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ABSTRACT

A new efficient method of calculating the photoionization of a hydrogen atom in a strong magnetic field is
developed basing on the Kantorovich approach to the parametric boundary problems in spherical coordinates.
The progress as compared with our previous paper [SPIE Proc. 6165, p. 66-82, (2006)] consists in computation
of the wave functions of continuous spectrum, including the quasi-stationary states imbedded in the continuum.
The photoionization cross sections for the ground and excited states are in good agreement with the calculations
by other authors.
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1. INTRODUCTION

In recent decades the dynamics of transient processes in magnetic traps, such as excitation, de-excitation, ion-
ization, recombination of ions and atoms, became a subject of intense experimental and theoretical studies.!™3
Recently a new mechanism of formation of metastable positive-energy atoms via quasi-stationary states* due to
the magnetic field was revealed. The most complicated case when the magnetic energy is comparable to that of
Coulomb interaction requires really stable numerical schemes for the states of discrete and continuous spectra,
including the quasi-stationary states, analogous to well-known doubly excited states of helium atom.>”

In the present paper we develop the Kantorovich method (i.e. the reduction of the boundary problem for
elliptical partial differential equation in a 2D domain to a regular boundary problem for a set of ordinary
second-order differential equations with variable coefficients with the boundary conditions of the third kind)
in the form, appropriate for R-matrix calculations of the continuous spectrum and photoionization of atomic
hydrogen in a strong magnetic field.® The solution depending on the radial variable r and the angular variable
7 = cos® = z/r with fixed values of the magnetic quantum number m and z-parity o is expanded using the
basis set of oblate spheroidal functions, which is orthogonal at fixed values of the radial variable. A matter of
principle in the implementation of Kantorovich method is how to calculate the matrix of the variable coefficients,
expressed as angular integrals involving the derivatives of the angular functions with respect to a parameter,
keeping the accuracy the same as for the angular functions themselves. This is achieved by calculating the
mentioned derivatives as solutions of inhomogeneous boundary problem that results from differentiation of the
ordinary second-order differential equation for the spheroidal functions with respect to the parameter and the
corresponding algebraic eigenvalue problem, for which a stable symbolic-numerical algorithm is developed.® The
stability of the computational scheme is achieved using the fact that at small » (in the vicinity of pair collision
point) the angular functions turn into the associated Legendre polynomials, while at large r near n = +1
they turn into the Laguerre functions. This makes it possible to construct asymptotic expansions in powers of
r~2, necessary for computer-accuracy calculation of the basis set of functions at all values of the parameter r.
Substantial economy of computer resource in the numerical solution of the boundary problem for the set of radial
equations is achieved by decreasing the integration interval 0 < r < ... In the present paper for large r > rpax
new asymptotic expansions of the fundamental solutions of the radial equations are constructed in the basis of
linear combinations of Coulomb regular and irregular functions and their derivatives. This is an important step
forward compared with our previous work,® in which the basis included only the dominant asymptotic terms
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of the Coulomb regular and irregular functions. The capabilities of the computational scheme are demonstrated
by the example of photoionization cross-section of a hydrogen atom in magnetic field.

The paper is organized as follows. In Section 2 the 2D-eigenvalue problem for the Schrodinger equation
in cylindrical coordinates, describing a hydrogen atom in an axially symmetric magnetic field, is considered
together with the appropriate classification of states. The reduction of the 2D-eigenvalue problem to a 1D-
eigenvalue problem for a set of closed longitude equations via both the Kantorovich and Galerkin methods is
described briefly. It is shown that Galerkin expansion follows from Kantorovich expansion at z — co. In Section
2.3 the relation between the function with given parity and the function with physical scattering asymptotic form
in cylindrical coordinates is established. In Section 3 the 2D-eigenvalue problem for the Schrédinger equation in
spherical coordinates, describing a hydrogen atom in an axially symmetric magnetic field, is considered together
with the appropriate classification of states. The reduction of the 2D-eigenvalue problem to a 1D-eigenvalue
problem for a set of closed radial equations via four steps of the Kantorovich method is described briefly in
Section 3.1. Asymptotic expressions using regular and irregular Coulomb functions needed to determine the
solutions and the reaction matrix by means of the R-matrix method, are presented in Section 4. The method is
applied to the ionization of the low-lying states in Section 5. In Section 6 the numerical results obtained within
the framework of the finite-element method are discussed. In Conclusion we outline the perspectives of further
applications of this approach.

