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ABSTRACT
A iiew effective method of calculating the wave functions of discrete and continuous spectra of a hydrogen atom in
a strong magnetic field is developed based on the Kantorovich approach to the parametric eigenvalue problems in
spherical coordiiiates. The two-dimensional spectral problem for the Schrödinger equation with fixed magnetic
quantum number and parity is reduced to a spectral parametric problem for a one-dimensional equation for
the angular variable and a finite set of ordinary second-order differential equations for the radial variable. A
canonical transformation is applied to approximate the finite set of radial equations by means of a new radial
equation describing an open channel. The rate of convergence is examined numerically and illustrated with a set
of typical examples. The results are in good agreement with calculations by other authors.

Keywords: Kantorovich approach, Hydrogen atom, strong magnetic field

1. INTRODUCTION
Recent Monte-Carlo estimations of the influence of the strong magnetic field on the spontaneous recombination
of antihydrogen in the cold positron-antiproton plasma conditions of the ATHENA' and ALPHA2 experiments
(CERN) have shown that further quantum mechanical analysis is needed.3 At the first stage of the irnplemen-
tatiori of this analysis we developed the Kantorovich method (known in physics as the adiabatic approach) and
first applied it to the problem of low-lying excited states of a hydrogen atom in a magnetic field in spherical
coordinates4 and the benchmark three-body scattering problem on a 56

Recently the adiabatic representation in cylindric coordinates was applied to reveal the basic decay mecha-
nisms of Rydberg states with high magnetic quantum numbers in the magnetic traps.7 It has beers shown that
the exhaustive analysis of the complex electron dynamics at smaller magnetic numbers is impossible without
taking the non-adiabatic coupling into account.8 However, high-accuracy calculations in cylindric coordinates is
a rather cumbersome problem except the cases of high magnetic numbers or dominating magnetic field.9 Hence,
the use of spherical coordinates is preferable when the contributions of Coulomb and magnetic fields to the
average potential energy are comparable. 10

In the present paper we develop the Kantorovich approach with the boundary condition of the third type in
the form appropriate for the R-matrix calculations of atomic hydrogen photoionization in a strong magnetic field
using a uniform orthogonal parametric basis of the angular oblate spheroidal functions" in spherical coordinates
only instead of the combined nonorthogonal basis of Landau and Sturmian functions in both cylindrical and
spherical coordinates.12 We also calculate a manifold of the excited states with the principle quantum number
N=9 of a hydrogen atom in the magnetic field of 3 T that may be interesting for laser-stimulated recombination
in a trap13

The paper is organized as follows. The 2D eigenvalue problem for Schrödinger equation of the hydrogen
atom in an axially symmetric magnetic field, written in spherical coordinates, is considered in Section 2 together
with the appropriate classification of states. The reduction of the 2D eigenvalue problem to a 1D eigenvalue
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problem for the set of closed radial equations via three steps of the Kantorovich method is described briefly in
Section 3. These steps of the implementation of the Kantorovich method are considered in detail in Sections 4
arid 5. The method is applied to the calculation of low-lying states in Section 6 where the rate of convergence is
demonstrated explicitly for typical examples and the results are compared with the best of the known ones. In
Section 7 the conclusions are made and the possible future applications of the method are discussed.

2. STATEMENT OF THE PROBLEM
The Schrödinger equation for the hydrogen atom in an axially symmetric magnetic field 1 = (0, 0, B) in the
spherical coordinates (r, , ci5) can be written as the 2D equation

— (-r2-+ r2sine0S0O) Pfr,e) — -P(r,e)+V(r,8)P(r,e) =EP(1,6), (1)

in the region ft 0 < r < oo and 0 < J < r. The potential function V(r, 9) is given by

m2 1 22 2V(r,e) =
2 2 +'ym+ —'y r sinrsine 4

where m = 0, is the magnetic quantum number, 'y = B/B0, 13o 2.35 X 109G is a dimensionless parameter
which determines the field strength B, and the atomic units (au.) h = me e = 1 are used, assuming the mass
of the nucleus to be infinite. In these expressions E is twice the energy, E =2E (in Rydbergs, lRy=(1/2)a.u.),
of the bound state Ima > at fixed values of m and z-parity, a = and 4' is the corresponding wave function,
'1 E fr, ) = (1'm(r,) + 01'm(r, r — e))/2. Here the sign of z-parity, a = (— i)No , is determined by the
number of nodes N0 (even or odd) in the solution 4' with respect to the angular variable in the interval
0 < J < r. We will also use the units h = me e = y = 1 and the corresponding scaled radial coordinate

= r/J5, the effective charge Z = Z/J5 and the scaled energy = Ef-y.

The function q satisfies the following boundary conditions in each ma subspace of the full Hubert space:

iimsine=O, if m=O, and P(r,O)=O, if (2)

(r, ) = 0, 0 r < 00, for the even parity state (a = +1), (3)

P(r, ) = 0, 0 f; r < 00, for the odd parity state (a = —1), (4)

2limr —=0. (5)r—+O Dr

The discrete spectrum wave function obeys the asymptotic boundary condition which can be approximated by
the boundary condition of the first type at large r = rmax

lim r2W = 0 -4 'T!(rmax,EJ) 0. (6)r—+oo

Here the energy E E(rmax) plays the role of the eigenvalues of the boundary problem (1)-(6) determined by the
variational principle, with the additional normalization condition in the finite interval 0 <r <rmax,

jrma ir/2
fl(P, E) =0, 47r J [ r2 sin eI(r,e)I2drde = 1, (7)

0 Jo

where H H('P, E) is a symmetric functional defined by

= ff (r2
D(r, 0) 3(r, + D(r, 0) D(r, — (2Zr — V(r, 0)r2 + Er2)fW(r, 0)12) drd0. (8)

problem for the set of closed radial equations via three steps of the Kantorovich method is described briefly in
Section 3. These steps of the implementation of the Kantorovich method are considered in detail in Sections 4
and 5. The method is applied to the calculation of low-lying states in Section 6 where the rate of convergence is
demonstrated explicitly for typical examples and the results are compared with the best of the known ones. In
Section 7 the conclusions are made and the possible future applications of the method are discussed.

2. STATEMENT OF THE PROBLEM
The Schrödinger equation for the hydrogen atom in an axially symmetric magnetic field 1 = (0, 0, B) in the
spherical coordinates (r,0, ci5) can be written as the 2D equation

—

(;: -r2
0

r2 sin9 sin e) ) — ;w(r, 6) + V(r, 8)W(r, 9) = P(r, 6), (1)

in the region ft 0 < r < oo and 0 < 0 < r. The potential function V(r, 9) is given by

m2 1 22 •2Vfr,9) = 2 2 +7m+ —y r sin 0,rsin0 4

where m = 0, is the magnetic quantum number, 'y = B/B0, 13o 2.35 X 109G is a dimensionless parameter
which determines the field strength B, and the atomic units (a.u.) h = me e = 1 are used, assuming the mass
of the nucleus to be infinite. In these expressions is twice the energy, E = 2E (in Rydbergs, lRy=(1/2)a.u.),
of the bound state Ima > at fixed values of m and z-parity, a = and ' is the corresponding wave function,
'1 E 1'mcr(r,0) = (4'm(r, 0) + a'T!m(r, r — 0))/2. Here the sign of z-parity, a = (_i)No , is determined by the
number of nodes N0 (even or odd) in the solution W with respect to the angular variable 0 in the interval
0 < 0 < ri. We will also use the units h = me e = y = 1 and the corresponding scaled radial coordinate
i = r/J5, the effective charge Z = Z/J5 and the scaled energy =

The function q satisfies the following boundary conditions in each ma subspace of the full Hilbert space:

limsin0=O, if m=O, and W(r,O)=O, if (2)

(r, ) = 0, 0 r < 00, for the even parity state (a = +1), (3)

P(r, ) = 0, 0 r < oc, for the odd parity state (a = —1), (4)

2limr —=0. (5)r—+O Dr

The discrete spectrum wave function obeys the asymptotic boundary condition which can be approximated by
the boundary condition of the first type at large r = rmax

lim r24 = 0 -4 4(rmax,0) 0. (6)r—+oo

Here the energy f c(rmax) plays the role of the eigenvalues of the boundary problem (1)-(6) determined by the
variational principle, with the additional normalization condition in the finite interval 0 <r <rmax,

prma pir/2
fl('I',€) = 0, 4rr / / r2 sin 0I'I'(r,0)I2drdO = 1, (7)

