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ABSTRACT
We present theoretical calculations for the evolution of Zeeman states in a train of short electric half-cycle pulses
(kicks). For the numerical solution of the corresponding time-dependent Schrödinger equation (TDSE) the high-
accuracy splitting scheme based on the unitary approximations of the evolution operator is developed. The
finite element method is used for determining the spatial form of the solution. The efficiency and stability of the
developed computational method is shown for 1D models in the cases of second-, forth-, and sixth-order accuracy
with respect to the time step. Numerical calculations for the kicked hydrogen atom in the presence of magnetic
field are performed using the scheme of the sixth-order accuracy with respect to a time step and both Galerkin
and Kantorovich reductions of the problem with respect to the angular variables. For a particular choice of the
electric- and magnetic-field parameters and the initial Zeeman state the corresponding results exhibit a two-state
resonance picture.

Keywords: time-evolution operator, half-cycle pulses, high-order operator-difference schemes, kicked hydrogen
atom, magnetic field, Galerkin and Kantorovich methods

1. INTRODUCTION
The dynamics of a charged particle in a combined constant magnetic and time-dependent electric field exhibits
a number of remarkable phenomena. For example, the classical electron trajectory calculations show that the
electromagnetic radiation of the relativistic electron in a constant magnetic field and an ultrashort intense laser
pulse possesses a rich structure in both magnetic and electric field directions.' If a resonance condition between
the cyclotron frequency and the laser frequency is met the radiation losses are minimized and an extreme electron
acceleration becomes possible within a very short travel distance of the electron.2 A solution of Dirac equation
for atomic electron in a combined strong magnetic and laser field yields a ring-shaped electron distribution in the
resonance regime.3 Application of static magnetic field may enhance the ionization rate or stabilize a quantum
system in intense laser pulse.4 The same effect is observed for a model zero-range potential system.5 Moreover,
not only the one-electron dynamics but the many-electron dynamics as well can be nontrivially controlled using
the crossed magnetic and electric field configuration.6 These findings indicate a rich potential for controlling
the dynamics of classical and quantum systems by employing a combination of magnetic and electric fields with
various parameters.

In the quantum case, for solving the control problem one should resort to the solution of time-dependent
Schrödinger equation (TDSE). It should be stressed that an accurate solution of the TDSE is of prime importance
for a wide range of quantum mechanical applications. In particular, the theory of phenomena induced by short
electric-field pulses in atoms and ions often relies on the numerical treatments of the evolution problem. The
results of these numerical calculations are crucial for predictions of various effects, for example, such as the
dynamical stabilization of an atom in intense laser radiation.7'8 Needless to say that here the stability and
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accuracy of utilized numerical scheme become a key factor in determining (or not) the above-mentioned effect. In
addition, the employed numerical algorithm should be efficient for the implementation on nowadays computers.

The modern laser physics experiments have stimulated computer simulations of the dynamics of Coulomb
systems (including exotic ones) in a train of laser pulses.9'3 In this case a necessity of constructing the unitary
splitting algorithms'4 has emerged.'3' 15 There are two major requirements for the numerical methods that
are being developed. Namely, they must be stable and must provide a high accuracy in both time arid space.
In this respect the unitary splitting methods have a very important advantage: the unitarity of the evolution
operator preserves the norm of the wave function and thus guarantees a conservation of the probability and a
stability of the niethod. Since the unitary splitting methods involve a finite time grid, the other part of the
computational problem consists in determining for each time step an accurate form of the solution in space. It
can be solved using the space-discretization techniques, where instead of approximating the wave packet by a
globally defined basis one involves suitable interpolation polynomials on a finite space grid. The required accuracy
of the solution with respect to the spatial step can be achieved using the finite element method (FEM).'6' '
User-friendly symbolic algorithms implemented with the help of MAPLE and REDUCE allow one to generate
stable implicit operator—difference and multilayer grid schemes, as well as the corresponding FORTRAN codes
for the numerical solution of the evolution problem for the TDSE on a finite interval with prescribed accuracy
both in time and space variables.'8 The corresponding effective Hamiltonians and algebraic matrix problems
are generated on the basis of the methods of splitting for the unitary evolution operator on a time—uniform
grid and the finite-element method for the space variable. An important element of the algorithm proposed is
the auxiliary gauge transformation, which allows one to obtain, for real Hamiltonians, the algebraic problems
with complex symmetrical matrices on local carriers. This ensures the efficiency of the employment of the
finite-element method.'9

In this work we formulate a computational method for solving TDSE which is based on the unitary splitting
algorithm involving a uniform time grid.2022 For numerical implementation of this method we derive the
second-, forth-, and sixth-order approximations with respect to the time step. Both Galerkin and Kantorovich
reductions of the problem, as well as FEM are used to construct the numerical schemes of required accuracy with
respect to the spatial step.2325 We establish the efficiency and accuracy of the developed numerical scheme
considering the case of a kicked hydrogen atom in the absence of magnetic field. The case of Zeeman states
kicked by a train of short electric half-cycle pulses is then treated within the present computational method.
The numerical calculations are performed for various initial states using the physically realistic values of electric
and magnetic field parameters.

The paper is organized as follows. In Section 2 we formulate the method of solving TDSE that consists in
the construction and decomposition of the Time-Evolution Operator and further generation of unitary operator-
difference schemes with partial splitting of the evolution operator of high order with respect to the time step.
In Section 3 the applications of the elaborated schemes till the sixth order with respect to time step are shown
using the conventional 1D models, namely, the oscillator in an external periodical field, approximated by a train
of 5 kicks, and the Pöschl-Teller atom in a laser pulse field. In Section 4 we present realization of the schemes
with both Galerkin and Kantorovich reduction for kicked 3D hydrogen atom in a magnetic field. Some results
of the corresponding numerical experiments are shown in Section 5. In Section 6 the conclusions are made and
the possible future applications of the method are discussed.

2. FORMULATION OF THE METHOD
The TDSE governing the dynamics of an atom in an external field in the time interval t e [t0, tmax} reads:

t) = H(, t)( t), to) = o(r, t) E H'(R ® [to, tmax}), o( E H'(R). (1)

We assume the Hamiltonian to obey the form

H(,t) = H0( + Q(,t), Ho(r = -A+ Vfr, (2)
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systems (including exotic ones) in a train of laser pulses.9'3 In this case a necessity of constructing the unitary
splitting algorithms'4 has emerged.'3' 15 There are two major requirements for the numerical methods that
are being developed. Namely, they must be stable and must provide a high accuracy in both time and space.
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where V() is the static continuous potential function, and the potential function Q(,t) describes the interaction
of an atom with a time-dependent external field. The normalization condition is

I2 f(t)I2d= 1, t E {t0,tmax]. (3)

Consider now the initial problem on a uniform time grid 1l- = {t0, tk+1 = tk+T (k=O, 1, . . . ,K—1), tK
tmax}. The solution 'Ø(tk+l) I'( tk+1) is derived from the solution /(tk) by means of the unitary evolution
operator U:

(tk+1) = U(tk1,tk)çb(tk).

The operator U(tk+1 , tk) can be presented in the form:

U(tk+1 , tk) U(tk±1 , tk ; T) = exp(—iTAk),

where Ak 5 the effective time-independent Hamiltonian related to H(t) through the Magnus expansion:

1 ftk+1 j ptk+1 Pt'
Ak I dtH(t) + — I dt' / dt"{H(t"), H(t')] + • • • . (4)T Jtk 2T Jtk Jtk

Using the Taylor-series expansion of H(t) in the vicinity of t = tk + T/2 and performing the integrations, one
. (M)can derive a set of the operators Ak (M = 1, 2, . . .) such that

Ak AM) + o(T2M), AM) AM) + iAM), (5)

A' = H, A' =

A2 A' + , A2 = A' + (adH) I,

A3 = A2 + _(adH)2 j —(ad H)2H
A3 = A2 - ad H)H + ad H) H +j(adH)3 ii

where the dot over H H(t) means the derivative with respect to t at t = tk + T/2. Thus, we have the following
approximate expression of the evolution operator

U(tk+1, tk ; T) = exp(—iTAM) + O(T2M+l).

