in the
magnetic field v, while U = —1/2(4n® + 5n? — 4n — 3) /7 is the asymptotic value of the electron polarizability.

6. THE EFFECTIVE APPROXIMATION: ASYMPTOTIC BEHAVIOR OF RADIAL
SOLUTIONS

For the elastic scattering states with given value 2E(q) = ¢* + e(()o) we rewrite the problem in the form

X 1 R
(Heps — )0 = —;g(Tzlﬁ')' + ()" + p[Uegs — 2E(q)]y = 0. (43)

For the function x¢// = r(u)!/24 this equation has a conventional form

(G005~ Vess ) + ) it ) =0, (44)

where the effective potential Ues(r) is defined by

27
Uess(r) = Voo r) +6U (r) = == . (45)
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Figure 4. The adiabatic potential U,4(r) and the effective adiabatic potential Uess(r) for a set of curves 1, 2, 3, 4, 5
for v = 100, 10, 1, 0.1, 0.01, m = 0, in cyclotron frequency units (Z = Z/\/7, ¥ = r/\/7, € = €/). The effective mass
correction Wi, its derivative W{; and inverse effective mass p~' at y = 1 for first even (left panel) and odd(right panel)
states.
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For large values of r, using the asymptotic values W(J'”” of r?W(r) and 6U((,3"‘“) of r6U(r) from (42) it is
reduced to the following one:

d weare)\ d 2z _sU@re” e
<_5(1+ r2 )5_7"'0:—4‘& Xo6(r) =0, (46)

and to an accuracy of the order O(r=*), Eq. (44) reads

oy a0z (W o]
lﬁ B r3 dr |1 r2 Y Xoo(r) = 0. (47)
For gW, M) o /(2r) < 1 the continuous spectrum solutions can be expressed in the form

(jmaz) )
X65(r) ~ sin [qr (1 - W‘;’TQ ) + gln(qu) + aamw}

(jma:c)

Z A Z .
~ sin(qr + 7 In(2qr) + 8¢ + §Umas)y — q%#— cos(qr + 7 In(2gr) + 6¢ + §Umas)y, (48)
where §Umaz) = §(ima=)(q) is the required phase shift of the elastic scattering in the open channel |0) derived
from the known Coulomb phase shift 6¢ = argI'(1 — ﬁ))

Remembering that 7? = p? + 2% and z ~ r(1 — p%/(2r?)) in the asymptotic region p/r < 1, one should
introduce the following definition of the mean position operator in the new representation x™*% = Ty

new

mean (X

new |snew
r |7

new
mean |X )

(XlT AzzeelgnTl)() = (le'meanb() = Tmean-

Here the mean position operator i = r plays the role of the longitudinal coordinate 2 in the new repre-

sentation x™¢", i.e., the delocalization of z is contained in the new radial functions x™¢* = Ty. In the old
representation y the mean position operator 7,eqn is defined as

Tmean =T" A%egﬁnT T TT =r+ (STA‘,

where 47 is the delocalization of the longitudinal coordinate z, which in the asymptotic region p/r < 1 has the
order of p%/(2r), i.e
Fmean — T 1T = (2).

Note, that the transformation changes only the form of the radial solutions, and the longitudinal coordinate z
is restored only in the total expansion of the wave function. If we omit the non-adiabatic terms, the solution
exibits the adiabatic behavior

x** ~ sin(gr + 6°?),
then we can look for the obvious difference between the true phase shift &, the j,,..-th approximation §(ma=)
and the adiabatic phase shift §%¢,

(Jmaz)
W §= lim §Umaee) = god 4 (O|p |0> (49)

§limaz) — god _
27" ’ Jmaz—+00 2

7. NUMERICAL RESULTS

In this section we present our numerical results for the energy spectrum of a hydrogen atom in the magnetic field.
Ten eigensolutions (nmaz = 10) of the problem (12)—(15) are calculated which amounts to solving ten equations
of the system (20). The problem (12)-(15) was solved also using the conventional expansion!! of regular and
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Table 2. Convergence of the method for the energy E(N =9, N, =0,2,4,6,8, m =0, o = +1) (in a.u.) of even states

with the number of coupled channels 10z = 8, v = 1.472 x 10~° and the shift=0.0112.

Table 3. Convergence of the method for the energy E(N = 9, N, = 1,3,5,7, m =0, 0 = —1) (in a.u.) of odd states

Ny

0O NO

Nmaz = 2
-0.00781242971347
-0.00781225974455
-0.00617272642538
-0.00617245301145
-0.00499982705326

Nmaz = 4
-0.00617279526323
-0.00617270287945
-0.00617258450255
-0.00617243588598
-0.00499993540325

Nmaz = 6
-0.00617279808777
-0.00617274784933
-0.00617268955914
-0.00617258283911
-0.00617243586258

Nmaz = 8
-0.00617279808777
-0.00617274784933
-0.00617268955914
-0.00617258283911
-0.00617243586258

with the number of coupled channels 1., = 8, v = 1.472 x 107> and the shift=0.0112.

Ny

EN IS, QORI

Nmaz = 2
-0.00617276008813
-0.00617254499872
-0.00499987886194
-0.00499954507256

Npaz = 4
-0.00617279765740
-0.00617272898894
-0.00617264137929
-0.00617251430932

Nmar = 6
-0.00617279765755
-0.00617272898991
-0.00617264137970
-0.00617251430935

Nmaz = 8
-0.00617279765755
-0.00617272898992
-0.00617264137970
-0.00617251430935

bound solutions of Eq. (17). The results coincide with the calculations by FEM* with ten digits. In Figs. 1, 2
and 3 the numerical values of the effective potentials are compared with their asymptotic values.

The finite-element grid of r has been chosen as follows : 0 (100) 3 (70) 20 (80) 100 (the number in parentheses
denotes the number of finite elements of the order £ = 4 in each interval). This grid is composed of 999 nodes.
The maximum number of unknowns of the system (20) (1,4, = 10) is 9990. The calculated energy values and
the rate of convergence of the method versus the number of basis functions forn =9, m = 0 and v = 1.472x107°
are shown in Tables 2-3. The probability density isolines of the Zeeman wave states |V, v, m) with even parity
o = +1 in a homogeneous magnetic field are shown in Fig. 5.

200 1 200
100 100
N ()—- N 0
]
~100 - ~100 -
—200 200 —200 " "_j100 0 100 200

X

Figure 5. The probability density isolines of the Zeeman wave states |N,v, m) with even parity ¢ = +1 and m = 0 in
the homogeneous magnetic field for the minimal energy correction |9, 0,0) and (rhs) (left panel) and the maximal energy
correction |9, 8,0) (right panel).
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8. CONCLUSIONS

A new effective method of calculating the wave functions of a hydrogen atom in a strong magnetic field is
developed basing on the Kantorovich approach to the parametric eigenvalue problems in spherical coordinates.
The two-dimensional spectral problem for the Schrédinger equation with fixed magnetic quantum number and
parity is reduced to a spectral parametric problem for a one-dimensional equation in the angular variable and
a finite set of ordinary second-order differential equations in the radial variable. A canonical transformation is
considered to approximate the finite set of radial equations by means of a new radial equation describing the open
channel. The rate of convergence is examined numerically and the analysis is illustrated with a set of typical
examples. The results are in good agreement with calculations by other authors. The developed approach yields
a good tool for the calculations of threshold phenomena in the formation and ionization of (anti)hydrogen-like
atoms and ions in magnetic traps.
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