Jo Jo

where H H(1, f) is a symmetric functional defined by

= ff (r2
D(r, 0) DW(r, 0)+ D(r, 0) D(r, 0) — (2Zr — V(r, 0)r2 + €r2)fW(r, 0)12) drd0. (8)
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In the Fano-Lee reaction matrix R theory'4 the continuum wave function 'P (r, 6) obeys the boundary condition
of the third type at the fixed values of energy and radial variable r = rmax

84::
) A '(r, 9) = 0, r = rnax. (9)

Here the parameters A A(rmax, E), determined by the variational principle, play the role of eigenvalues of a
logarithmic normal derivative matrix of the solution of the boundary problem (1)-(5) , (9)

ir/2
H E H(P,E) = 4rrArax I sin9I(rmax,9)I2d. (10)

Jo

Standard theorems'5 ensure the existence of a function \(rmax) such that Eq. (9) is satisfied at any finite
r = Tlnax < 16

3. REDUCTION OF THE 2D PROBLEM BY THE KANTOROVICH METHOD
Consider a formal expansion of the total wave function 'I' and the partial solution (r, 0, that corresponds
to the state Imai > using the finite set of one-dimensional basis functions {7W (9; r)}

Imm I F F 3rna

qfr, 9,, ', so') = i: i: exp(—iin ) i: Ir'U(r,9, , V/)n'U(9F; r —+ oc), (11)
m'=—ImmxI O_o,e i=1

Immt jm
(r, 0, ,v') = i: exp(irn7)

qncr(r, 9, /) , (r, 9, J) = (; r)Xm (r/)
m=-Imml j=1

The matrix functions (r) (r)} composed of the vector functions, (X(i) )T (xt) (r), . . . , (r))
are unknown, and the surface functions ((9; r))T (4i (9; r), . . . , 4rna (9 r)) form an orthonorinal basis for
each value of the radius r which is treated here as a parameter.

In the Kantorovich approach the functions (9; r) and the potential curves E(r) (in Ry) are determined as
the solutions of the following one-dimensional parametric eigenvalue problem:

—-sin99' +r2sin9V(r,9)(6;r) =E(r)sin9(9;r), (12)

with the boundary conditions

1imsin9--=0, if m=0, and (0;r)=0, if (13)o—o ur,

(;r) = 0, 0 < r < oc, for the even parity state (a = +1), (14)

(;r) = 0, 0 < r < oc, for the odd parity state (a = —1). (15)

Here the sign of z-parity a = (_i)Ne is defined by the (even or odd) number of nodes N0 in the solution 1 with
respect to the angular variable 6 in the interval 0 < 6 < r. Since the operator in the left-hand side of (12) is
self-adjoint, its eigenfunctions are orthonormal

/ p7r/2K p;) j(p;)) = 4irJ sin64(6;r)4'(6;r)d6 = 5,, (16)\ /0 0

where jj is the Kronecker ö—symbol. The problem (12)—(15) is solved for each value of the field pararneter,7,
i.e. (9; r) (9; r, 'y) and E(r) E(r, 'y), and for each value of the radial variable r E Wr, where Wr =
(ri,r2,.. . ,r,...) is a given set of values of r.

In the Fano-Lee reaction matrix R theory'4 the continuum wave function 'P (r, 6) obeys the boundary condition
of the third type at the fixed values of energy and radial variable r = rmax

84::
) A '(r, 9) = 0, r = rnax. (9)

Here the parameters A A(rmax, E), determined by the variational principle, play the role of eigenvalues of a
logarithmic normal derivative matrix of the solution of the boundary problem (1)-(5), (9)

pir/2
H E H(', €) = 4rrArax J sin OI(Tmax,9)12d19. (10)

0

Standard theorems'5 ensure the existence of a function \(rmax) such that Eq. (9) is satisfied at any finite
r = Tlnax < 16

3. REDUCTION OF THE 2D PROBLEM BY THE KANTOROVICH METHOD
Consider a formal expansion of the total wave function P and the partial solution (r, 0, that corresponds
to the state Imai > using the finite set of one-dimensional basis functions {w(O; r)}

Imma I F F 3rna

qfr, 9,, 0', ço') = i: i: exp(—im ) i: r'(r,9, , fl'(9F; r -4 oc), (11)
m'=—Irnmx I OOe i=1

mmaf jmx
0, , ') = i: exp(zrno) Pr(r, 0, \/), r(r, 6, J) = 7(; r)Xm(r/)

m=-Immaxl j=1

The matrix functions r) (r)}r composed of the vector functions, (X(i) )T (xt) (r), . . . , XaX
are unknown, and the surface functions ((; r))T (i(9; r), . . . , rnax (0 r)) form an orthonormal basis for
each value of the radius r which is treated here as a parameter.

In the Kantorovich approach the functions (O; r) and the potential curves E(r)(in Ry) are determined as
the solutions of the following one-dimensional parametric eigenvalue problem:

_sineac:r) +r2sin6V(r,O)(6;r) =E(r)sinO(O;r), (12)

with the boundary conditions

limsin9--—=0, if m=0, and (0;r)=0, if (13)9—0 ci6

tr) = 0, 0 < r < oc, for the even parity state (a = +1), (14)

4(;r)
= 0, 0 < r < oc, for the odd parity state (a = —1). (15)

Here the sign of z-parity a = (_i)Ne j defined by the (even or odd) number of nodes N0 in the solution 1 with
respect to the angular variable 0 in the interval 0 < 0 < 71. Since the operator in the left-hand side of (12) is
self-adjoint, its eigenfunctions are orthonormal

/
K ((p;c) j(p;)) =

471] sin04(6;r)(0;r)d0 = 5, (16)\ /0 0

where is the Kronecker ö—symbol. The problem (12)—(15) is solved for each value of the field pararneter,'y,
i.e. (0; r) (0; r, 'y) and E(r) E(r, 'y), and for each value of the radial variable r E Wr, where w =
(r1, r2,.. . , rk,...) is a given set of values of r.
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Table 1. Comparison of the classification of a free hydrogen atom in the spherical coordinates with the adiabatic
classification of a hydrogen atom in a magnetic field with strength 'y in the spherical and cylindrical coordinate systems,
respectively.

A N 1 m a N9 Nr N N11 j
1 1 S 0 1 0 0 0 0 1

1 2 s 0 1 0 1 0 1 y 1

-1 2 p 0 -1 1 0 0 0 1

-1 2 p -1 1 0 0 0 0 1

-1 2 p 1 1 0 0 0 0 3'y 1

Note, that the solutions of this problem with Shifted eigenvalueS, E (r, 'y) =E (r, 'y) — 7mr2 , correspond to
the solutions of the eigenvalue problem for oblate angular spheroidal functions11 with respect to the variable
11 = cos9:

I 2 '2 2a 2 3(;r) I m ir \ 2

—---(1—i )
ai1 1_i2 + ) (1—it ) (i;r)=E(r)4(i;r). (17)

This means that for small r the asymptotic form of the eigenvalues E3(r), j = 1, 2, 3, .. . at fixed values rn and a
is defined by the values of the orbital quantum number, 1 = s, p, d, f, .. .: E3 (0) = 1(1 + 1), 1 = 0, 1, 2, 3, . . ., where
j = (1 — m)/2 + 1 for even z-parity states, a = +1 = (_1)lHmI, and j = (1 — m + 1)/2 for odd z-parity states,
a = —1 = (— 1)1_ImI Taking into account that the number of nodes N9 of the eigenfunction at fixed m and
a = ( — 1) N9 as a function of the parameter r is preserved ,we get the one-to-one correspondence between these
sets, i.e., N0 = 1 —

For large r the asymptotic form of eigenvalues E3 (r), j = 1, 2, 3, .. . at fixed values of m and a is defined
by the values of the transversal quantum number, N : limr E3 (r, 7)r2 = fhl(7) 7(2N + m + m + 1),
N = 0, 1 , 2, 3, . . . , where j = N + 1 (see Fig. 1 ) . The values of the transversal quantum number N , i.e.,
the number of nodes of the eigenfunction 1 with respect to the transversal variable p = r sin 9 on semi-axis,
are expressed via the number of nodes N0 of the solution '1': N = 1/2 . N0 for the even z-parity states,
a = +1 = (_i)Ne and N = 1/2 . (N9 — 1) for the odd z-parity states, a = —1 = (_i)Ne . Such a transversal
classification also reveals a violation of degeneracy of the states with azimuthal quantum numbers, +m, having
the same module mi that holds for the angular oblate spheroidal functions, i.e.,

lim E(r,7)r2 = 7(2N + m + 1). (18)r—+oo

Taking into account the above-mentioned correspondence rules between the quantum numbers 1 — ml, N0, N
and the number j at fixed values of rn and a, we use the unified number, j, without pointing out explicitly a
concrete type of quantum numbers. These rules are similar to the conventional correlation diagrams for potential
curves of a hydrogen atom in the uniform magnetic field or a helium atom.