2.1. Operator-difference scheme
The exponential operator can be presented in the form of the generalized {M/M] Padé approximation with the
same accuracy

M I '2M (M)A(M)
exp(_iT4M)) = fiT(k + O(T2M+l), T(k

T1
(M) (M)'I + (/2M)c Ak

where the coefficients cM) (( = 1,.. , M) are the roots of the equation 1F1 (—M, —2M, 2Mi/Q) = 0 with

1F1 being a confluent hypergeometric function, and M) is the complex conjugate of c4M). The coefficients
(A'I) (1W) (lW) —1have the following properties: Im(c ) < 0 and 0.6 < Ic <t , where i is a root of the equation

exp(p + 1) = 1 ( 0.28). Note that the condition

0 <TO <T < 2M,AM_1 (6)

where V() is the static continuous potential function, and the potential function Q(,t) describes the interaction
of an atom with a time-dependent external field. The normalization condition is
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The operator U(tk+1 , tk) can be presented in the form:

U(tk+1 , tk) U(tk±1 , tk; 'i) = exp(—i'rAk),

where Ak 5 the effective time-independent Hamiltonian related to H(t) through the Magnus expansion:

1 tk+1 j tk+1
Ak L dtH(t) + L dt' f dt"{H(t"), H(t')] + . . . . (4)

Using the Taylor-series expansion of H(t) in the vicinity of t = tk + r/2 and performing the integrations, one
. (M)can derive a set of the operators Ak (M = 1, 2, . . .) such that

Ak AM) + o(T2M), AM) AM) + iAM), (5)

A1 = H, A' =

A2 A' + , = A' + f(adH) Ii,

A3 = A2 + fr:I _(adH)2 j —(ad H)2H
A3 = A2 - ad H)H + ad H) H +(adH) H,

where the dot over H H(t) means the derivative with respect to t at t =tk + r/2. Thus, we have the following
approximate expression of the evolution operator

U(tk+1,tk;r) = exp(_ir4M)) + O(T2M+l).

2.1. Operator-difference scheme
The exponential operator can be presented in the form of the generalized [M/M] Padé approximation with the
same accuracy

M I '2M (M)A(M)
exp(—iTAM) H T(k + Q(2M+1), T(k =

+
(M) (M)'I + (T/2M)c¼ Ak

where the coefficients c4M) (( = 1,.. . , M) are the roots of the equation 1F1 (—M, —2M, 2Mi/Q) = 0 with

1F1 being a confluent hypergeometric function, and 4M) is the complex conjugate of c4M). The coefficients
(/tJ) . . (Al) (Al) 1 .

have the following properties: Im(c¼ ) <0 and 0.6 < fc I < , where 1u is a root of the equation
exp(p + 1) = 1 (p 0.28). Note that the condition

0 <TO <T < 2MpIIAM)II_1 (6)
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Table 1. Real and imaginary parts of coefficients cM), M = 1, 2, 3, ( = 1, ..., lvi

M
1 1 +O.00000000000000000000000000000 — 1.00000000000000000000000000000
2

2

1

2

—0.57735026918962576450914878050

+0.57735026918962576450914878050

—1.00000000000000000000000000000
—1.00000000000000000000000000000

3

3
3

1

2

3

—0.81479955424892281841473623156

+0.00000000000000000000000000000

+0.81479955424892281841473623156

—0.85405673065166346526579940886

—1.29188653869667306946840118228

—0.85405673065166346526579940886

guarantees the validity of the approximation for any bounded operator ATM).
Using the approximate form for the evolution operator, it is convenient to introduce the following auxiliary

functions:

k+(/M = T(kbk+((_1)/M, (7)

Since Im(aM)) < 0, the operators T(k are isometric and, therefore,

kbkl Ikbk+l/MII = . . . = kbk+lII. (8)

The auxiliary functions bk+(/M (C = 1, ..., M) can be treated as approximate solutions at the mesh points

tk+(/M tk + T(/M (C = 1, ...,M) in the time interval [tk, tk+1I.

Using the above approximation for each time step of the grid 1T, the following operator-difference scheme
for the numerical solution of the Schrödinger equation can be formulated:

b0 =
( i + T(M)A(M)) k+/M = (i + T(M)A(M)) k+((-1)/M, (9)

b(tmax) = bK ((1,...,M, k0,1,...,K1).

This is an implicit numerical scheme of the order 2M. It is stable because it conserves the norm of the difference
solution. Note, that in the case M = 1 we have a1 = —i and this scheme is reduced to the well-known
Crank-Nicholson algorithm (see also Table 1).

2.2. Unitary schemes with partial splitting of the evolution operator
. . . . -'(A4) . (A'I) (A4) -(Al)To illuminate the imaginary part Ak of the effective operators Ak =Ak + ZAk from (5) in Eqs. (9) we

will use a gauge transformation

2; = exp (s(M)) ,
that yields the new effective operators

(M) I (M)\ (M) I (M)
Ak exp IzSk ) Ak exp —zSk

(M) . . (M) 2M . . . . 19Here Sk is found in the form Sk Ij=O T2 S3 with unknown coefficients S , derived from the relations

(M) (M) M M M
Ak = O(T2M), Ak exp (zS )) A exp (_iS )).

Table 1. Real and imaginary parts of coefficients cM), M = 1, 2, 3, ( = 1, . . ., lvi

M c(
1 1 +O.00000000000000000000000000000 — 1.00000000000000000000000000000
2

2

1

2

—0.57735026918962576450914878050

+0.57735026918962576450914878050

—1.00000000000000000000000000000

—1.00000000000000000000000000000

3

3
3

1

2

—p--

—0.81479955424892281841473623156

+0.00000000000000000000000000000

+0.81479955424892281841473623156

—0.85405673065166346526579940886

—1.29188653869667306946840118228

—0.85405673065166346526579940886

guarantees the validity of the approximation for any bounded operator ATM).
Using the approximate form for the evolution operator, it is convenient to introduce the following auxiliary

functions:

)k+/M = T(kk+((_1)/M, (7)

Since Im(c4M)) < 0, the operators T(k are isometric and, therefore,

kbkl IIk+1/MII = . . . = lIk+1lL (8)

The auxiliary functions bk+/M (C = 1, ..., M) can be treated as approximate solutions at the mesh points
tk+/M tk + -i-(/M (( = 1, ...,M) in the time interval [tk, tk+1].

Using the above approximation for each time step of the grid 1T, the following operator-difference scheme
for the numerical solution of the Schrödinger equation can be formulated:

o =
( i + M)AM)) k+/M — (i + T1c4M)AM)) k+((-1)/M, (9)

b(tmax) = K ((1,...,M, k0,1,...,K1).

This is an implicit numerical scheme of the order 2M. It is stable because it conserves the norm of the difference
solution. Note, that in the case M = 1 we have c41 = —i and this scheme is reduced to the well-known
Crank-Nicholson algorithm (see also Table 1).