2. STATEMENT OF THE PROBLEM IN CYLINDRICAL COORDINATES

In cylindrical coordinates (p, z, ) the wave function

Flp.z,0) = W(p, ) "D )

of a hydrogen atom in an axially symmetric magnetic field B= (0,0, B) satisfies the 2D Schrodinger equation

0? : 27
———=U(p,2)+ | A — —— | Y(p,2) = e¥(p, 2), 2
- 19 0 m? v p?
Ac = ——7 P55 5 1
p@pp8p+p2 +my+ 1 (3)
in the region Q. 0 < p < 0o and —o0 < z < oco. Here m = 0,=£1,... is the magnetic quantum number,

v = B/By, By = 2.35 x 10° T is a dimensionless parameter which determines the field strength B. We use the
atomic units (a.u.) i = m, = e = 1 and assume the mass of the nucleus to be infinite. In these expressions
e = 2E, E is the energy (expressed in Rydbergs, 1 Ry = (1/2) a.u.) of the bound state |mo) with fixed values
of m and z-parity o = £1, and ¥(p, z) = ¥ (p,z) = U™ (p, —%) is the corresponding wave function. The
boundary conditions in each mo subspace of the full Hilbert space have the form

lim pM =0, for m=0, and ¥(0,2)=0, for m#0, (4)
p—0 dp

lim ¥(p,z) =0. (5)
p—oo

The wave function of the discrete spectrum obeys the asymptotic boundary condition. Approximately this
condition is replaced by the boundary condition of the first type at large, but finite 2 = 2. > 1, namely,

hrf U(p,z) =0 — Y(p,Ltzpax) =0. (6)

These functions satisfy the additional normalization condition
o0 oo
| [ 1w 0R gz =1 (7)

The asymptotic boundary condition for the continuum wave function will be considered in the subsection 2.3.
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2.1. Kantorovich expansion

Consider a formal expansion of the partial solution W™ (p, z) of Egs. (2)~(5), corresponding to the eigenstate

|mai), expanded in the finite set of one-dimensional basis functions {Ci)}”(p; z) e

Jmax

P (p2) = 3 8 (s )X (E, 2). (8)
j=1

In Eq. (8) the functions ¥V (2) = %™V (E, 2), (X (2))T = (ﬁl)(z), . ,ngdx(z)) are unknown, and the surface
functions ®(p;2) = " (p;2) = ®" (p;—2), (B(p;2))" = (D1(ps2),..., ®
for each value of the variable z which is treated as a parameter.

(p; z)) form an orthonormal basis

Jmax

In the Kantorovich approach the wave functions & i (p; z) and the potential curves Ej (2) (in Ry) are determined
as the solutions of the following one-dimensional parametric eigenvalue problem

. 27 . .
(Ac - W) ©j(p;2) = Bj(2)2;(p; 2), 9)
with the boundary conditions
& (o .

lim pw =0, for m=0, and ®;(0;2)=0, for m#0, (10)
p—0 ap
lim ®;(p;z) = 0. (11)
p—00

Since the operator in the left-hand side of Eq. (9) is self-adjoint, its eigenfunctions are orthonormal

<<i>i<p;z>

@j(p;2)> :A O;(p; 2)®;(p; 2)pdp = b5, (12)
P

where ;5 is the Kronecker §-symbol. Therefore we transform the solution of the above problem into the solution
of an eigenvalue problem for a set of jyax ordinary second-order differential equations that determines the energy
e and the coefficients XV (z) of the expansion (8)

? - aovd dQE) Y ciyy el
(—I@ +0(2) + Q) + B9 30 = 150, (13)
Here I, U(z) = U(—2) and Q(z) = —Q(—2) are the jmax X jmax Mmatrices whose elements are expressed as

Ez(z) + Ej(z)

Uij(2) = 9 0ij + Hij(2), Ly = by,

2 2 *° 5@)1 5 8@) 5

iy(e) = o) = [ SR ORI g, (1)
A R o D (p:

Qij(2) = —Qji(2) = —A <I>i(p;Z)—(I)Ja(5’Z)pdp.

The discrete spectrum solutions obey the asymptotic boundary condition and the orthonormality conditions

) . Zmax . T .
im XP(2) =0 — % (£zmax) =0, / (;z@(z)) 9 (2)dz = 6. (15)

Zmax
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2.2. Galerkin expansion

Consider a formal expansion of the partial solution W™ (p, z) of Eqs. (2)(5) corresponding to the eigenstate
lmai), in terms of the finite set of one-dimensional basis functions {®}"(p)}725"

Jmax

U (o) = 3 B ()" (B 2). (16)

In the Galerkin approach the wave functions ®;(p) = &);’L(p) and the potential curves E; (in Ry) are determined
as the solutions of the following one-dimensional eigenvalue problem

Acd;i(p) = E;;(p), (17)
with the boundary conditions
lim pM =0, for m=0, and ®;0)=0, for m#0, (18)
p—0"  dp
lim ®;(p) = 0. (19)
p—00

The above eigenvalue problem has the exact solution at fixed m

[m]

- 7N 1PN\ (12PN i (1P ~
Oi(p) = ([t R  ehy 1 20
J(Io) (Np—|—|m|)!eXp< 4 9 N, 2 ) J ’7( P+‘m‘+m+ )’ ( )

where N, = j — 1 is the transversal quantum number and LK,’:‘ (z) is the associated Laguerre polynomial. Note,
that Galerkin expansion follows from Kantorovich expansion at z — oo, i.e.,