After substituting the expansion (11) into the variational problem (7), and using Eqs. (12), (15), (16) and
the identity

4f/2 (sin9
r) Dj(; r) r2 sin9V(r, 9)(r, 9)(9; r)) dO = E(r) + E(r)

(19)

which follows from these equations, the solution of the above problem is transformed into the solution of an
eigenvalue problem for a system of max ordinary second-order differential equations for determining the energy
f and the coefficients (radial wave functions) (X(i) (r))T (r), (r), . . ., Xa(r)) of the expansion (11)

+ + Q(r)— + id[r2Q(r)x()] fjIx(i) lim 0, (20)r dr dr r dr r dr r—+O ar

Table 1. Comparison of the classification of a free hydrogen atom in the spherical coordinates with the adiabatic
classification of a hydrogen atom in a magnetic field with strength 'y in the spherical and cylindrical coordinate systems,
respectively.

A N 1 m a N9 Nr N N11 j
1 1 S 0 1 0 0 0 0 y 1

1 2 s 0 1 0 1 0 1 'y 1

-1 2 p 0 -1 1 0 0 0 y 1

-1 2 p -1 1 0 0 0 0 y 1

-1 2 p 1 1 0 0 0 0 3y 1

Note, that the solutions of this problem with shifted eigenvalues, E(r, 'y) = E (r, 'y) — ymr2 , correspond to
the solutions of the eigenvalue problem for oblate angular spheroidal functions1' with respect to the variable
11 = cosO:

I 2 '2 2a 2 3(;r) I m ir \ 2

—---(1—i )
aij 1_ij2 ) (1—it ) (ii;r)=E(r)4(ii;r). (17)

This means that for small r the asymptotic form of the eigenvalues E3(r), j = 1, 2, 3, . . . at fixed values rn and a
is defined by the values of the orbital quantum number, 1 = s,p, d, f, . . .: E3(0) = 1(1 + 1), 1 = 0, 1, 2, 3, .. ., where
j = (1 — ImDI2 + 1 for even z-parity states, a = +1 = (_1)l_ImI, and j = (1 — mi + 1)/2 for odd z-parity states,
a = —1 = (1)1_ImI. Taking into account that the number of nodes N9 of the eigenfunction at fixed ml and
a = (—1)N& as a function of the parameter r is preserved, we get the one-to-one correspondence between these
sets, i.e., N0 = 1 —

17711.

For large r the asymptotic form of eigenvalues E3 (r) ,j = 1, 2,3, .. . at fixed values of m and a is defined
by the values of the transversal quantum number, N: 1imr E3(r, 'y)r2 = hl(y) 7(2N + ImI + m + 1),
N = 0, 1 , 2,3, . . . , where j = N + 1 (see Fig. 1 ). The values of the transversal quantum number N , i.e.,
the number of nodes of the eigenfunction F with respect to the transversal variable p = rsin 9 on semi-axis,
are expressed via the number of nodes N0 of the solution 4: N = 1/2 . N9 for the even z-parity states,
a = +1 = (_i)No and N = 1/2 . (N9 — 1) for the odd z-parity states, a = —1 = (_i)Ne. Such a transversal
classification also reveals a violation of degeneracy of the states with azimuthal quantum numbers, +m, having
the same module ml that holds for the angular oblate spheroidal functions, i.e.,

limE(r,y)r2 = 'y(2N + ml + 1). (18)

Taking into account the above-mentioned correspondence rules between the quantum numbers 1 — ImI N9 ,
and the number j at fixed values of m and a, we use the unified number, j, without pointing out explicitly a
concrete type of quantum numbers. These rules are similar to the conventional correlation diagrams for potential
curves of a hydrogen atom in the uniform magnetic field or a helium atom.

After substituting the expansion (11) into the variational problem (7), and using Eqs. (12), (15), (16) and
the identity

4 f/2 (D(9;
r) Dj(; r) r2 sin9V(r, O)(r, 9)(9; r)) dO = E(r) E(r)

(19)

which follows from these equations, the solution of the above problem is transformed into the solution of an
eigenvalue problem for a system of max ordinary second-order differential equations for determining the energy
C and the coefficients (radial wave functions) ((i) (r))T (r), (r), . . ., Xa (r)) of the expansion (11)

_I-_r2--2- + ic;:.X(j) +Q(r)— + id[r2Q(r)x()] = ci IX(i), limr2--2- = 0, (20)
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Figure 1. The behavior of the potential curves E3fr), j = 1, 2, . . . at m = 0 and 'y = 1 for some first even j = (1—IniI)/2+1

(marked by the symbol "e" ) and for odd j = (1
— fmf + 1)/2 states. The dotted lines show the asymptotic behavior of the

potential curves at large r.

Here I, U(r), and Q(r) are finite max X Jmax matrices, whose elements are given by the relations (see Figs. 2-3)

E1 +E1 r/2
U(r) = r)

2 3r)ij+2Zr+r2Hij(r), H(r) =H(r) =4 I sinOd9,
Jo tiT ur

pr/2
Q(r) = —Q2(r) = _4irJ sin94——2-dO, Ij3 = i,j = 1,2,... ,rnax• (21)

0 ur

The discrete spectrum solutions are governed by the asymptotic boundary condition and orthonorinality condi-
tioris

lim = 0 (rmax) 0, f r2(X((r))TX(r)dr =. (22)r—+oo 0

For the continuum solution X(r)) we can alternatively require that the projections of (9) onto all adiabatic
functions hold

K
(r;9) a:e) A(rO)) = r = rmax, (23)

that leads to the third-type boundary conditions at fixed values of energy and radial variable r = riiax

73(r) . \
(\ ar ()'(r) — Q(r) —

Ai)
0, r = rrnax. (24)

From here on and ()(rmax) will be the set of eigenvalues A = {A}'5' corresponding to the set of
eigenvectors X(riax) {()(rmax)}' of the eigenvalue problem

dX(Trnax) _ Q(rmax)(rmax) = (rmax)A, (25)

that can be reduced to the following one by averaging the variational problem (10):

— raxXT(riax)X(rmax)A = 0.
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Figure 1. The behavior of the potential curves E3 (r), j = 1 , 2, . . . at m = 0 and y = 1 for some first even j = (1— IniI)/2+1

(marked by the symbol "e") and for odd j = (1 — ml + 1)/2 states. The dotted lines show the asymptotic behavior of the
potential curves at large r.

Here I, U(r), and Q(r) are finite max X Jmax matrices, whose elements are given by the relations (see Figs. 2-3)
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The discrete spectrum solutions are governed by the asymptotic boundary condition and orthonorinality condi-
tioris

urn r2XW = 0 (rmax) 0, f r2(X((r))TX(r)dr = 6. (22)r—+oo 0

For the continuum solution () (r)) we can alternatively require that the projections of (9) onto all adiabatic
functions hold

K
(r;9) a:e) _ A(r6)) = ü, r = rmax, (23)

that leads to the third-type boundary conditions at fixed values of energy and radial variable r =

(
D()(r)('(r) — Q(r) —

A)
= 0, r = rnax. (24)

From here on A and ()(rmax) will be the set of eigenvalues A = {A}' corresponding to the set of

eigenvectors X(riax) {X(i) (rmax)}' of the eigenvalue problem

d(rrnax) _ Q(rmax)(rmax) = (rmax)A, (25)

that can be reduced to the following one by averaging the variational problem (10):

— raxXT(rIax)X(rmax)A = 0.
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Here X(riiax) S normalized as follows

raxXT (rmax)X(rrnax) = I. (26)

Multiplying (25) from the right by raxXT(rmax) and using the relation between the transposed and left pseudo-
inverse of X(rniax),

X1(rmax) E raxT(rmax), (27)

yields the relation between X(rmax) and its derivative

dX(Tmax) = PX(rmax), P E rax (Xrmax AXT(rmax) + Q(rmax)(rnax) XT(Tmax)). (28)

Below we will consider the P matrix of dimension max X Jmax , which is a constant matrix for any normalization
of X(rinax).

The application of the Kantorovich approach makes the above problems equivalent to the following ones:

. Calculation of the potential curves E(r) and the eigenfunctions (9; r) of the spectral problem (12)—(15)
for a given set of r E Wr at fixed values rn and ' = 1.

. Calculation of the derivatives ! and computation of the corresponding integrals (see (21)), necessary for
obtaining the matrix elements of radial coupling U3 (r) and Q(r).