2.2. Unitary schemes with partial splitting of the evolution operator
. . . . '-'(AI) . (JW) (A4) -'(AI)To illuminate the imaginary part Ak of the effective operators Ak =Ak + iAk from (5) in Eqs. (9) we

will use a gauge transformation
= exp (s(M))

that yields the new effective operators

(M) I (M) (M) (M)
Ak exp Sk Ak exp —iSk

(M) . . (M) 2M . . . . 19Here Sk 15 found in the form 8k = Ij=O S3 with unknown coefficients S , derived from the relations

(M) -(M) M M M
Ak = O(T2M), Ak exp (iS )) A exp (—isL )).
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Figure 1. Approximations of the external field f(t) = fo sin(wot) by 2, 4, 8, 16 kicks

In this case in each k- time step of the grid for an approximate solution of the TDSE we have the following
operator-difference scheme:

o = exp (zSM)) b(tk),
7 'r

(M)A(M)' —1)/M
I Y _(M)A(M)\ /M -iT:c¼ k )(I+-1çj:a; k )

b(tk+1) = exp (_zSM)) i (=1,...,M,k=O,1,...,K—1).

(10)

to make the FEM good use. Note, that if SM) s not a multiplication operator, then the exponential operators
in (10) can be decomposed as well.18

3. EXAMPLE: 1D MODEL ATOM IN AN EXTERNAL FIELD.
For the Hamiltonian of 1D model atom under the action of the external field f(t) in the dipole approximation

1 2
H(x, t) = —- + V(x) + xf(t),2 3x2

-(M) (M)at each k-th step of the scheme (10) we have the operators Ak and Sk for M = 1, 2, 3 in the form

8(2) S + 2 0f(t)
k j-X

(11)

(1) H(x, t) (1) ="k '

(2) (1) 02f(t)k k +X
k k 3t4 at2

+
Dt )2

A3 — A2 34f(t) (t)0f(t (3f(t)

4 DV(x) Df(t) T O3f(t)s — 8(2)
k k Dx 9t +43 0t3

r3V(x) 02f(t)
+720 Dx 0t2

Note, that in further analysis we will use the FEM. Then the new operators in both sides of Eqs. (10) can
appear presented by the symmetric complex band 19 for which subroutines of the FEM17 can be used

1__I
/f

j//
Figure 1. Approximations of the external field f(t) = fo sin(wot) by 2, 4, 8, 16 kicks

In this case in each k- time step of the grid for an approximate solution of the TDSE we have the following
operator-difference scheme:

o = exp (zSM)) (tk),
7 7- (M)I

V + -A:c¼ AM)) (/M = -:-L( AM)) ((-1)/M

b(tk+1) = exp (_sM)) i (=1,...,M,k=O,1,...,K—1).

(10)

to make the FEM good use. Note, that if SM) s not a multiplication operator, then the exponential operators
in (10) can be decomposed as well.'8

3. EXAMPLE: 1D MODEL ATOM IN AN EXTERNAL FIELD.
For the Hamiltonian of 1D model atom under the action of the external field f(t) in the dipole approximation

1 32
H(x, t) = —- + V(x) + xf(t),2 3x2

-(M) (M)at each k-th step of the scheme (10) we have the operators Ak and Sk for M = 1, 2, 3 in the form

(1) H(x, t) s' — 0'k ' k

A2 (') 82f(t) s2 — 2 8f(t)
k_k+X3t2 kk3t'

(11)

k k 8t4 at2 0t )2
A3 — A2 4 D4f(t) y4 (t)0f(t 4 I3f(t)

s — (2) T4 DV(x) Df(t) T4 O3f(t)
k -'k Dx 3t iiöx 0t3

r3V(x) 02f(t)
+720 Dx 0t2

Note, that in further analysis we will use the FEM. Then the new operators in both sides of Eqs. (10) can
appear presented by the symmetric complex band for which subroutines of the FEM'7 can be used
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9.8

Figure 2. Real and imaginary parts of the difference between the analytical solutions for the oscillator in the continuous
field (12) and for the discrete approximation (13) of this continuous field by 16 kicks. The time moments of 15 and 16
kicks t15 = 9.0625, ti6 = 9.6875 are indicated by the corresponding numbers.

to reduce the necessary computational resources. Generally, the old operators in both sides of Eqs. (9) can be
presented by nonsymmetric complex band matrices for M > 2.

3.1. Exact solvable model: Oscillator in an external periodical field.
Now we consider the above problem (11) with the potential function

V(x) = w2x2/2

that supports only a pure discrete spectrum. This potential describes a harmonic oscillator with the angular
frequency w. Let the external field be harmonic

1(t) = fosin(wot) (12)

with the strength fo and the angular frequency w0 . Let approximate the external field by a set of S functions in
a uniform grid27 (see also Fig. 1):

S pTs
fd(t) = :i: 5(t — T(s — 1/2))J f(t)dt, (13)

s=l T(s—1)

where T = 2r/wo/N is the interval between kicks at fixed integer N > 1 and S is the number of kicks. We
choose the initial state (x) at the time t0 = 0 as a Gaussian wave packet

bo(x) — /7exp(—w(x — xo)2/2 + ipo(x _

For the numerical example considered below the constants are taken to be x0 =0, Po = 0, w = 1, w0 = R-/5, f =
0.5. This problem is a very good test for numerical experiments because it has the known analytical solutions
b(x,t) in both continuous (12) and discrete (13) cases that are generated explicitly using MAPLE. As an example,
the differences between these solutions are shown in Fig. 2.
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Figure 2. Real and imaginary parts of the difference between the analytical solutions for the oscillator in the continuous
field (12) and for the discrete approximation (13) of this continuous field by 16 kicks. The time moments of 15 and 16
kicks t15 = 9.0625, t16 = 9.6875 are indicated by the corresponding numbers.

to reduce the necessary computational resources. Generally, the old operators in both sides of Eqs. (9) can be
presented by nonsymmetric complex band matrices for M > 2.

3.1. Exact solvable model: Oscillator in an external periodical field.
Now we consider the above problem (11) with the potential function

V(x) = w2x2/2

that supports only a pure discrete spectrum. This potential describes a harmonic oscillator with the angular
frequency w. Let the external field be harmonic

1(t) = fosin(wot) (12)

with the strength fo and the angular frequency w . Let approximate the external field by a set of S functions in
a uniform grid27 (see also Fig. 1):

S pTs
fd(t) = :i: 5(t — T(s — 1/2))J f(t)dt, (13)

s=l T(s—1)

where T = 2r/wo/N is the interval between kicks at fixed integer N > 1 and S is the number of kicks. We
choose the initial state (x) at the time t0 = 0 as a Gaussian wave packet

bo(x) 4/7exp(_w(x_xo)2/2+ipo(x_xo)).
For the numerical example considered below the constants are taken to be x0 =0, Po = 0, w = 1, wo = ir/5, f =
0.5. This problem is a very good test for numerical experiments because it has the known analytical solutions
b(x, t) in both continuous (12) and discrete (13) cases that are generated explicitly using MAPLE. As an example,
the differences between these solutions are shown in Fig. 2.
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Figure 3. Logarithm of discrepancy 1g10 Er(tK) for the schemes with M =1, 2, 3 as a function of the time step T at
tK 10, calculated for the oscillator in the continuous field (left panel) and in the field approximated by 4 kicks (right
panel), t E [0, 10].