®j(p)= _lim o7t @;(pr),  lim r2ES(r) = €p;(y) = 12N, + |m| +m + 1). (21)

r—oo,n~=*1 r—o0

Therefore we transform the solution of the above problem into the solution of an eigenvalue problem for a set of
Jmax ordinary second-order differential equations that determines the energy e and the coefficients )2(1) (2) of the
expansion (16)

(1.5 +06) 296 = 12(0), #)

and the matrix U(z) = U(—z) is expressed as

_Ei+Ey

0is(2) 5+ Hijl2), Hiy(z) = Hyu(z) = / T 8i(0) 22, (p)pdp. (23)

The discrete spectrum solutions obey the asymptotic boundary condition and the orthonormality condition

Zmax

. . . T .
lim xP() =0 — %D (Ezmax) =0, / (;z“)(z)) 9 (2)dz = 6,;. (24)

z—Fo0

Zmax

2.3. Relation between the parity functions and the functions having physical scattering
asymptotic form in cylindrical coordinates

The asymptotic form of the coefficients x™ (z) of the expansion (16) (or '™ (2) of the expansion (8)) with fixed
m, o and € = 2F for n-th solution in open channels is

Afin/n z
%COS pn/z+mﬁln@pn/|z|)+é5+1n , o=+1,
z
P

—(Lf%;:/n Sin Pn' 2 + Tﬁ ln(2pn/ |Z‘> + ﬁd—ln ) o= 71’

(25)

XEma'n/n(Z i :l:OO) =
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where p,, = \/2E —€eth > 0and n,n’ =1,..., Ny, 05y, = 07 +0¢, — (04 1)7/4 are the phase shifts, 67 and d¢ are
the eigenchannel short-range and Coulomb phase shifts, agn/, = C9,,, are the amplitudes or mixed parameters
defined in section 5, and N, = maxyp>n 1 is the number of open channels. Eq. (25) is rewritten in the matrix

form so that

{ s X ()AL + X0 ()A*+17 o=+ S0
IXO()A 4 — AXO()AS,, o=-1, ° ’
Xpo (2 — £00) = 1X(+)( )AL, + %X(—)(Z)AJA7 o=+1, 2 <0 (26)
IXWE)A, - EXO AL, o=-1, 0 *5
where
@) 12 Z z
Xn/n (Z) _ pn/ eXp :tlpn/Z :t 127|7| ln(zpn’ |Z|) 5nln7 Ao’n/n = Qgn'n eXp(l(so'n)- (27)

On the other hand, the function that describes the incidence of the particle and its scattering, having the
asymptotic form “incident wave 4+ waves going out from the center”, is

X ()T, z >0, b=
“ B X(+)(z) +X(= )(Z)B, 2<0, "’ =,

X g (2 = £00) = X (2) + XH ()R, z>0, b= 2
XO(2)T, 2<0, 7

where T and R are the transmission and reflection matrices, TIT+RIR = Ioo, ¥ is marked the initial direction
of the particle motion along the z axis, and I,, is the unit N, x N, matrix. Note, that due to the symmetry
of the scattering potential the transmission and reflection coefficients are independent of the direction of the
incident wave vector.

This wave function may be presented as a linear combination of the solutions having positive and negative
parity

X (2) = Xp41(2)By1 £ ixp, -1 (2)B 1. (29)
It is easy to show that B, = [A%]~!, and
T =

(A+1B+1 + A_lB_l) = (_S-H - S—1)7 (30)

where S, is the scattering matrix at fixed 0. However, to calculate the ionization cross section it is necessary to
use the function having the asymptotic form “waves going into the center + outgoing wave”, that is

X2 (2) = X 41 (2) B £ oxp 1 (2)By. (31)

Note, that (XEE?_:) (z))* = XS:) (2). The functions are normalized so that

jm'lx
/ XE’mv 'm!"n! ( )) Xg_niyn”n( )dz = 27T5(E/ - E)(S{)/{)(Sn/n. (32)
n''=1

The S-matrix may be composed of the transmission and reflection coefficients

This matrix is unitary, since TIT + RIR = I, and R'T + TTR =
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To calculate the ionization it is convenient to use the function renormalized to §(E’' — E), i.e., divided by

V2r

Jmax Jmax
. B exp(zmgo ~(2) . _ exp(umyp) ; o)
|EomN,) = ——— E D, (z) or |EvmN,) = o E/_l Qo (03 2)X B (2),  (34)

XEmvn n
n/=1

where N, = n — 1. The expression for the cross section of ionization by the light linearly polarized along z is

N,—1

0" = 4’ aw Z Z|<E@mNp\z|Nlm>|2a%. (35)
N,=0 @

In the above expressions w = E — Eny, is the frequency of radiation, Enyy, is the energy of the initial bound
state |[Nlm), a is the fine-structure constant, ag is the Bohr radius.

For the recombination the wave function should be renormalized to one particle per the unit of length in the
incident wave

jmax JII](LX
exp zm<p exp zmcp
lvmN,) = \/Dn——— Z D, XEmvn W(2) or |vmN,) =\/pn——— Z D,/ (p; 2 XEmm o (2), (36)
n’=1 n’/=1

where v = 9p, and N, = n — 1. The expression for the rate of recombination induced by the light linearly
polarized along z for the particle, initially moving in the channel N, with the velocity v has the form

N-1 0
ANC(v) = 4x*al Y > |(Nlm|zlomN,)[*6(E - Engm — w)ag, (37)
=0 m=—1
I being the intensity of the incident light.