. Calculation of the scaled energies and radial wave functions (r) as solutions of one-dimensional eigenvalue
problem (20)-(25) at fixed values m, 'y = 1 and effective charge Z = Z/J5, analysis of the convergence of
these solutions depending on the number of channels max and recalculation of the scaled energies to the
initial ones f = &y.

. Calculation of matrices A, P and the reaction matrix R (using Eqs. (28), (36)) corresponding to the radial
wave functions (r) as the solutions of one-dimensional eigenvalue problem (20)—(25) at the fixed values
of in, = 1 and Z = Z/J5, and the scaled energies . Examination of the convergence of these solutions
depending on the number of channels max

Note, that in the diagonal approximation i = j of the problem (20)—(21), the so-called adiabatic approxi-
mation, the number of nodes Nr of the solution (r) with respect to the slow radial variable r on semi-axis for
small values of the parameter ' corresponds to the radial quantum number Nr N _ 1 1 of a free hydrogen
atom in the bound state characterized by a conventional set of quantum numbers (N 1 m ,\ = (_1)l) and the
binding energy —feY = 0) = _O) = z/N2 (in Ry).

Recalling that the number of nodes N0 of the solution with respect to the fast angular variable, 9, at fixed
rn and a = (— 1)Ne as a function of the slow parameter, r is conserved, i.e. , N0 = 1 — rn , we have the one-to-one
correspondence between the quantum numbers (N 1) of the free atom at 'y = 0 and the adiabatic ones {Nr N0}
of the perturbed atom at 'y 0.

For large values of the parameter 'y the adiabatic radial number Nr corresponds to the longitudinal quantum
number N11 of a hydrogen atom in the strong magnetic field at fixed m and the sign of a = i.e., the number
of nodes of the solution x(zD with respect to the longitudinal variable z = rcos 9 on semi-axis. This means
that the solution x(z) on an axis is defined as follows: Xmu(Z) (Xm(P, z) + Xm(p, z))/2, or reduced to the
solution x(zD of the conventional eigenvalue problem on a semi-axis, using the Neumann and Dirichlet boundary
conditions at z = 0 for the even a = +1 and odd a = —1 solutions, respectively.

Taking into account the above correspondence rules with such an adiabatic set [N11 N] and the asymptotic
behavior of eigenvalues E3 (r) at large r, we can express the binding energy E via the eigenvalues c of the
problem (20)—(21) as follows: E = — c)/2 (in a.u.), where is the full threshold shift =
y(2N + rn + in + 1) or the reduced one = y(m + in + 1), respectively (see, for example, Table 1).

Here X(riiax) S iiormalized as follows

raxXT(rmax)X(rtnax) I. (26)

Multiplying (25) from the right by raxXT(rmax) and using the relation between the transposed and left pseudo-
inverse of X(rniax),

X1(rmax) E raxT(rmax), (27)

yields the relation between X(rmax) and its derivative

d(max) = P(rmax), P E rax (Xfrrnax) AXT(rmax) + Q(rmax)(rrnax) XT(Tmax)) . (28)

Below we will consider the P matrix of dimension max X Jmax , which is a constant matrix for any normalization
of X(rinax).

The application of the Kantorovich approach makes the above problems equivalent to the following ones:

. Calculation of the potential curves E(r) and the eigenfunctions 9; r) of the spectral problem (12)—(15)
for a given set of r E Wr at fixed values rn and ' = 1.

. Calculation of the derivatives and computation of the corresponding integrals (see (21)), necessary for
obtaining the matrix elements of radial coupling U (r) and Q(r).

. Calculation of the scaled energies and radial wave functions (r) as solutions of one-dimensional eigenvalue
problem (20)-(25) at fixed values m, 'y = 1 and effective charge Z = Z/J5, analysis of the convergence of
these solutions depending on the number of channels max and recalculation of the scaled energies to the
initial ones = &y.

. Calculation of matrices A, P and the reaction matrix R (using Eqs. (28), (36)) corresponding to the radial
wave functions (r) as the solutions of one-dimensional eigenvalue problem (20)—(25) at the fixed values
of in, = 1 and Z = Z//5, and the scaled energies t. Examination of the convergence of these solutions
depending on the number of channels max

Note, that in the diagonal approximation i = j of the problem (20)—(21), the so-called adiabatic approxi-
mation, the number of nodes Nr of the solution (r) with respect to the slow radial variable r on semi-axis for
small values of the parameter ' corresponds to the radial quantum number Nr N _ 1 1 of a free hydrogen
atom in the bound state characterized by a conventional set of quantum numbers (N 1 m ,\ = (_1)l) and the
binding energy —feY = 0) = _€°) = Z/N2 (in Ry).

Recalling that the number of nodes N0 of the solution I' with respect to the fast angular variable, 9, at fixed
Irn and a = (— i)Ne as a function of the slow parameter, r is conserved, i.e., N0 = 1 — m, we have the one-to-one
correspondence between the quantum numbers (N 1) of the free atom at 'y = 0 and the adiabatic ones {Nr N0 }
of the perturbed atom at 'y 0.

For large values of the parameter 'y the adiabatic radial number Nr corresponds to the longitudinal quantum
number N11 of a hydrogen atom in the strong magnetic field at fixed m and the sign of a = i.e., the number
of nodes of the solution x(zI) with respect to the longitudinal variable z = rcos 0 on semi-axis. This means
that the solution x(z) on an axis is defined as follows: Xmcr(Z) (xm(P, z) + UXm(P, —z))/2, or reduced to the
solution x(IzI) of the conventional eigenvalue problem on a semi-axis, using the Neumann and Dirichlet boundary
conditions at z = 0 for the even a = +1 and odd a = —1 solutions, respectively.

Taking into account the above correspondence rules with such an adiabatic set [N11 N] and the asymptotic
behavior of eigenvalues E3 (r) at large r, we can express the binding energy E via the eigenvalues of the
problem (20)—(21) as follows: e = (() — e)/2 (in a.u.), where c('y) is the full threshold shift ('y) =
'y(2N + ImI + m + 1) or the reduced one f('y) = 7(Im + m + 1), respectively (see, for example, Table 1).
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We write the set of differential equations (21) at fixed values in, a and E =2E in the explicit form

1 d 2d3(r) 2Z ( E3(r)\
——---r dr —:--xjifr) — —

r2 ) Xijfr) + H3(r)(r)

= ::m (QdXfi(r) Hjj'(r)j'j(r) — id (r2Q33'fr)3'j(r))
) , i,j = 1, ",Jrnax• (29)

At small r the asymptotic values of the matrix elements E , and , characterized by 1 = 2j — 2 + ml for
even states and I)y 1 = 2j — 1 + Im for odd states, have the form

2 yr 12 + 1 — 1 + mi2 4r8 (201 + 2012 + 33)Im4
E1 = 1(1 + 1) + mr +

(21 — 1)(21 + 3) (21
— 3)(21 — 1)(2l + 3)(2l + 5)

,7,4r8 (—24l — 48l + 212 + 261 — 3O)Im2 + 416 + 12l —3l — 26l + 212 + 171 — 3 12+ (2l—3)(2l—1)(2l+3)(2l+5) +O(r ),

— ,2r3 /(F+ 1)2_1m12y(l + 2)2—Im2 4r7 /(l + 1)2ImI2f(l + 2)2—1m12(41m12 — 1)
Q11+2 — 2l + 1(21 + 3)2y21 + 5 + (21 — 1)2l + 1(21 + 3)V2l + 5(21 + 7)

Or ),

— 4r7 (i + 1)2 mI2l + 2)2 mI2(l + 3)2 m2(l + 4)2 1m12 ii
Q11+4

2l+1(2l+3)2(2l+5)2(2l+7)22l+9 + (r ),

H11 = ((16l+32l + 24812 + 2321 + 201) m4 + (_1012 224l —96l+ 1 181 —288l — 3216 195) mi2

+1618 +64l +461+4016 127l —1O4l+ 7112 6l —6) ,, ((21 —3)(21— 1)(2l+3) (21+5)) +0(r'°),

— 74r (f1)2 mI2V(l+ 2)2 ImI2(l + 3)2 Imi2(l + 4)2 ImP2 10Hii+4 _ _____ + r4 v'2l+1(2l+3)2(2l+5)(2l+7)2/2l+9

This asymptotic behavior of the effective potentials allows us to use the above boundary conditions at r —0 to
find regular and bound solutions.