In the numerical experiments we consider the finite element grid 11 with 1000 elements of the order p =6
in the interval [x771, Xmax], where Xmjn 20, Xmax 20, and 0 < t < 10. We use the enclosed three time grids

10] with the step r taking the values r = 0.005, 0.0025, 0.00125 and examine the behavior of the function

Er2(t;i) = f[(x,t) - (x,t)]*[(x,t) - (x,t)]dx, (14)

where the index i = 1 , 2, 3 labels the numerical solutions, obtained for different values of the time step i-. Having
these three values of Er(t; i), we can calculate the Runge ratio

Er(t 1) —Er(t 2)M(t) =ln Er(t;2) _Er(t:3)n2 (15)

Hence, we obtain the following theoretical estimates: c1(t) 2 for the scheme with M = 1, a2(t) 4 for the
scheme with M = 2 and a (t) 6 for the scheme with M = 3. In Fig. 3 one can see the declared rate of
convergence O(2M) with respect to i.

3.2. The Pöschl-Teller atom in a laser pulse field.
Now we consider the propagation problem (11) for the PT model with the potential function V(x) =— cosh2 x
that supports only one bound state

bo(X) = 1/(Vcoshx),
with the eigenvalue E0 = —0.5 au., and a continuum of scattering states

(+) 1 zk+tanhx
1,2E(x) = 7 1 + zk exp(zkx)

with E = k2/2, 1 corresponding to k > 0, 2 corresponding to k < 0.28,29 The laser pulse f(t) is given by

f(t) =
{fosin2 (t) ,o < t < 2t;O,t > 2t,}

lgt Igt

Figure 3. Logarithm of discrepancy 1g10 Er(tK) for the schemes with M =1, 2, 3 as a function of the time step T at
tK 10, calculated for the oscillator in the continuous field (left panel) and in the field approximated by 4 kicks (right
panel), t [0, 10].

In the numerical experiments we consider the finite element grid 11 with 1000 elements of the order p =6
in the interval Xmax], where Xmjn 20, Xmax 20, and 0 < t < 10. We use the enclosed three time grids

10] with the step r taking the values - = 0.005, 0.0025, 0.00125 and examine the behavior of the function

Er2(t;i) = f[(x,t) _(x,t)]*{(x,t) -(x,t)]dx, (14)

where the index i = 1, 2, 3 labels the numerical solutions, obtained for different values of the time step 'i-. Having
these three values of Er(t; i), we can calculate the Runge ratio

Er(t 1) — Er(t 2)1M(t) = ln
lEr(t;2) — Er(t,3)1n2. (15)

Hence, we obtain the following theoretical estimates: ai(t) 2 for the scheme with M = 1, a2(t) 4 for the
scheme with M = 2 and a (t) 6 for the scheme with M = 3. In Fig. 3 one can see the declared rate of
convergence O(2M) with respect to i.

3.2. The Pöschl-Teller atom in a laser pulse field.
Now we consider the propagation problem (11) for the PT model with the potential function V(x) =— cosh2 x
that supports only one bound state

O(X) = 1/(Vcoshx),
with the eigenvalue E0 = —0.5 a.u. , and a continuum of scattering states

(+) 1 ilkl:Ftanhx
1,2E(x) = 7 1 + zIkl

exp(ikx)

with E = k2/2, 1 corresponding to k > 0, 2 corresponding to k < 0.28, 29 The laser pulse f(t) is given by

f(t) =
{fosin2 (t) ,o < t < 2t;0,t � 2t}

lgt lgt
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Figure 4. Real (solid) and imaginary (dashed) parts of the solution q(x, t) for PTA atom at t =T = 10 (left panel)
and logarithm of discrepancy Er(t; i), j = 1 2, 3 (dash-dotted, dashed and solid curves for schemes with M = 1,2, 3,
respectively) calculated using Fortran with quadruple precision (33 significant digits) (right panel).

where fo t = 1.

To approximate the solution /(x, t), i = 1, 2, 3, 4 we use 1600 finite elements with p = 6 and the finite
element grid

c = {—1500(200) — 300(200) — 20(200) — 1(400)1(200)20(200)300(200)1500},

where the numbers in brackets denote the number of finite elements in the intervals.

We calculated the above solution over the enclosed time grids 1l [t0 = 0, T = 1O} with four different time
steps r = 0.01, 0.005, 0.0025, 0.00125. Fig. 4 displays the wave function calculated at T = 10 and the behavior
of the discrepancies Er(t; i), j = 1 2, 3 evaluated using Eqs. (14) at M = 1, 2, 3. The Runge ratio was calculated
using Eq. (15) where the function /4(X, t) was used instead of the analytical solution (x, t) . The numerical
estimations of UM (t) and its mean value, aM 2Mare close to the theoretical ones.

4. THE KICKED HYDROGEN ATOM
5-kicks provide a widely used approximation of electric-field pulses that are much shorter than the classical
orbital period of the atom. The Hamiltonian of a kicked hydrogen atom in the presence of the constant magnetic
field parallel to the z axis is given by

H = H0 + Vext, H0 Vz, Vext (P)(t — sT), (16)

where S is the total number of kicks, T is the period of kicks, and P is the amplitude of the sth kick. The term
V accounts for the interaction of the atom with the magnetic field

ij3 22 2V() = --— + r [i3 + (1 — fir) sin 0], (17)

where /3 is the strength of the magnetic field and /3 is the quadruple deformation parameter.
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Figure 4. Real (solid) and imaginary (dashed) parts of the solution q(x, t) for PTA atom at t =T = 10 (left panel)
and logarithm of discrepancy Er(t; i), j = 1 2, 3 (dash-dotted, dashed and solid curves for schemes with M = 1,2, 3,
respectively) calculated using Fortran with quadruple precision (33 significant digits) (right panel).

where fo t = 1.

To approximate the solution /(x, t), i = 1, 2, 3, 4 we use 1600 finite elements with p = 6 and the finite
element grid

c = {—1500(200) — 300(200) — 20(200) — 1(400)1(200)20(200)300(200)1500},

where the numbers in brackets denote the number of finite elements in the intervals.

We calculated the above solution over the enclosed time grids 1l [t0 = 0, T = 1O} with four different time
steps r = 0.01, 0.005, 0.0025, 0.00125. Fig. 4 displays the wave function calculated at T = 10 and the behavior
of the discrepancies Er(t; i), j = 1 2, 3 evaluated using Eqs. (14) at M = 1, 2, 3. The Runge ratio was calculated
using Eq. (15) where the function /4(X, t) was used instead of the analytical solution (x, t). The numerical
estimations of UM (t) and its mean value, aM 2Mare close to the theoretical ones.

4. THE KICKED HYDROGEN ATOM
5-kicks provide a widely used approximation of electric-field pulses that are much shorter than the classical
orbital period of the atom. The Hamiltonian of a kicked hydrogen atom in the presence of the constant magnetic
field parallel to the z axis is given by

H = H0 + Vext, H0 Vz, Vext (P)(t — sT), (16)

where S is the total number of kicks, T is the period of kicks, and F8 is the amplitude of the sth kick. The term
V accounts for the interaction of the atom with the magnetic field

22Vzfr) = -- + r [i3 + (1 — 3) sin 0], (17)

where /3 is the strength of the magnetic field and /3 is the quadruple deformation parameter.
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We consider the model of unidirectional kicks (half-cycle pulses) and assume that the electric field coincides
with the z axis, SO that (rF) = zF. Therefore, the z component of the orbital angular momentum is conserved
and m is a magnetic quantum number. Furthermore, it is convenient to work with parabolic states. If the
magnetic field is absent (9 = 0), we utilize the following formulas for the orthogonal transformation relating the
parabolic states to the usual hydrogen atom states:

n—i n—lml

nin2mfr) = : L( = i: A2n2m(. (18)
1=fmI fll,fl20

Here n = 111 + 112 + ml + 1 is the principal quantum number, and the matrix elements A2 are known. Iii the
presence of the magnetic field the initial state (i is an eigenfunction of the Hamiltonian H0 . In the case of
weak magnetic fields this state can also be specified by the principal quantum number n.