For the light circularly polarized in the plane Oy the above expressions read as

No—1
o = Ar0w Z Z [{Edm + 1Np|é’iﬂNlm>|2ag, (38)
N,=0 %
N-1 0
ARC(v) = dx®al Y > [(Nim £ 1|eeromN,) P6(E = Exim — w)ag, (39)
=0 m=-1

where the complex unit vectors are €1 = %Z:I: %j

3. STATEMENT OF THE PROBLEM IN SPHERICAL COORDINATES

In spherical coordinates (r, 6, ¢) the Eq. (2) can be rewritten as follows

<_7112367: 2; 4 1 A(p) — 2TZ> U(r,n) = e¥(r,n), (40)

in the region : 0 < r < oo and —1 <7 =cosf < 1. Here /l(p) is the parametric Hamiltonian

Ap) =~ 51 - o 2 (1), (41)

an
and p = yr?/2, and ¥(r,n) = V™ (r,n) = c¥™(r,—n). The sign of z-parity, o = (—1)V7, is defined by the
number of nodes N,, of the solution ¥(r,n) with respect to the variable n. We will also use the scaled radial

variable 7 = r,/7, the effective charge Z =27 V7, and the scaled energy é = ¢/ or E = E/~. Practically it
means replacing v with 1 and multiplying Z by 1/,/7 and € or E by 1/v in all equations above.
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The boundary conditions in each mo subspace of the full Hilbert space have the form

oV (r,n)

lim (1 -7*)—=-% =0, for m=0, and U(r,+1)=0, for m#0, (42)
n—=+1 on
. oY (r,n)
2 )
}%T . 0. (43)

The wave function of the discrete spectrum obeys the asymptotic boundary condition. Approximately this
condition is replaced by the boundary condition of the first type at large, but finite r = ry .y, namely,

lim r2U(r,n) =0 —  U(rpax,n) =0. (44)

T—00

In the Fano-Lee R-matrix theory!% ! the wave function of the continuum ¥(r,n) obeys the boundary con-
dition of the third type at fixed values of the energy e and the radial variable r = 7y«

w —u¥(r,n) =0. (45)

Here the parameters p = p(rmax, €), determined by the variational principle, play the role of eigenvalues of the
logarithmic normal derivative matrix of the solution of the boundary problem (40)-(43), (45).

3.1. Kantorovich expansion

Consider a formal expansion of the partial solution WE™7 (r ) of Eqs. (40)—(43) with the conditions (44), (45),

corresponding to the eigenstate [mai), in terms of the finite set of one-dimensional basis functions {77 (n; ) ?“:‘af‘

jlnax
WEm () = 37 @ (s )7 (B, ). (46)
j=1
In Eq. (46) the functions x@ (r) = x™)(E,r), (xD ()T = (P (r),. .. >X§'2ax(r)) are unknown, and the sur-
face functions ®(n;7) = @7 (n; 1) = o @™ (—n;7), (®(n;r)T = (®1(n;7),...,®
basis for each value of the radius r which is treated as a parameter.

(n;7)) form an orthonormal

Jmax

In the Kantorovich approach the wave functions ®;(n; ) and the potential curves E;(r) (in Ry) are determined
as the solutions of the following one-dimensional parametric eigenvalue problem

A(p)®;(n; ) = E;(r)®;(n;7), (47)
with the boundary conditions
(p . .
lim (1 - UZ)M =0, for m=0 and ®;(+l;r)=0, for m#0. (48)
n—=+1 on

Since the operator in the left-hand side of Eq. (47) is self-adjoint, its eigenfunctions are orthonormal

<‘1>i(n; r)

<1>j(?7ﬂ“)> =/ ;i (n;7) @ (n;7)dn = 045 (49)

n —1

Note, that the solutions of this problem with shifted eigenvalues, E;(r) = E;(r) — 2pm, correspond to the

solutions of the eigenvalue problem for oblate angular spheroidal functions!?

A(p)®;(m;r) = E;(r)®;(; ), (50)
where A(p) = A(p) — 2pm. It means that for small p the asymptotic behavior of the eigenvalues E;(r), j =
1,2,... at fixed values of m and o is determined by the values of the orbital quantum number, [ = s,p,d, f,...:

E;(0) =1(1+1),1=0,1,..., where j runs j = (I — |m|)/2 + 1 for even z-parity states, o = +1 = (—1)!~I"I and
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§ = (I —|m| +1)/2 for odd z-parity states, 0 = —1 = (—1)*~I"|. Taking into account the fact that the number
of nodes N, of the eigenfunction ®(n;r) at fixed m and o = (—1)V» does not depend on the parameter p, we
get the one-to-one correspondence between these sets, i.e., N =1 — |m].