At large r the asymptotic form of the matrix elements by inverse power of r (i.e., without exponential terms)
is of the form

r2E(r) = E° + r2E2 + r4E7c4 + 6E1c6 + r8E1(8 + ..., (30)
Qnz,nr(r) = + ..., H1,(r) = +

In these formulas the asymptotic quantum numbers n , n denote the transversal quantum numbers N , N that
are connected with the unified numbers j, j' by the above mentioned formulas n = j — 1, r ' 1 . Below we
display the matrix elements with m = 0; Q is an antisymmetric matrix with the elements

= (n, + 1)i+i,r (flr +
Qr (ft +

1)(n:
+ —

(Thr + 1)(flr +

+(fli + 1) 61+i,/y (r + 1) 8ni,m+i/7,
Q1 = (fli + 1)(ni + 2)(ni + 3)613,j(472) — (flr + 1)(r + 2)(n + 3)6fl1,flr+3/(472)

+(n + l)(j + 2)(2ni + 3)6n1+2,n/(2) — (flr + 1)(flr + 2)(2flr + 3)8n,,n+2/(72)
+(fli + 1)(13n? + 26n1 + — (flr + 1)(13ri + 26flr + 12)önz,nr+i/(4y2),

H is a symmetric matrix with tl1e elements

H$ = —(iii + l)(i + 2)Sfli+2,flr — (n + 1)(flr + + (2n' + 2flr +
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Figure 2. Some radial potentials Q for even (marked by symbol "e") and odd parity at m = 0 and 'y = 1. The dotted
lines are asymptotic potentials at large r.

= —(ru + l)(ni + 2)(i + 3)5ni+3,n/7 (Tir + 1)(r + 2)(r + 3)5n,n+3/7
—(ft + l)(ni + 2)(2i + 3)n+2,n/7 — (Tir + 1)(r + 2)(2r + 3)(5ni,n+2/7
+(ni + 1)(n + 2ni + 2)1+i,j7 + (r + 1)(n + 2flr + 2)5ni,n+i/7
+2(2flr + 1)(n + r + 1)n,n/7,

HIc?) = —3(r'i+ l)(nj +2)(rii+3)(ni +4)5n14,n/(4'y2) 3(n+ 1)(Tlr+2)(flr +3)(nr+4)5n1,n,+4/(4'y2)

—(ni + l)(i + 2)2(i + 3)nl+3,n/(72) (n + 1)(flr + 2)2(r +
—(n+ l)(rij (r+1)(r+2)(14 +42nr+31)6n1,n,+2/(2'y2)
+(ni + 1)2(5n? + lOni + 16)5nl+i,n/(72) + (flr + 1)2(5n + lOflr + 16)5nl,n+i/(72)
+(31n + 62n + 95ri + 64flr + 16)6fl,fl/(272),

E corresponds to the diagonal matrix of potential curves, i.e., the eigenvalue of the parametric problem

E1° = 'y(2n+1),
E2 2n22n1,
E7c4 =
E6 72(5fl4 — io — iOn2 5 — 1),

E8 73(_42n2 23/8 — l7rt — 165n4/4— lllrt3/2 — 33rt5/2).

(2) (2) . . . . .
Note, that at large r E3 + H33 = 0, i.e., the centrifugal terms are eliminated and the radial solution has the
asymptotic form corresponding to zero angular momentum radial solutions, or to the one-dimensional problem
On a semi-axis

jr) = re(iPior+uuio(, 0(r) = :: r_k. (31)

As a result ofsubstituting the expansion (31) into (29) and equating the coefficients ofexpansion for the same pow-
ers of r we arrive at the set of recurrence relations with respect to unknown coefficients , j, i0 = 1 , . . . , rnax•
The first four coefficients have the form

(po — 2E + E°)q° = 0, (p0 — 2E+ E)q = 0,

(p — 2E + E°)q + (2p0a — 2Z)q° = 2ij0 jo

1.8
1.6
1.4
1.2
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NO.8

0.6
0.4
0.2
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Figure 2. Some radial potentials Q for even (marked by symbol "e") and odd parity at m = 0 and y = 1. The dotted
lines are asymptotic potentials at large r.

= —(ni + l)(fli + 2)(rii + 3)5ni+3,n/7 — (Tir + 1)(flr + 2)(n + 3),n+3/7
—(ft + l)(i + 2)(2i + 3)n+2,n/7 (flr + 1)(m + 2)(2flr + 3)5fli,flr+2/7
+(ni + 1)(n + 2Tij + + (flr + 1)(n + 2flr + 2)Sni,nr+i/y

+2(2flr + 1)(n + nr +

—3(i + 1)(ni +2)(nj +3)(nj +4)6nl+4,fl /(472) 3(flr + 1)(flr+2) (flr +3) (flr+4)5n1,nr+4/(472)

—(ni + 1)(ni + 2)2(nj + 3)61+3,j(72) (flr + 1)(flr + 2)2(r + 3)6fl1,fl+3/(2)
—(ne+ l)(rij+2)(14fl?+4211l+31)5fll+2,flr/(272) (flr+1)(flr+2)(14fl2 +42nr+31)6fl1,fl2/(2'y2)
+(ni + 1)2(5n? + lOni + 16)S1+i,/(72) + (flr + 1)2(5n + lOflr + 16)öni,n+i/(72)
+(31r4 + 62n + 95n + 64flr + 16)6i,r/(2'Y2)

E corresponds to the diagonal matrix of potential curves, i.e., the eigenvalue of the parametric problem

40) = 'y(2n+1),
E1c2 2n2 2n — 1,

E1c4 = 7'(—2n3—3n2—2n—1/2),
E6 'y2(—5n4 — iOn3 — iOn2 — 5n — 1),

E1c8 f3(—42n2 — 23/8 — 17n — 165n4/4— 111n3/2 — 33n5/2).

(2) (2) . . . . .
Note, that at large r E3 + H33 = 0, i.e., the centrifugal terms are eliminated and the radial solution has the
asymptotic form corresponding to zero angular momentum radial solutions, or to the one-dimensional problem
on a semi-axis

jr) = eiPiomnnuir), 0(r)= :: r_k. (31)

As a result of substituting the expansion (31) into (29) and equating the coefficients of expansion for the same pow-
ers of r we arrive at the set of recurrence relations with respect to unknown coefficients cb ,j, i0 = 1 , . . . , rnax
The first four coefficients have the form

(p2o — 2E + E°)q° = 0, (p — 2E + E)q = 0,
(p20 — 2E + E°)q' + (2p0a — 2Z)q° = 2ij0 1jo
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—

jijo , jojo'
Jo

(po
— 2E + E°)çb2 + (2p0a — 2Z + 2ip0)cb00 + (i +(1)

= —2zp0 Q ó1 + ii: (Q(l) (1 — 2zc) — H2iou 1 ' ji j0'iou ' ui0 ji ioji
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j2jl 231 3231 'Jiio

Here Jk , k = 0, 1 , 2, . . . , kmax take integer values, except i0 , (jk = 1 , 2 , . . . , max
, Jk i0). In the summation we put

also Jk Jk+1 . om the first three equations of the set (32) we get the leading terms of the eigenfunction, the
eigenvalue and the characteristic parameter, i.e., the initial data for solving the recurrence sequence,

2zp Q(l)0ó1, ui0 E° — Ec°
31

Substituting these initial data into the next equations of the set (32), we get a step-by-step procedure for
determining the series coefficients

(33)

+(Q'(1 — 2za) — Hc2 — 2p j1 Q th1 + v (Q(l) (1 _ 2ia) — Hc2 (°)
32J1 ' ilo ji 3231322' '32i

cL = 8joi, P0 2E —E° - p0 = — c =
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Figure 3. Some potentials fI for even
lines are asymptotic potentials at large r.
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(marked by the symbol "e" ) and odd parity at in = 0 and y = 1 . The dotted

(p2o — 2E + Ec°lth' + (2p0c — 2Z)çi5° = —2 q() 2ipj031 1 ' j1j0 ui0 ip0Q310 00 , joio'

(po - 2E + E°)ç52 + (2pa - 2Z + 2ipjç0 + (i a + 2)(O)

= —2zp0 :ji (1) (Q(l) (1 — 2z c) — H2 )(O)iou ui0'i0ui uii0 z0ui

(p0 — 2E + E° 2) (2p0c — 2Z + + (zc + a2th(O) —2p0Q1 ó12o ' iooI 'u2u2' ' u2o I ' u2o

(32)

Here 3k, k = 0, 1, 2, ...,kmax take integer values, except i0, (jk = 1, 2, ",max, jj i0). In the summation we put
also .1k jk+1 . om the first three equations of the set (32) we get the leading terms of the eigenfunction, the
eigenvalue and the characteristic parameter, i.e. , the initial data for solving the recurrence sequence,

2zp Q0 uiioth1uii0 E° — E°
31

Substituting these initial data into the next equations of the set (32), we get a step-by-step procedure for
determining the series coefficients