4.1. Free evolution
In the interval between the (s — 1)th and sth kicks the atom evolves freely according to the TDSE

iD(t) = H0(t), ,t) e H' (R3 ® ((s — 1)T+,sT_)) , (19)

where T = T 0. The formal solution for the wave function b(t) b(i?, t) is given by

b(t + 6t) = exp(—i H06t)b(t). (20)

Using the above scheme in the time interval ((s — 1)T+, sT_), we obtain a set of equations

o =
I .(M) \ I (M)
I °: H0r I c H0r
'\

I + 2M ) k+(/M \I
+ 2M

(sT) = K ((=1,...,Mandk=1,...,K—1).

4.2. Single kick
To illustrate the computational algorithm for periodic S-kicks, we consider the Schrödinger equation for a single
kick at the moment t = sT:

i = [H0 — zF6(t — sT)](t), (t) e H'(R3 ® (sT_,sT)). (21)

The case of several kicks is then treated by repeating the computational steps outlined below for a single kick.
Thus, the same method also allows one to handle the cases of non-periodic and non-equal kicks as well as of
alternating kicks. We employ the following formula for calculating the wave function b(i?, sT) immediately after
the kick (t = sT)

sT+

sT) = exp Ho(sT — sT_) + izFf 6(t —
sT)dt]

sT_), (22)

where L( sT_) is the wave function before the kick (t sT_). Note that sT—sT_ —k 0 and ö(t—sT)dt 1.

Consequently, Eq. (22) is equivalent to the formula

b(,sT) =exp(iFz)b(,sT_). (23)

We consider the model of unidirectional kicks (half-cycle pulses) and assume that the electric field coincides
with the z axis, SO that (rF) =zF8. Therefore, the z component of the orbital angular momentum is conserved
and m is a magnetic quantum number. Furthermore, it is convenient to work with parabolic states. If the
magnetic field is absent (/3 = 0), we utilize the following formulas for the orthogonal transformation relating the
parabolic states to the usual hydrogen atom states:

n—i

fl2m = : L;fl( = i: A2n2m(. (18)
1=fmI Tll,fl20

Here n = ni + 112 + Imi + 1 is the principal quantum number, and the matrix elements A2 are known. Iii the
presence of the magnetic field the initial state bo(i?) is an eigenfunction of the Hamiltonian H0 . In the case of
weak magnetic fields this state can also be specified by the principal quantum number n.

4.1. Free evolution
In the interval between the (s — 1)th and sth kicks the atom evolves freely according to the TDSE

iD(t) = Ho(t), (t) e H' (R3 ® ((s — 1)T+,sT_)) , (19)

where T = T 0. The formal solution for the wave function L(t) ,(i?, t) is given by

'/(t + 6t) = exp(—i H06t)(t). (20)

Using the above scheme in the time interval ((s — 1)T+, sT_), we obtain a set of equations

o =

(
(M) (M)c( H0r c¼ H0

I+ 2M /5k+(/M = I + 2M

(sT) = K ((=1,...,Mandk=1,...,K—1).

4.2. Single kick
To illustrate the computational algorithm for periodic S-kicks, we consider the Schrödinger equation for a single
kick at the moment t = sT:

i t) [H0 — zF6(t — sT)]( t), t) e H'(R3 ® (sT_, sT+)). (21)

The case of several kicks is then treated by repeating the computational steps outlined below for a single kick.
Thus, the same method also allows one to handle the cases of non-periodic and non-equal kicks as well as of
alternating kicks. We employ the following formula for calculating the wave function sT) immediately after
the kick (t = sT)

sT+

sT) = exp Ho(sT — sT_) + izFsf (t —
sT)dt]

sT_), (22)

where L(7, sT_) is the wave function before the kick (t = sT_). Note that sT —sT_ —k 0 and ö(t—sT)dt E 1.

Consequently, Eq. (22) is equivalent to the formula

sT) = exp(iF5z)b(, sT_). (23)
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In practical calculations we utilize the similar approximate procedure

o =
I _(M) \ I (M)
I a I a Fz
\
I—

2M )b(/M
=

(I_ 2M

(sT) =
which conserves the unitarity and is correct up to the order O(IFsZII2M).

4.3. Galerkin representation
Performing the scaling transformations = v/n, = t/n2, T = T/n2 we present the solution as the Galerkin
expansion

(t) = : Xi(,t)Yim(O,), (24)

where Yim a spherical function and the value of the truncation number 1max depends on the parameters of the
external field. In what follows, we restrict ourselves to the initial states with m = 0.

Using Eq. (24), we obtain from Eq. (1) with the Hamiltonian (16) a set of equations for the radial wave
functions xT(,t) = {Xo(),Xi(,1), . . .,

i 32i) = {Ho() + [(i_ sr)] H(1)()}
x(,O) = x°) (25)

with the boundary conditions

12x() = 0, Xfrmax,t) = 0, (26)

and normalization conditions in the interval 0 < < inax

Jrma 2T( )x( 1)d
1 (27)

The matrix elements of the (imax + 1) X (lTnaT + 1) matrices H° and H' are given by

H?) = [11323+i(l+1)n]+2n42 {
+ (1 -

[i
_ 4(l+i- 1 412_ 1] } 6ii'

—
32(2l + 1)(21' + 1) (1 + 1' + 1) 2,1'-fl (28)

(1) - /(2l+1)(2l'+1) l+l'+l
H11, (r) = —nrF 2 (l+lt+1)2 _ 11,L1', (29)

If 3 = 0, then the initial state x( 0) = x° takes the form

x,O) = NjRj(r), where R1()
2(2ri1exp(—)

(n_i_l)!1F1
(—n + 1 + 1,21 + 2,2), (30)

N1 is the normalization constant (calculated using (27) with the prescribed accuracy), and 1F1 is the confluent

hypergeometric function. For 9 0 we can find O) = XThV from the eigenvalue problem for H0 by means of
the FEM code. For weak fields (3 << 1) we can also use the perturbation theory implemented in terms of the
irreducible representation of so(4, 2) algebra.22'26'35

In practical calculations we utilize the similar approximate procedure

o =
I _(M) \ I (M)
I c I a Fz
\
I—

2M )b/M I\I_
2M

b(sT) =
which conserves the unitarity and is correct up to the order O(IFszII2M).

4.3. Galerkin representation
Performing the scaling transformations = r/n, = t/n2, T = T/ri2 we present the solution as the Galerkin
expansion

(t) = : Xi(T,t)Ylm(O,), (24)

where Ytm jS a spherical function and the value of the truncation number 1max depends on the parameters of the
external field. In what follows, we restrict ourselves to the initial states with m = 0.