For large r the asymptotic behavior of the eigenfunctions ®;(n;r) and eigenvalues E;(r) at fixed values of m
and o is determined by the value of the transversal quantum number, N, = j — 1 (see Egs. (20) and (51))
Bi(p) = _lim | r®pr),  Jim 2B () = ey (7) = 9(2N, + ] +m 1), (51)
The transversal quantum number N,, i.e., the number of nodes of the eigenfunction @7 (n;r) in the subin-
terval 0 < p < 1 or =1 < 1 < 0, can be expressed via N, as follows: N, = N, /2 for the even z-parity
states, 0 = 41, and N, = (NN, — 1)/2 for the odd z-parity states, ¢ = —1. It means that the eigenfunctions
O (n; 1) = (@™ (n; 1) £ @=L (1; 7)) /v/2 labeled by © == localized at large r in vicinity of n = +1 (i.e.,
at z — +o0o and z — —0o0), respectively, and have N, nodes in the subintervals 0 < < 1 and —1 <7 < 0. Such
asymptotic functions ™ (n; r) corresponds to ®" (p) from Eqs. (20) and (51).
From here we transform the solution of the problem (40) into the solution of an eigenvalue problem for a

set of jmax ordinary second-order differential equations that determines the energy e and the coefficients (radial
wave functions) x( (r) of the expansion (46)

2 . .
< %%ﬂd% + Ur(f )4 Q(r)dir + %CMT?(T)) xV(r) = e Ix"(r), (52)
lim 72 (w - Q(r)x" (T)) =0. (58)

Here U(r) and Q(r) are the jmax X Jmax matrices whose elements are expressed as
Ei(r) + E;(r)

Uij(r) = 5 51']' — 2ZT(51']‘ + T’zHij(’l“),
L 0®,(n; 1) 0B (n;
Hij(r) = Hylr) = [ PRSI 00 g (54)

Qi) =-Qutr) = - [ @l "y

The calculations of the above matrix elements and there asymptotic forms were performed using the combined
codes EIGENF, MATRM and MATRA implemented in MAPLE 8 and FORTRAN.!3

The discrete spectrum solutions obey the asymptotic boundary condition and the orthonormality conditions

i . Tmax . T .
lim PxP(r) =0 — X% (rmax) =0, / r (X“><r>) X9 (r)dr = 6. (55)
0

T—00
The continuous spectrum solution x(?)(r) satisfies the third-type boundary conditions

AT WG (56)

where the nonsymmetric matrix R is calculated using the method of.®
4. ASYMPTOTIC FORM OF THE SOLUTION

Let us write the set of differential equations (52) at fixed m, o and € = 2E in the explicit form for x;; (r) =
X r), 5 =10 s o = 1,0 N,

Ldod 22 B0 g,
<7"2d7"r % N 7 —€+ r2 + HJ] (T) X]Zo(r) (57)
jmax 2
d _ 1driQ(r)
= 3 (-0 - 5
J'=151#]
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At large r the asymptotic form of the matrix elements is given by the relations

B () = B 4 Y e B Hyy(r) =y RHY,
k=1

k=1
Qjj(r) = Z 7"72’”1@%5_1), r > max(ng, n,.)y/2, (58)
k=1

(2K) _ .

(2k71) o (2k:71) o
Ej =H 7 =Qp

3
In these expressions the asymptotic quantum numbers n;, n, correspond to the transversal quantum numbers
N,, N, that are related to the unified numbers j, j* as n; = j — 1, n, = j* — 1 and n = min(n, n,.). Below we
display the matrix elements with arbitrary m: @;;(r) is an antisymmetric matrix with the elements

5? = <nr - nl)\/n + 1\/71 + |m| + 16‘n1—n,«|,17

QE‘? = ) tn, - nl)\/n + 1\/n + |m| + 1(2(271 +[m| +2)8n,—n, |1 (59)

+v/n +2¢/n+|m|+ 25|m_m)2>,

Hj;/(r) is a symmetric matrix with the elements

H®) = (20 + 20+ 2mln + [m| + 1)3j,—n, 0
_\/n + 1\/’”’ + |m| + 1\/7’L + 2\/77, + |m| + 26\nz*nrl,27
HY) = 471 (<2n + [m] + 1)(2n2 + 2n + 2|mln + [m] + 2)n—m .0

+v/n +1y/n+ [m| + 1(n® + 2n + [m|n + [m| + 2)0,—n.| 1 (60)
—vn +1y/n+ m[+1y/n 4+ 2y/n+m|+22n + [m| + 3)8jn,—n, |2

—V/n +1y/n+m|+ 1y/n +2y/n+|m|+2y/n +3/n+|m| +35|m_nr|,3>,

E;(r) is a diagonal matrix of potential curves, i.e., eigenvalues of the parametric problem

EJ(-O) = Y2n+|m|+m+1),

2 _ 2
B = —2n"=2n—1-2m|n—|m|, (61)
E](»4) = (27)7Y(~4n® — 6n* — 4n — 6|m|n* — 6|m|n — 2m3n — 2jm| — m? — 1).