çb0 = —: + i (Z2 + Zp0i)
i0ui

ui 2p (33)
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(2) 2zp0Q4 2ij0 >:ji Q1O 2zp0çb i + 2ZQ + zQp0)
J2o E° — E° — E° — 2p0 (E° — )

'
(1) (1)

Io = 1 (Z2 -I- 3i Zp0 — 2p)(:) >(2ZQ2 + 3i Q2p0 — zH22p0) (42) I Qij2(&j2i0/2,

Substituting the explicit asymptotic form of the matrix elements (30) into (33), we get the explicit expression of
these coefficients i5 via the values of the number of a state (or channel) i0 =n0 + 1 and the number of current
equation j = 1, •••,Jmax• Note, that if Jmax � o + k, then all nonzero terms in the above sums of Eqs. (33)
should be included into the evaluation of each nonzero element ci5 of the order k. For example, at max � o + k
and k = 0, 1, 2 such elements take the form

(J(o)
'*,norio

,(1) _ PnoTo
(/I0_j0 — i

(1) pj2n0+1)
Tlno

2p1 2p10

(1) _ p(n0+l)
cl5+i0 — i

(2) _ n0(n0 — 1)p' n0(n0 — 1)
n—2n 272 47

(2) _ Zn0 2pn02 n0 n0Z2
no_tTlo 2p0 72

çi2 i —-- + —--- — i _ + (2n0 + 1)Z2 (3n02 + 3n0 + 1)p0 2n0 + 1
nono 4p0 8p0 2pL 8pL 2pL'y 72 27

(2) _ Z(n0 + 1) 2p(n0 + 1)2 n0 + 1 _ (n0 + 1)Z2
no+1flo 2p0 72 27 p07

(2) _ (n0 + 1)(n0 + 2)p (n0 + 1)(n0 + 2) 34n+2n 272 47
( )

The solution of the scattering problem with N + 1 open channels for p � 0 at i0 = 1, ..., N + 1, and with
remaining closed channels for p < 0 at i = N + 2, ...,max, defined by two independent fundamental
asymptotic solutions x (corresponding to the signs '—', '+' of exp(zpj0)) of Eqs. (29) and the scattering
matrix S

I N+1 \x = —(2z)1
( x0 — i: Xj,j'Sj'i0 ) , io = 1,...,N + 1, j 1,...,Jrnax,
\' j'=l J

It is defined also by two independent fundamental asymptotic solutions Xs(r) = �(x), Xc(r) = J(x) (corre-
sponding to 'sine', 'cosine') of Eqs (29) and the reaction matrix R

x =XI— zR), 5 (I + zR)(I —zR)', = Xs + XCR.

Using the formula (28), we obtain the expression of the reaction matrix R via the above calculated matrix P:

(PXcrmax — dXC(Tmax)) R
=

(dX5(max)

—

PX5(rmax)).
(35)

Note, that for the general case the left and right matrices of (35) are rectangular matrices. Therefore, multiplying
(35) from the left by the matrix

/
I -1 SIaX rmax
x (rmax) + dr

(2) 2zp0Q4 2ij0 >:' 2ip0çb (iH0p0 + 2ZQ +
J2o E° — E° — E° — 2p0(E° — E)

(1) (1)

çb0 = i (Z2 + 3i Zp0 -2p) - (2ZQ2 + 3i Q2p0 - iH2p0) (42) Q2ç/2,
Substituting the explicit asymptotic form of the matrix elements (30) into (33), we get the explicit expression of
these coefficients q5 via the values of the number of a state (or channel) i0 = n0 + 1 and the number of current
equation j = 1, ••,3max Note, that if Jmax � o + k, then all nonzero terms in the above sums of Eqs. (33)
should be included into the evaluation of each nonzero element q of the order k. For example, at max � o + k
and k = 0, 1, 2 such elements take the form

,i°) —i
Kfl0Ti()

(1) _ pn0no
/1ri0—1n0

(1) _ pj2n0 + 1)
nrI() 2pL 2pL
(1) _ p0(n0+1)

q5 — i
(2) _ n0(n0 — 1)p' n0(n0 — 1)

n—2n 272 4')'

(2) _ Zn0 2pn02 n0 n0Z2
no - 1 n 20 7 72 '
çi2 i —-- + --,-- — i _ + (2n0 + 1)Z2 (3n02 + 3n0 + 1)p 2n0 + 1

nono 8P 2pL 8rL 2pL ,2 27

(2) _ Z(n0 + 1) 2p(n0 + 1)2 n0 + 1 _ (n0 + 1)Z2
no+1no 72 2

(2) _ (n0 + 1)(n0 + 2)p (n0 + 1)(n0 + 2) 34n+2n
272 4y

( )

The solution of the scattering problem with N + 1 open channels for p � 0 at i0 = 1, ...,N + 1, and with
remaining closed channels for p < 0 at i = N + 2, . . . , max , is defined by two independent fundamental
asymptotic solutions , x (corresponding to the signs '—', '+' of exp(zpj0)) of Eqs. (29) and the scattering
matrix S

I N+1 \x = —(2i)1 ( * — i: Xj,j'Sj'i0 ) , io = 1,...,N + 1, j = 1,...,Jrnax,
\ j'=l J

It is defined also by two independent fundamental asymptotic solutions Xs(r) = �(), Xc(r) = (x) (corre-
sponding to 'sine', 'cosine') of Eqs (29) and the reaction matrix R

= x(I — iR), S = (I + iR)(I — iRy', X = X8 + XCR.

Using the formula (28), we obtain the expression of the reaction matrix R via the above calculated matrix P:

(PXC(r) —
dXc(rmax))

R = (dXS(Tmax) —
PXS(rmax)).

(35)

Note, that for the general case the left and right matrices of (35) are rectangular matrices. Therefore, multiplying
(35) from the left by the matrix

(Xs(r) +
dXs (max)

)T
�
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we obtain the following formula for the reaction matrix: R

R=0'Y, (36)

where
TI ds( \\ I dc('-' I si \ X Tmax) I im Cf \ X 1max

'—I — Tmax) 1 JTX Trnax) — _________

I \ T ,
-V — I S( \ dX5(Tmax) '\ I dX5(Tmax) ID S( \— I X Tmax) + I I

— X rmax)
" ar j\ ar

are square matrices of the dimension (N + 1) x (N + 1).
In terms of the above definitions the ionization cross-section is given by the formula

42
cY = C>-NP ('1E,Np,u,m rcos9 N=O,Np=O,u=1,m=O)

KT-'E,N,u,m T cos 9 NO,NpO,ui,mO)

=3
j,j'=1 '

where w = E — E(NZ = O,N = O,o- = 1,m = 0) is the frequency ofradiation, E(NZ = O,N = O,cr = 1,m = 0)
is the energy of the initial bound state N=O,N=O,u=1,m=O, and 4'E,N,u,m S the continuum function with the
energy 2E (of the ejected electron) above the first threshold (N = 0, a = —1), = or the second
threshold (N = 1, a- = —1), crj(7) = 37. Note, that the continuum spectrum is beginning with 2E � '= 0.1;
till the second threshold, y < 2E < 3y we have only one open channel (N = 0), while between the second and
the third thresholds, i.e., 3y < 2E < 5y, we have two open channels (N = 0 and N = 1).

5. THE EFFECTIVE APPROXIMATION FOR KANTOROVICH METHOD (KM)
To obtain the effective approximation for the KM, we consider the system of close-coupled radial equations (20)
and neglect the coupling of the states j > and ji' > not connected with the open channel 0 > . This can
be useful for sufficiently large effective charge Z = Z/J57, when the contribution of the adiabatic correction
is sufficiently small. It is useful from physical viewpoint to understand the asymptotic boundary conditions in
the open channel. We introduce the so-called effective adiabatic approximation (EAA), in which we project
these equations onto the open channel i >= 0 > by means of a canonical transformation. The new solution
Xnew Xw(r) is connected with the old solutions Xii Xji(r) of the system (20) by the relation

3maa (2) (1)Xw < i eiS j >< j eiS j > Xii, (37)

Restricting the expansions of the exponents to the second order, i.e. ,expressing exp(iS(')) 1 +i S' + (i S('))2/2
and exp(iS2) 1 + i S(2), we define the non-diagonal matrix elements of the generator S' and S2 in such a
way

(1) 1 d 1d2i S = (1 — j)L + Q — + — —r Qi3) , (38)

= (1 — L\jj = z(r) = —
that the right-hand side of Eq. (20) is eliminated up to the accuracy of the order of O(max3 z3), and determine
the inverse operator for the open channel I0)

Xi = Xrw = T03, (0 T 0) = (0 T' 0) = 1 = (0 0). (39)

we obtain the following formula for the reaction matrix: R

It=o—1Y, (36)

where
I \ T ,

'-' — I dXs(rmax) \ I i dXC(Tmax)
'—, — x rmax) + rnax) — _________

I \TJ
-V — I sí \ d5(rmax) \ I d5(rmax) SI \— ' x rmax) + I I — X rmax)

\' ar j\ ar
are square matrices of the dimension (N + 1) x (N + 1).