Using Eq. (24), we obtain from Eq. (1) with the Hamiltonian (16) a set of equations for the radial wave
functions xT() = {Xo(),Xi(), . . ., Xim(Tt)}

i D2i) {Ho() + [_ sr)] H(1)()} x,i, x(O) = x°) (25)

with the boundary conditions

i2x() = 0, X(Tmax,t) = 0, (26)

and normalization conditions in the interval 0 < < i1nax

(27)

The matrix elements of the (imax + 1) X (iTnax + 1) matrices H° and H' are given by

(0) 1 1 3 -2 a 1(1 + 1) n 2n4i2 I (1 + 1)2 12 )

H11, () =

n42(fl) (1+1' T
tz + (1 - 1 -

4(1 + 1)2 1 412 1

—
32(2l + 1)(21' + 1) (1 + 1' + 1) 2,1'-fl (28)

(1) - - /(2l + 1)(21' + 1) 1+1' +1
H11, (r) = —nrF8 2 (l+lt+1)2 _ 11,L1'I, (29)

If /3 = 0, then the initial state x(, 0) = (°) takes the form

0) = N1R1(), where R1()
2(2rexp(—)

(n— i—i)!
1F1 (—n+1+ 1,21+2, 2), (30)

N1 is the normalization constant (calculated using (27) with the prescribed accuracy), and 1F1 is the confluent
hypergeometric function. For 9 0 we can find O) = X" from the eigenvalue problem for H0 by means of

the FEM code. For weak fields (fi << 1) we can also use the perturbation theory implemented in terms of the
irreducible representation of so(4, 2) algebra.22'26'35
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4.4. Kantorovich representation
In the general case fi 0 we can present the solution as the Kantorovich expansion

=

Here 4j (6, p; i) are eigenfunctions of the parametric eigenvalue problem

(31)

-c)hm(i)4i(O, (p;i) 2 I (6,)sinOd6d =

U(r) and Q(r) are finite umax X rnax matrices whose elements are given by the relations

U(i) = E()
:
E( _ H() = H(i) = 2rf sin67!LdO,

Q() = —Q() = —2fsineidO, I = , i,j = 1,2,... ,max• (32)

The value of the truncation number umax depends on the parameters of the external field (/3, i9).

4.5. Scheme with total splitting of evolution operator
Thus, for evaluating the atomic evolution on a time grid

= = 0, +i = k + , Lax = Si, f = /K}
(k = 0, . . . , SK 1) the following computational algorithm is derived

=

___________ (M)H(o)(y= + -
2M

___________ (M)H(o)(y= 1+ 2M

(M)H(1) (j)= 1+
2M XsK;(-1)/M

I (M)H(o)(y1
Xk+/M

L1+ 2M

[

1+ 2M j
XsK;O

I

LI
+ 2M j

XsK = XsK;1,
= XSK (k=O,...,SK—1,s=1,...,S, (=1,...,M).

In case of M = 1 this scheme is reduced to the conventional splitting Crank-Nicholson algorithm for the kicked
atom.

1 8 8 m2\ m/32 n8hm() = - (ji- sin6 - jj) + V(), V() = —-r + 24[ + (1 - /3) sin2 6]

with eigenvalues E(i) at any fixed i. The matrix elements of (umax) X (umax) matrices H° and H' are given
by

_____ d 11 d[i2Q(i)x]H°) — "ii ____- -r d
() = I sin8d& (9, )(—nF8 cos O)j(6,

Jo

k + (/M sK,

k + (/M = sK,

4.4. Kantorovich representation
In the general case /3 0 we can present the solution as the Kantorovich expansion

=

Here 4j (9, p; i) are eigenfunctions of the parametric eigenvalue problem

(31)

-c)hm()4i(9, (p;) 2 I sin9d9d =

U(r) and Q(r) are finite umax X rnax matrices whose elements are given by the relations

U() = E()±E( + H() =H() =27rfsin97!d0,

Q() = —Q() = —2fsin9idO, Iii = ij, i,j = 1,2,... ,max• (32)

The value of the truncation number Timax depends on the parameters of the external field (3, /3).

4.5. Scheme with total splitting of evolution operator
Thus, for evaluating the atomic evolution on a time grid

= = 0, ii = 1k + , tmax = ST, f = T/K}

(k = 0, . . . , SK 1) the following computational algorithm is derived

= x(,o),
(M)H° (?)f=

2M

= 1+
2M Xk+((-1)/M

(M) H(')(i)= 1+
2M XsK;((-1)/M,

I

(M)H(O)(] Xk+(/ML1+

[ 1+ 2M
]

XsK;O

I (M)H(1)()]

LI
+ 2M

j

XsK;(/M

XsK = XsK;1,
x(Si) = XSK (k = 0,.. . ,SK — 1, s = 1,. . . , 8, (= 1,.. . , M).

In case of M = 1 this scheme is reduced to the conventional splitting Crank-Nicholson algorithm for the kicked
atom.

1 1 1 3 D m2 \ m/32 Ti8
hm() = —

çsinoao
sin9 —2) + V(?), V() = —--r + /32j4[/3 + (1 — fl) sin2 0]

with eigenvalues E(i) at any fixed i. The matrix elements of (umax) X (flmax) matrices H° and H' are given
by

H(?) — 3 Uj(?) 1 d 11 d[i2Q(i)x]
• —

2 d
H(r) f- = sin0d0(9, ip; iT)(—niF cos0)I(9, p; i)

0

k + (/M sK,

k + (/M = sK,
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Table 2. The values of o) and Er(t, j) calculated within the second-order (f = T/64), fourth-order (f = T/16), and
sixth-order = T/8) schemes for a train of identical six kicks with T = 1028 and F = 2 x iO. Here n = 5, lniax=6
and i =80.

S order Er(, 1) Er(1, 2) Er(, 3) a(i) s order Er(1, 1) Er(1, 2) Er(1, 3) a()
1 2nd 0.17123 0.04128 0.00828 1.97713 4 2nd 0.67243 0.16510 0.03320 1.94354

4th 0.07030 0.00473 0.00028 3.88197 4th 0.28125 0.01921 0.00199 3.92720
6th 0.04495 0.00861 0.00014 5.70142 6th 0.18148 0.00464 0.00095 5.58270

2 2nd 0.34128 0.08258 0.01658 1.97072 5 2nd 0.83054 0.20612 0.04146 1.92303

4th 0.14070 0.00954 0.00097 3.93554 4th 0.35029 0.02395 0.00183 3.88293
6th 0.09031 0.00202 0.00087 6.26054 6th 0.22551 0.00550 0.00100 5.60993

3 2nd 0.50887 0.12389 0.02491 1.95963 6 2nd 0.98214 0.24689 0.04971 1.89869
4th 0.21122 0.01441 0.00176 3.96044 4th 0.41848 0.02862 0.00198 3.87135

6th 0.13620 0.00343 0.00132 5.97308 6th 0.26911 0.00628 0.00103 5.64531

5. NUMERICAL RESULTS
In this Section we present the numerical results obtained using the computational method developed above. The
spatial part of the problem is treated by means of the FEM.

Let us introduce the time-dependent discrepancy functions

Er2(,j) = '! /Tma Xi(,1) — x (i) (33)
1=0 •'

where xT (i, 1) the numerical solution for the time step = I-/2i' , j 1, 2, 3. The function xi( 1)

corresponds to the time step /8. Using the values Er(1, j), we calculate the convergence rate a(i) of the
calculation scheme (33) as follows

- Er( 1) — Er(1 2)
Q(t) = log2 —;-;- . (34)

Er(t, 2) — Er(t, 3)

The functions Er(t, j) and a(i) have been examined in the case of a train of six identical kicks with T = 1028
and F = 2 x iO3. In order to determine the solution xr(1) in space, we employed the finite element grid
1l; = {min 0, (50), 10, (100), max 80}, where the numbers in round brackets stand for the numbers of
nodes in the corresponding intervals. Between each two nodes the Lagrange interpolation polynomials of the
sixth order have been applied. Table 2 presents the values of Er(, j) (see Eq. (33)) and a(I) (see Eq (34))
obtained using the second-order scheme (that amounts to the Crank-Nicholson scheme) and the implicit fourth-
and sixth-order schemes in the case n = 5 and 1nax 6. Here f = T/64 for the Crank-Nicholson scheme
and f = T/16 and T/8 for the implicit fourth-order and sixth-order schemes, respectively. As it can be clearly
seen, although the implicit schemes involve the larger time steps than the Crank-Nicholson scheme does,
however they provide a substantially better accuracy and the convergence rate in the interval [to ,6T] where
T = T/n2 = T/25. However, to have similar estimations on a more large time interval [to, tmaxl one needs to
use nonuniform grid , to choose the smaller time step f at least in the vicinity of the kick time moment, in
accordance with theoretical estimations (6), and to use high-precision calculation similar to shown in Fig. 4, or
to use diffused 5-functions with the Gaussian-like form-factor.27