Note, that EJQ) +H ](JQ) =0, i.e., at large r the centrifugal terms are eliminated from Eq. (57). It means that
the leading terms of the radial solutions, x;;, (r), have the asymptotic form of the Coulomb functions with zero
angular momentum.

Now let us consider the asymptotic solution following'#

dR(piov ’I“)

Piox) i ), (62

Xjio (1) = R(pi,, 1) P53, (1) +
where R(p;,,r) = (0 F(pi,,r) + G(pi,,7))/2, F(pi,,r) and G(p;,,r) are the Coulomb regular and irregular func-
tions, respectively. These functions satisfy the condition

dF(pia ) ’I“) dG(pio } ’I“)

r? <G(pin,r) Dalo ST F(pzm)>=1' (63)
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The function R(p;,,r) satisfies the differential equation

d*R(pi,,r 2dR(pi,,r 27
C(sz ) + ; (dT’ ) + (p?a + T) R(pio,T) =0. (64)

Substituting the function (62) into Eq. (52), using (64) and extracting the coefficients for the Coulomb function
and its derivative, we arrive at two coupled differential equations with respect to the unknown functions ¢;;, (r)

and tj;, (1)

2 24 E;(r) 4Z\ d 27
(<~ 2ot M) — e 2 Yo+ (28 + 2 2 = 52 ) ) (65)
Jmax 2 Jmax
d = 1drQ,(r 47
== Y (mmrerng ez ) onm+ (2 + ) S Qi)
J'=13'#5 J'=13'#j
& 2d Ej(r)—2 dfz)ﬂo( r)
(< 2 vt H) e+ P2 Y ) -2 (66)
Jmax 2 Jmax
d 1dr2Q;; 40
= ) (Hjj'(T)Jerj’(T‘)%ﬂLr—g df( ) “( )>¢m ) =2 Y Qyyr(r)d,(r).
J'=13"#] J'=13'#]
Then we expand the functions ¢;;, (r) and v;;, (r) in inverse power series of r
03, (r Z O i (r Z k. (67)

After substituting the expansions (67) into (65) and (66) and equating the coefficients at the same powers of r
(k)

we arrive at the set of recurrence relations with respect to the unknown coeflicients (;5;];2 and t;;’

(v, 2E+E°>)¢<k> 27, (/f—l)w(fo_l)—(k 2)(k — 3)¢k?

—27(2k — ) + Z (B +H[) o) (68)
k'=1
]rnax
(K'=1) _ k)Y k=) (k) (K =1)) (=)

- ¥ Z{( (2 — K —3)Q D — 1 )%U +(2p30c2jj, +42Q% )wj,io }

J'=1,j'#5 k'=1
02— 28+ BP0 + 205 - Do) — bk - 1l + 3 () +HE) i) (69)
k=1

]max

S ol R R

=1,j'#j k'=1

The first six equations of the set (68), (69) have the form

(2, 28+ ED) ol0), =

( —2F + B! )) =0,

(p?o —-2E+FE ) oie =

(pfo —2E+E )) joio —

(p i, — 2B + E ) = 2pzo Z Qzajo JO%

Jo#io
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po_2E+EO))wz i, = 2 Z Q(OJO Jozo

( Jo#io

0) (1) _ 2 (1) ;0
(p i, — 2B+ E ) J1io Jllod}zozo +2p Z Q5150 Voo
Jo#im]'o?fjl

_ (0)
w]l’bo - tho d)lolo - Z Q]l]o qb]olo

JoFio,JoFJ1
—2p? o) —229°) (70)

1) H? (0) e ( (0)
o]l + 7/0]1) ¢leo + 2p10Q10j1’¢)J110 Q ojlelio:|’

’E
0
\
[\
&
+
Dj
G
\_//\\./\_/
33

(p?o —2E+ Ei((?) 1/) i T 2¢wo wlozo

_ [ (a(1) 2) ) (0 (1)

= 5 |30t — 1) vl —200) et |
jl?éio'

(v - 2E+E<—°>) o), — 203 v5), — 224

J2% J2%0 J2%o

(Q]2740 j220> ¢§(())Zo + 2plijzlowlolo + 4ZQJ210¢%10

(1) (2 (1) (0)
+ Z |:_ (szjl + HJle) d)]lzo + plth]lw]Ho + 4ZQ]2]11/)]110
J1#%0,J1772

(plzo —2F + E(O)) w]i)o + qb]27f|:) B ¢]210

= (3Q4), - H ) w20 o),
+ Z {( Q]2]1 B J22])1>w](129 Q3211¢J120 )

J17#%0,517 72

The summation indices jx, k = 0,1,..., kynax possess integer values, except i, and ij, ie, Jk=1,2,..., Jmax,
Jk 7 loy Jjk 7 Jk+1. From the first four equations of the set (70) for qzﬁgggo, ¢§SZD, wwo, 1/)](-330 we get the leading

terms of the eigenfunction, the eigenvalue and the characteristic parameter, i.e., the initial data for solving the
recurrence equations (68), (69),

o0 =i, W) =0, p =2E-E, (71)