In terms of the above definitions the ionization cross-section is given by the formula

42
aw = CN (WE,Np,r,m rcos6l ,

K T-'E,N,cr,m r cos 9 WNO,Np0,cr1,m0)

=3
j,j'=l '

where w = E — E(NZ = 0, N = 0, a = 1, m = 0) is the frequency of radiation, E(NZ = 0, N = 0, a = 1, in = 0)
is the energy of the initial bound state WNz=O,Np=O,=1,m=O, and 5 the continuum function with the
energy 2E (of the ejected electron) above the first threshold (N = 0, a = —1), E('y) = 'y or the second
threshold (N = 1, a = —1), €('y) = 3'y. Note, that the continuum spectrum is beginning with 2E > 'y = 0.1;
till the second threshold, 'y < 2E < 3'y we have only one open channel (N = 0), while between the second and
the third thresholds, i.e., 3y < 2E < 5'y, we have two open channels (N = 0 and N = 1).

5. THE EFFECTIVE APPROXIMATION FOR KANTOROVICH METHOD (KM)
To obtain the effective approximation for the KM, we consider the system of close-coupled radial equations (20)
and neglect the coupling of the states j > and ji > not connected with the open channel 0 >. This can
be useful for sufficiently large effective charge Z = Z/J5, when the contribution of the adiabatic correction
is sufficiently small. It is useful from physical viewpoint to understand the asymptotic boundary conditions in
the open channel. We introduce the so-called effective adiabatic approximation (EAA), in which we project
these equations onto the open channel i >= 0 > by means of a canonical transformation. The new solution
Xnew xnewfr) is connected with the old solutions Xii Xji(r) of the system (20) by the relation

3ma • s2 • • s'j,jI=1 < e f 31 >< 3/ e > Xji, (37)

Restricting the expansions ofthe exponents to the second order, i.e., expressing exp(iS(')) 1+z S'+(i S('))2/2
and exp(iS2)) 1 + i we define the non-diagonal matrix elements of the generator S(1) and S(2 in such a
way

(1) 1 d 1d2= (1 — L + Q--- + —---r Qii)
(38)

= (1 — Ljj = z(r) = V —

that the right-hand side of Eq. (20) is eliminated up to the accuracy of the order of O(max3 Iz3), and determine
the inverse operator for the open channel I0)

xj=Ixw, X°=>TojXj, (0ITI0)=(0IT'Io)=l=(olo). (39)
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This leads to a projection of the above system of equations onto the channel 0)

;: To(H0h 2E)T1x (HW_ 2E) 0,

ld 2 dW( I

;:I;:;;i + (rXew(r) + [(Jeff 2E](r) = 0. (40)

The new solution / l/2Xnew(r) in such a diagonal representation satisfies the following equation

_(r2)I + 1/2(-1/2)II + P[Uad + U — 2E} = 0, limr2 0. (41)

where the modified scalar product and adiabatic potential are defined by

fOO U<iki>= I drr25, UadViiJo r

The effective potential Ueff(r) is defined as a sum ofthe adiabatic potential Uadfr) and the effective nonadiabatic
correction 5U(r), ,t(r) can be regarded as an effective mass, defined as the inverse of the sum of unity and the
effective mass correction W (r):

'(r) = 1 + W(r), W(r) = _4;;
6U(r) = : (-1V(l) + —2V(2) + (42)

Here we use the expressions

vç' = i::= V(is) H — (Q)2 + —

y) = := 2 s) — +QQ( + + Q(' +

v3 = + — L\ = z(r) = Vj — Vj, = (r) = V + Vj.

In the above formulas all the terms are functions of r, and the symbol " denotes a derivative with respect to
r. At large r the leading terms of W(r) and 5U(r) calculated using the asymptotic basis functions read as
W(r) = W/r2 + O(1/r4), 5U(r) = U/r4 + O(1/r6), where —W < ip2i >= 4(ii + 1/2)17 15 the mean
value of the transversal variable, p2 = (r sin 9)2 characterizing the electron precession around the z axis in the
magnetic field y, while 6US —1/2(4n3 + 5n2 4 3)/7 5 the asymptotic value of the electron polarizability.

6. THE EFFECTIVE APPROXIMATION: ASYMPTOTIC BEHAVIOR OF RADIAL
SOLUTIONS

For the elastic scattering states with given value 2E(q) = q2 + we rewrite the problem in the form

(fteff — q2) .(r2 +1/2(-1/2)II+ [Ueff — 2E(q)] =0. (43)

For the function Xefl = r()h/2 this equation has a conventional form

(1(r) - Ueff(r) + q2) (r) =0, (44)

where the effective potential Ueff (r) is defined by

Ueff(r) = 1o(r) + SU(r) — — f 0) (45)

This leads to a projection of the above system of equations onto the channel 0)

To(H0h 2E)T1X (HW _ 2E)X = 0,

ld 2d° I

XOdr

r 2X0fr) + [(Jeff 2E]X'(r) = 0. (40)

The new solution b tI2x(r) in such a diagonal representation satisfies the following equation

_(r2)I + 1/2(-1/2)II+ P{Uad + W — 2E] = 0, lr2 0. (41)

where the modified scalar product and adiabatic potential are defined by

< >=
L°°drr2, Uad — Vjj

The effective potential Uefffr) S defined as a sum ofthe adiabatic potential Uad(T) and the effective nonadiabatic
correction 5U(r), ,t(r) can be regarded as an effective mass, defined as the inverse of the sum of unity and the
effective mass correction W (r):

'(r) = 1 + W(r), W(r) = _4;;

6U(r) = : (-1V(l) + A2V(2) + L1/3). (42)

Here we use the expressions

v1 V(ls) H — (Q)2 + —

1/ = i::= V(2s) — z\) + QQ( +3L) + Q2 + zL\fl,

v3 = + — /L\ = z(r) = Vj — Vj, = (r) = V +
In the above formulas all the terms are functions of r, and the symbol "" denotes a derivative with respect to
r. At large r the leading terms of W(r) and SU(r) calculated using the asymptotic basis functions read as
W(r) = W/r2 + O(1/r4), öU(r) = Ua8/r4+ O(1/r6), where < ip2i >= 4(n + 1/2)/'y is the mean
value of the transversal variable, p2 = (r sin 9)2 , characterizing the electron precession around the z axis in the
magnetic field y, while —1/2(4n3 + 5n2 — 4n — 3)/'y is the asymptotic value of the electron polarizability.

6. THE EFFECTIVE APPROXIMATION: ASYMPTOTIC BEHAVIOR OF RADIAL
SOLUTIONS

For the elastic scattering states with given value 2E(q) = q2 + we rewrite the problem in the form

(fteff — q2) _(r2 + l/2(l/2)II + j4U — 2E(q)]=0. (43)

For the function eff = r()'/2 this equation has a conventional form

(-1(r) - Ueff(r) + q2) x11(r) =0, (44)

where the effective potential Ueff (r) is defined by

Ueff(r) = o(r) + SUfr) — — (45)
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For large values of r, using the asymptotic values W" of r2W(r) and of r45U(r) from (42) it is
reduced to the following one:

I d I W"\ d 2Z '\
t%\—;: ' + 00

)
_ + 4 q2) (r)

o, (46)

and to an accuracy of the order O(r4), Eq. (44) reads

2Wd2Z +q2
(1 w))

_ ou] (r) =0. (47)

For qW/(2r) << 1 the continuous spectrum solutions can be expressed in the form

I, w"\ zr) sin qr 1 —
2r2

ln(2qr) + 53)

sin(qr + ln(2qr) + + (3)) _ cos(qr + ln(2qr) + ö + (3m)), (48)

where ) 5(a )(q) is the required phase shift of the elastic scattering in the open channel 0 ) derived
from the known Coulomb phase shift öC argF(1 —

Remembering that r2 = p2 + z2 and z r(1 — p2/(2r2)) in the asymptotic region p/r << 1, one should
introduce the following definition of the mean position operator in the new representation X' = T

new _ / new "new new / '-p—i "new '-p \ / \rmean — \X rmean X I — \X rmean Xi — \X rmean Xi — rmean.