Employing the sixth-order implicit scheme, we performed the calculations for the same situation as in Ref.,3°
where the evolution of initial parabolic state n1 = 4, 2 = 4, m = 0) in a train of kicks with the period
T = 5357 and the strength F = 2 x i0 was investigated. The numerical results for the probabilities P9 =
i:= (9, 1, 0b(t))2 and P10 = i:= (10, 1, OI'/(t))2 are shown in Fig. 5a. They markedly agree with those
of Ref. •30 In accordance with T = 2ir/[1/2n2 1/2(n + 1)2] the period T = 5357 corresponds to a resonance
regime between the two states with n = 9 and n = 10, respectively. However, as noted in Ref.,3° the observed
picture is more complicated than a two-state resonance due to the damping arising from ionization arid Rabi-like
oscillations. Recall that the value of magnetic quantum number (m = 0) is conserved.

Table 2. The values of c(t) and Er(1, j) calculated within the second-order ( = T/64), fourth-order ( = T/16), and
sixth-order ei: T/8) schemes for a train of identical six kicks with T = 1028 and F = 2 x iO. Here n = 5, lniax=6
and =80.

S order Er(, 1) Er(1, 2) Er(, 3) a(1) s order Er(, 1) Er(1, 2) Er(1, 3) a()
1 2nd 0.17123 0.04128 0.00828 1.97713 4 2nd 0.67243 0.16510 0.03320 1.94354

4th 0.07030 0.00473 0.00028 3.88197 4th 0.28125 0.01921 0.00199 3.92720
6th 0.04495 0.00861 0.00014 5.70142 6th 0.18148 0.00464 0.00095 5.58270

2 2nd 0.34128 0.08258 0.01658 1.97072 5 2nd 0.83054 0.20612 0.04146 1.92303
4th 0.14070 0.00954 0.00097 3.93554 4th 0.35029 0.02395 0.00183 3.88293
6th 0.09031 0.00202 0.00087 6.26054 6th 0.22551 0.00550 0.00100 5.60993

3 2nd 0.50887 0.12389 0.02491 1.95963 6 2nd 0.98214 0.24689 0.04971 1.89869
4th 0.21122 0.01441 0.00176 3.96044 4th 0.41848 0.02862 0.00198 3.87135

6th 0.13620 0.00343 0.00132 5.97308 6th 0.26911 0.00628 0.00103 5.64531

5. NUMERICAL RESULTS
In this Section we present the numerical results obtained using the computational method developed above. The
spatial part of the problem is treated by means of the FEM.

Let us introduce the time-dependent discrepancy functions

Er2(,j) =! /Tma Xi( xT3(O2d (33)
1=0 •'

where (' 1) is the numerical solution for the time step Fj = /2', j = 1, 2, 3. The function Xi(, 1)
corresponds to the time step f/8. Using the values Er(, j), we calculate the convergence rate a(I) of the
calculation scheme (33) as follows

- Er( 1)—Er( 2)
Q(t) = log2 —;-;:- . (34)

Er(t, 2) — Er(t, 3)

The functions Er(t, j) and a() have been examined in the case of a train of six identical kicks with T = 1028
and F = 2 x iO—3. In order to determine the solution x?(i) in space, we employed the finite element grid
117; = {imin _ 0, (50), 10, (100), max 80}, where the numbers in round brackets stand for the numbers of
nodes in the corresponding intervals. Between each two nodes the Lagrange interpolation polynomials of the
sixth order have been applied. Table 2 presents the values of Er(, j) (see Eq. (33)) and (i) (see Eq (34))
obtained using the second-order scheme (that amounts to the Crank-Nicholson scheme) and the implicit fourth-
and sixth-order schemes in the case n = 5 and 1nax 6. Here = T/64 for the Crank-Nicholson scheme
and = T/16 and T/8 for the implicit fourth-order and sixth-order schemes, respectively. As it can be clearly
seen, although the implicit schemes involve the larger time steps f than the Crank-Nicholson scheme does,
however they provide a substantially better accuracy and the convergence rate in the interval [to, 6T] where
T = T/n2 = T/25. However, to have similar estimations on a more large time interval [to, tmax] one needs to
use nonuniform grid , to choose the smaller time step f at least in the vicinity of the kick time moment, in
accordance with theoretical estimations (6), and to use high-precision calculation similar to shown in Fig. 4, or
to use diffused 5-functions with the Gaussian-like form-factor.27

Employing the sixth-order implicit scheme, we performed the calculations for the same situation as in Ref.,3°
where the evolution of initial parabolic state n1 = 4, n2 = 4, m = 0) in a train of kicks with the period
T = 5357 and the strength F = 2 x i0 was investigated. The numerical results for the probabilities P9 =
>i:= 1(9, 1 0Ib(t))2 and P1o = i:= (10, 1, 0I'/(t))2 are shown in Fig. 5a. They markedly agree with those
of Ref. In accordance with T = 2rr/[1/2n2 1/2(n + 1)2] the period T = 5357 corresponds to a resonance
regime between the two states with n = 9 and ii = 10, respectively. However, as noted in Ref.,3° the observed
picture is more complicated than a two-state resonance due to the damping arising from ionization arid Rabi-like
oscillations. Recall that the value of magnetic quantum number (m = 0) is conserved.
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Table 3. The first- and second-order perturbation theory corrections and , respectively, for a hydrogen atom in
a magnetic field with strength /3 = 1.472 x iO in the cases ,I3 = 0 and 13 = 2. The FEM corrections 5Egai Egai E°
and 5Ekant Ekani E° to the unperturbed value E° = —1/2n2 for n = 9 (E° = —6.1728395 x 1O) calculated by
Galerkin and Kantorovich methods are also shown. All energy values are scaled to iO.

/3 =0 fi=2

0

.,(1)

pt
0.414 1701

.,(1) .,(2)

-'yt + pt
0.414 1576

°-gal
0.414 1579

0—'kant
0.414 1840

-,(1)

1-apt

3.05 385

(1)

pt +
3.05 369

(2)

pt gal
3.05 369

2U kant
3.05 371

1 0.418 4732 0.418 4596 0.418 4599 0.418 4862 3.69 134 3.69 112 3.69 112 3.69 115

2 0.916 5774 0.916 5585 0.916 5586 0.916 5684 4.17 005 4.16 979 4.16 979 4.16 979
3 1.105 188 1.105 147 1.105 147 1.105 162 4.74 866 4.74 831 4.74 831 4.74 832

4 1.499 518 1.499 452 1.499 452 1.499 470 4.81 374 4.81 340 4.81 340 4.81 340

5 1.981 345 1.981 247 1.981 247 1.981 264 6.02 268 6.02 214 6.02 214 6.02 214

6 2.566 782 2.566 648 2.566 649 2.566 671 6.02 298 6.02 244 6.02 244 6.02 244

7 3.252 108 3.251 935 3.251 936 3.251 968 7.82 700 7.82 621 7.82 621 7.82 621

!_ 4.036 587 4.036 373 4.036 373 4.036 436 7.82 700 7.82 621 7.82 621 7.82 621

Let us turn to the situation when the hydrogen atom is kicked in the presence of magnetic field parallel to
the z axis. We take the magnetic field strength 3 = 1.472 x i0 which is typical for the magnetic 332
Note that such a field strength is also of interest for the studies of recombination processes involving the excited
states with ri = 8, 9, . . . , 19 and the metastable state with n = 2 of an antihydrogen atom, where the Lamb shift
can be observed and thus the CPT invariance can be tested.33 Table 3 shows the results of the present FEM
calculations for energy eigenvalues of the multiplet I = 9, v = 0 . . . n — 1, m). The case /3 = 0 amounts to the
well-known quadratic Zeeman effect, while the case = 2 resembles the van der Waals interaction between an
atom and a metallic surface (see, e.g., the paper34 and references therein). The energy corrections calculated
using FEM coincide with those of the first-order perturbation calculations up to the fourth digit.