Jolo

that correspond to the leading term of y;;, (r) satisfying the asymptotic expansion at large r (see®)

. . C
exp(pi,r +1¢In(2pi,r) + 25i0)5ji0’ ¢= i, 05 =arg'(1 —1(), (72)
2r\/Di, Pi, °
where ( is the Sommerfeld parameter and ¢f is the Coulomb phase. Open channels have pl >0, and close
channels have pl < 0. Lets there are N, < Jmax open channels, i.e. pz >0 for i, = 1,. N and pZ <0
for i, = Ny, + 1,...Jmax. Substituting these initial data into the sequent equations of the set (70), we get a
step-by-step procedure for determining the coefficients ¢§I:o) and wj(’fo)

Xjio (1) =

(’lelo =
(1)
dite = B0 _ E](?)’
(bz olo
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min(jmax,to+1)
1 _ 2 : (1)
rlpioio - Q 0]01/]]010
Jo=max(1,ig—1),jo#io
min(jmasx,j2+1)

2 (1)
2pio Z Q]Z]lw.]llo

(1) (2) 2 j1=max(1,j2—1)
¢(2) _ Q]zzu + szz 2pz (Q]mawz o ¢J27/0) Jljl;é?z,jljyzio (73)
J2io E(O) E(O E-(O) . E(O) ’
Zo J2
v, =0,

@ _ B, 1 TRty (2) )\ (1)
(bioio = ;Ozo + 4 Z { Q7'0.71¢]110 + ( onjl T )wﬁio}

Ji=max(1,io—1),j1%00

iolo
Vigio =~ 2p? B 4p? Z [42@ to]1 d}hzo + 2plonoJ1¢j1io]’
to bo ji=max(1,io—1),j1#io

Substituting the explicit asymptotic expressions of the matrix elements (58) into Eq. (73), we get the explicit
expression of the coefficients ¢§]:3 and wj(fo) in terms of the number of the state (or of the channel) i, = n, + 1
and the number of the current equation j = 1,..., jnax. For example, at jpnax > 4o + k and & = 0,1,2 such
elements take the form

o0 =1, 9 =y,

Tolo toto
M _y 1 _ V1o V/no£Im]
¢z‘o—1io =Y wio—lio = )
2n, + |m| + 1
¢§12 -0, %(13 — A’
¥
Vo +1y/ne +m[+1

1 1
¢z(ozrlio =0, @”gollz‘o = ~

2 1
53)_210 = —\/no 1\/n0 + Im| — 1y/no /1o + |m)| (p" + — > , 1/)1(3)_210 =0, (74)
p; (2n, + |ml)
N D ) (e B
@ _ Z(2n, +|m|+1)

e __pio(6n02+6no + 24 |m|(6n, + 3) + |m|? )_Qno +|m|+1 o2 =
toto 272 27 ? iolo 2p3{7,-y !

2 (2n, + |m|+2 1
¢£3+lzo \/no —|—1\/n0 —|—|m|_|_1<pzo( 72| | )+g>

Wk, =0,

2
2 D, 1
(;5502’_220 \/TLO + 1\/’[10 + |m| + 1\/no + 2\/”0 + |m| +2 <2;2 - E) s 1/]1,0—&-220

It should be noted that at large r the linearly independent function (62) satisfy the Wronskian-type relation

7

Wr(Q(r);x*(r): x(r)) = 5 Lo, (75)

where Wr(e; x*(r), x(r)) is a generalized Wronskian with the long derivative defined as

W (o: X" (1), x(1)) = 12 l(x*(r))T (B et ) - (25 - -x*<r>)Tx<r> .

These relations will be used to examine the desirable accuracy of the above expansion.
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5. THE SCATTERING STATES AND THE PHOTOIONIZATION CROSS SECTIONS

We express the eigenfunction of the continuum W™ (r 7)) with the energy e = 2F describing the ejected electron
above the first threshold € | (v) = € (v) = v(|m| +m + 1) as follows

Jmax

wEme(p ) = Zq) “(n; ) mNE,r), i=1,...,N,, (77)

=1

where solution %) (E,r) is the radial part of the “incoming” or eigenchannel wave function. In this case the
eigenfunction W™ (7 n) is normalized by the condition

jmax * ’ 1
<\hW< )]mEmo > / r2dr (7B, r)) R (B ) = 8(B = B GG (78)

The radial of the eigenchannel function x(™?)(E, r) is calculated by formula

X" (B, r) = \ﬁx@ (r)C cos é. (79)
s

Here a numerical solution x®)(r) of the (52) that satisfies the “standing” wave boundary conditions (56) and
has the standard asymptotic form'®

XxP @) =x*(r) +x°(r)K, KC=Ctand, CCT =CTC=1,,. (80)

where x*(r) = 23(x(r)) and x°(r) = 2R(x(r)), K is the numerical short-range reaction matrix, tand and
C are the eigenvalue and the orthogonal matrix a set of the corresponded eigenvectors. In the latter case the
regular and irregular functions satisfy the generalized Wronskian relation (76) at large r

Wr(Q(r); x“(r), X°(r) = Too- (81)

Using R-matrix calculation,® we obtain the equation for the reaction matrix K expressed via the matrix R at

(Rt = 252 )k = (2 ) (2

When some channels are closed, the matrices in Eq. (82) are rectangular. Therefore, we obtain the following
expression for the reaction matrix K

T = Tmax

K = X (rmax) Y ("max), (83)

where

xt) = (25 -rx) v = (PG -m)

00
are the square matrices of dimension N, x N, depended on the open-open matrix (channels).