Here the mean position operator = r plays the role of the longitudinal coordinate z in the new repre-
sentation Xw, i.e., the delocalization of z is contained in the new radial functions Xn = T. In the old
representation x the mean position operator 1mean defined as

_'-p---1new rp_rp—1 P-n— irmean — rmean — r — r-
where 5i is the delocalization of the longitudinal coordinate z, which in the asymptotic region p/r 1 has the
order of p2/(2r), i.e.,

Tmearl —+ T'rT (z).

Note, that the transformation changes only the form of the radial solutions, and the longitudinal coordinate z
is restored only in the total expansion of the wave function. If we omit the non-adiabatic terms, the solution
exibits the adiabatic behavior

ad sin(qr +
then we caii look for the obvious difference between the true phase shift 6, the jma-th approximation ö(3"
and the adiabatic phase shift 6ad,

'O 20\= 5ad — q , S = urn (a) = 5ad + q p
(49)2r —*oo 2r

7. NUMERICAL RESULTS
In this section we present our numerical results for the energy spectrum of a hydrogen atom in the magnetic field.
Ten eigensolutions (rimax = 10) of the problem (12)—(15) are calculated which amounts to solving ten equations
of the system (20). The problem (12)—(15) was solved also using the conventional expansion11 of regular and

For large values of r, using the asymptotic values of r2W(r) and of r45U(r) from (42) it is
reduced to the following one:

(-i: (i
+ ) : q2)

(r) = 0, (46)

and to an accuracy of the order O(r4), Eq. (44) reads

2Wm j + q2 (i _ Wm
) _ ] (r) = 0. (47)

For qW'/(2r) << 1 the continuous spectrum solutions can be expressed in the form

(jma)
r) sin qr 1 —

2r2 ln(2qr) +

sin(qr + ln(2qr) + SC + 5(Jm)) _ qWrna) cos(qr + ln(2qr) + ö + (rna)), (48)

where 5(rnaa) E 5(imax)(q) is the required phase shift of the elastic scattering in the open channel 0 ) derived
from the known Coulomb phase shift öC argF(1 —

Remembering that r2 = p2 + z2 and z ' r(1 — p2/(2r2)) in the asymptotic region p/r << 1, one should
introduce the following definition of the mean position operator in the new representation Xw T

new _ I new "new new ,' '-p—i "new '-p \ / \rmeam — \X rmean X I — \X rmean Xi — \X rmean Xi — rmean.

Here the mean position operator = r plays the role of the longitudinal coordinate z in the new repre-
sentation XT1 i.e., the delocalization of z is contained in the new radial functions = T. In the old
representation x the mean position operator 1mean S defined as

_rp—1"new rp_rj-i—1 P-n—rmean — rmean _ r — r -r

where 5i is the delocalization of the longitudinal coordinate z, which in the asymptotic region p/r 1 has the
order of p2/(2r) , i.e.,

rmean —+ T'rT (z).

Note, that the transformation changes only the form of the radial solutions, and the longitudinal coordinate z
is restored only in the total expansion of the wave function. If we omit the non-adiabatic terms, the solution
exibits the adiabatic behavior

ad sin(qr +
then we can look for the obvious difference between the true phase shift 6, the jmaxth approximation 5Urna)
and the adiabatic phase shift öad,

10 20\(jrna) = ad q
00

, = lim = + q
p

(49)2r Jrnax OO 2r

7. NUMERICAL RESULTS
In this section we present our numerical results for the energy spectrum of a hydrogen atom in the magnetic field.
Ten eigensolutions (flmax = 10) of the problem (12)—(15) are calculated which amounts to solving ten equations
of the system (20). The problem (12)—(15) was solved also using the conventional expansion11 of regular and
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bound solutions of Eq. (17). The results coincide with the calculations by FEM4 with ten digits. In Figs. 1, 2
and 3 the numerical values of the effective potentials are compared with their asymptotic values.

The finite-element grid of r has been chosen as follows : 0 (100) 3 (70) 20 (80) 100 (the number in parentheses
denotes the number of finite elements of the order k = 4 in each interval). This grid is composed of 999 nodes.
The maximum number of unknowns of the system (20) (flmax 10) is 9990. The calculated energy values and
the rate of convergence of the method versus the number of basis functions for n = 9, m = 0 and 'y = 1.472 x iO
are shown in Tables 2-3. The probability density isolines of the Zeeman wave states IN, ii, m) with even parity
a = +1 in a homogeneous magnetic field are shown in Fig. 5.

Figure 5. The probability density isolines of the Zeeman wave states IN, ii,in) with even parity a = +1 and in = 0 in
the homogeneous magnetic field for the minimal energy correction 9, 0, 0) and (rhs) (left panel) and the maximal energy
correction I, 8, 0) (right panel).

Table 2. Convergence of the method for the energy E(N = 9, Nr 0, 2, 4, 6, 8, m = 0, a = +1) (in au.)
with the number of coupled channels flmax 8, y = 1.472 x iO and the shift=O.0112.

of eveii states

V umax umax rnax umax
0 -0.00781242971347 -0.00617279526323 -0.00617279808777 -0.00617279808777

2 -0.00781225974455 -0.00617270287945 -0.00617274784933 -0.00617274784933

4 -0.00617272642538 -0.00617258450255 -0.00617268955914 -0.00617268955914

6 -0.00617245301145 -0.00617243588598 -0.00617258283911 -0.00617258283911

8 -0.00499982705326 -0.00499993540325 -0.00617243586258 -0.00617243586258

Table 3. Convergence of the method for the energy E(N = 9, Nr 1, 3, 5, 7, iii 0, 1) (in au.)
with the number of coupled channels flmax 8, y = 1.472 x iO and the shift=O.0112.

of odd states

N rnax 2 umax 4 rnax 6 TImax 8
1 -0.00617276008813 -0.00617279765740 -0.00617279765755 -0.00617279765755

3 -0.00617254499872 -0.00617272898894 -0.00617272898991 -0.00617272898992

5 -0.00499987886194 -0.00617264137929 -0.00617264137970 -0.00617264137970

7 -0.00499954507256 -0.00617251430932 -0.00617251430935 -0.00617251430935
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bound solutions of Eq. (17). The results coincide with the calculations by FEM4 with ten digits. In Figs. 1, 2
and 3 the numerical values of the effective potentials are compared with their asymptotic values.

The finite-element grid of r has been chosen as follows : 0 (100) 3 (70) 20 (80) 100 (the number in parentheses
denotes the number of finite elements of the order k = 4 in each interval). This grid is composed of 999 nodes.
The maximum number of unknowns of the system (20) (flmax 10) is 9990. The calculated energy values and
the rate of convergence of the method versus the number of basis functions for n = 9, m = 0 and 'y = 1.472 x iO
are shown in Tables 2-3. The probability density isolines of the Zeeman wave states IN,ii,m) with even parity
a = +1 in a homogeneous magnetic field are shown in Fig. 5.
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Figure 5. The probability density isolines of the Zeeman wave states IN,v, m) with even parity a = +1 and in = 0 in
the homogeneous magnetic field for the minimal energy correction 9, 0, 0) and (rhs) (left panel) and the maximal energy
correction I, 8, 0) (right panel).

Table 2. Convergence of the method for the energy E(N = 9, Nr 0, 2, 4, 6, 8, m = 0, a = +1) (in au.)
with the number of coupled channels flmax 8, 1.472 X iO and the shift=O.0112.

of eveii states
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6 -0.00617245301145 -0.00617243588598 -0.00617258283911 -0.00617258283911

8 -0.00499982705326 -0.00499993540325 -0.00617243586258 -0.00617243586258

Table 3. Convergence of the method for the energy E(N = 9, Nr 1, 3, 5, 7, Tn 0, U 1) (in au.)
with the number of coupled channels flmax 8, y = 1.472 x iO and the shift=O.0112.

of odd states

N umax 2 umax 4 umax 6 Tlmax 8
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8. CONCLUSIONS
A new effective method of calculating the wave functions of a hydrogen atom in a strong magnetic field is
developed basing on the Kantorovich approach to the parametric eigenvalue problems in spherical coordinates.
The two-dimensional spectral problem for the Schrödinger equation with fixed magnetic quantum number and
parity is reduced to a spectral parametric problem for a one-dimensional equation in the angular variable and
a finite set of or(Iinary second-order differential equations in the radial variable. A canonical transformation is
considered to approximate the finite set of radial equations by means of a new radial equation describing the open
channel. The rate of convergence is examined numerically and the analysis is illustrated with a set of typical
examples. The results are in good agreement with calculations by other authors. The developed approach yields
a good tool for the calculations of threshold phenomena in the formation and ionization of (anti)hydrogen-like
atoms and ions in magnetic traps.
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