We inspected the possibility of realizing the two-state resonance regime for the Zeeman states. Fig. 5b shows
the numerical results for the probabilities P9 and P10 in the case fl = 0 for the initial Zeeman state
I = 9, v = 0, m) that, according to Table 3, has the minimal energy within the n =9 manifold. In contrast to
the results presented in Fig. 5a, a marked signature of two-state resonance regime is observed. A slight decay
of the total probability P9 + P1o is also observed. The role of the initial Zeeman state in the realization
of the two-state resonance regime can be seen from Fig. 5c, namely, the picture obtained for the initial state
Iri = 9, v = 8,in = 0), which has the maximal energy within the n = 9 manifold in the case fi = 0, is more
complicated than the two-state resonance picture obtained for fn = 9, v = 0,m = 0). Finally, the role of the
external field configuration (17) is reflected in Fig. 5d, where the probabilities Pn9 and Pn10 for the initial
state ITt = 9, ii = 0,m) in the case fl = 2 are presented. The results resembling those in Fig. 5a exhibit no clear
signature of the two-state resonance regime.

6. CONCLUSION
A new computational approach is proposed for the solution of the time-dependent Schrödinger equation (TDSE),
in which the numerical scheme based on the finite-element method (FEM) is efficiently incorporated. Multi-layer
operator-difference schemes for TDSE with the effective Hamiltonians are constructed from the original time-
dependent Hamiltonian by means of the Magnus expansion and the Pade-approximation. In order to solve the
TDSE with the effective Hamiltonian thus obtained, the FEM is applied for the discretization of the spatial
domain which brings the operator-difference scheme to the algebraic form. The additional gauge transformation
of the operator-difference schemes is applied to improve the finite-element discretization. The efficiency and
accuracy of the numerical scheme associated with Galerkin and Kantorovich reduction with respect to the
angular variables and FEM with respect to the radial variable is confirmed in the second-, fourth-, and sixth-
order time-step computations for several integrable atomic models with external fields. Our approach would be

Table 3. The first- and second-order perturbation theory corrections and , respectively, for a hydrogen atom in
a magnetic field with strength 3 = 1.472 x iO in the cases /3 = 0 and = 2. The FEM corrections 5Egai Egai E°
and äEkant Ekani E° to the unperturbed value E° = —1/2n2 for n = 9 (E° = —6.1728395 x 1O) calculated by
Galerkin and Kantorovich methods are also shown. All energy values are scaled to iO.
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1 0.418 4732 0.418 4596 0.418 4599 0.418 4862 3.69 134 3.69 112 3.69 112 3.69 115
2 0.916 5774 0.916 5585 0.916 5586 0.916 5684 4.17 005 4.16 979 4.16 979 4.16 979

3 1.105 188 1.105 147 1.105 147 1.105 162 4.74 866 4.74 831 4.74 831 4.74 832

4 1.499 518 1.499 452 1.499 452 1.499 470 4.81 374 4.81 340 4.81 340 4.81 340

5 1.981 345 1.981 247 1.981 247 1.981 264 6.02 268 6.02 214 6.02 214 6.02 214

6 2.566 782 2.566 648 2.566 649 2.566 671 6.02 298 6.02 244 6.02 244 6.02 244

7 3.252 108 3.251 935 3.251 936 3.251 968 7.82 700 7.82 621 7.82 621 7.82 621

!_ 4.036 587 4.036 373 4.036 373 4.036 436 7.82 700 7.82 621 7.82 621 7.82 621

Let us turn to the situation when the hydrogen atom is kicked in the presence of magnetic field parallel to
the z axis. We take the magnetic field strength j3 = 1.472 x i0 which is typical for the magnetic 332
Note that such a field strength is also of interest for the studies of recombination processes involving the excited
states with ri = 8, 9, . . . , 19 and the metastable state with n = 2 of an antihydrogen atom, where the Lamb shift
can be observed and thus the CPT invariance can be tested.33 Table 3 shows the results of the present FEM
calculations for energy eigenvalues of the multiplet I = 9, = 0 . . . ii — 1, m). The case /3 = 0 amounts to the
well-known quadratic Zeeman effect, while the case fl = 2 resembles the van der Waals interaction between an
atom and a metallic surface (see, e.g., the paper34 and references therein). The energy corrections calculated
using FEM coincide with those of the first-order perturbation calculations up to the fourth digit.

We inspected the possibility of realizing the two-state resonance regime for the Zeeman states. Fig. Sb shows
the numerical results for the probabilities P9 and P10 in the case fl = 0 for the initial Zeeman state
I = 9, v = 0, m) that, according to Table 3, has the minimal energy within the n = 9 manifold. In contrast to
the results presented in Fig. 5a, a marked signature of two-state resonance regime is observed. A slight decay
of the total probability P9 + Pn10 S also observed. The role of the initial Zeeman state in the realization
of the two-state resonance regime can be seen from Fig. Sc, namely, the picture obtained for the initial state
Iri = 9, ii = 8, in = 0), which has the maximal energy within the n = 9 manifold in the case fi = 0, is more
complicated than the two-state resonance picture obtained for fn = 9, v = 0, m = 0). Finally, the role of the
external field configuration (17) is reflected in Fig. 5d, where the probabilities P9 and Pio for the initial
state I = 9, ii = 0, m) in the case /3 = 2 are presented. The results resembling those in Fig. Sa exhibit no clear
signature of the two-state resonance regime.

6. CONCLUSION
A new computational approach is proposed for the solution of the time-dependent Schrödinger equation (TDSE),
in which the numerical scheme based on the finite-element method (FEM) is efficiently incorporated. Multi-layer
operator-difference schemes for TDSE with the effective Hamiltonians are constructed from the original time-
dependent Hamiltonian by means of the Magnus expansion and the Pade-approximation. In order to solve the
TDSE with the effective Hamiltonian thus obtained, the FEM is applied for the discretization of the spatial
domain which brings the operator-difference scheme to the algebraic form. The additional gauge transformation
of the operator-difference schemes is applied to improve the finite-element discretization. The efficiency and
accuracy of the numerical scheme associated with Galerkin and Kantorovich reduction with respect to the
angular variables and FEM with respect to the radial variable is confirmed in the second-, fourth-, and sixth-
order time-step computations for several integrable atomic models with external fields. Our approach would be
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Figure 5. The occupation probabilities P9 and P10 for the initial: a) parabolic state In = 9,ni = 2 = 4,m = 0),
b) Zeeman state I = 9,ii = 0,m = 0) at = 0, c) Zeeman state In = 9,v = 8,m = 0) at f3 = 0, d) Zeeman state
I= 9,' = 0,rn = 0) at 13 = 2.

worth being applied to the quantum control problem, some pre-experimental calculations in the atomic dynamics
in traps and/or external pulse fields.
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