The radial part of the “incoming” wave function is expressed via the numerical “standing” wave function and
short-range reaction matrix K by the relation

R0(E,7) =20 =1 X )+ oK) (84

and has the asymptotic form

X" (B, r) = | = (x(r) = x*(r)S), (85)
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Figure 1. Cross sections of photoionization from the states 1s (left) and 3d (right) versus the energy for By = 2.35x 10* T
(y=1x107"), and for the final state with ¢ = —1 m =0

where S is the short-range scattering matrix, depends on the scattering matrix S, (30) and Coulomb phase shift
0¢, S = exp(—10) S, exp(—16°), and

STS=88"=1,,, K=1Ipo+8S) " (Too—8), S=(Tp+1K)Io —:1K)L (86)

In terms of the above definitions the photoionization cross section o(w) (35) is expressed as

N, 2
o(w) = 4W2awz ine N, (E)| ag, (87)
i=1
where D;’lﬁl‘: Np(E) are the matrix elements of the dipole moment
/ / [ (mo=F1) (moa’)
Do’ (B) = <wfm—*1<r, || e <54, n>> =Y [ R w a6

and d;mwl) (r) are the matrix elements of the partial dipole moments

Jmax

dgeraa )(7“) _ Z <(I);na_¥1(77; 7")

=1

n

mo’'=+1 ) (mo":il)
ar <n,r>> K= (), (89)

n
In the above expressions w = E — E(N),|,N,,0’,m) is the frequency of radiation, Eni, = E(N).|,N,,0',m)

is the energy of the initial bound state WTIG‘ZI‘,Np (r,n) and N|, = N, = N —1 — 1. The continuum spectrum

solution x(m(?‘) having asymptotic of “standing” wave conditions and reaction matrix K required for calculating
(79) or (85), and discrete spectrum solution x(r) and eigenvalue E can be calculated with help of the program
KANTBP.'® One can see that using (79) or (85) for calculation of absolute value in formula (87) yields the
same result. Therefore, (79) is preferable for using real arithmetics.

6. NUMERICAL RESULTS

Fig. 1 displays the calculated photoionization cross section from the states 1s and 3d at By = 2.35 x 10*T
(v =1 x 1071 in the energy interval from E = 0.05a.u. to E = 0.25a.u. with the final state 0 = —1, m = 0.
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Figure 2. Photoionization cross section from the states 3s (left) and 3d (right) versus the energy for Bo = 6.107T
(v = 2.595 x 107°) and for the final state with o = —1, m = 0.

Table 1. The absolute maximum values, max;i, of the continuum wave functions )2521)(E, 7) at Bo = 6.10T (y =
2.595 x 107%), E = 6.0cm ™" and jmax = 35. The numbers 2 in the parenthesis denote the factors 10%.

j max,i j max;i j max,i ] max;i ] max,i
1 2.309 8 0.109 | 15 0.080 | 22 0.038 | 29 2.974(-3)
2 0.637 9 0234 |16 0.088 | 23 0.075 | 30 1.088(-3)
3 1.859 |10 0.317 | 17 0.084 | 24 0.056 | 31 2.677(-4)
4 1.064 | 11 0.171 | 18 0.061 | 25 0.058 | 32 5.998(-5)
5 0510 | 12 0.089 | 19 0.087 | 26 0.131 | 33 1.689(-5)
6 (-6)
7 (-6)

0.271 | 13 0.055 | 20 0.055 | 27 0.071 | 34 3.781(-
0.183 | 14 0.098 | 21 0.051 | 28 0.014 | 35 1.043(-

For the initial state 1s in the whole energy interval the results are in good agreement with those of R-matrix
calculations within the multichannel quantum-defect theory.> We also compared our results with those of the
complex-rotation method combined with a basic set of the 10 000 complex spherical Sturmian-type expansion'6
and basic set of the 450 mixed Slater-Landau basis.® In this case the agreement is good between the thresholds,
but not near them. So, the calculated photoionization cross section has threshold behavior coincided with.®

We used ten eigenfunctions (jmax = 10) of the problem (47)-(49) which requires to solve ten equations of
the system (52). The results coincide with those of the finite element method” to ten digits. The finite element
grids of 7 = /47 have been chosen as 0 (200) 3 (200) 20 (200) 100 for the discrete spectrum and 0 (200) 3 (200)
20 (200) 100 (1000) 1000 for the continuous one. The numbers in parentheses are the numbers of finite elements
of the order k£ = 4 in each interval. The number of nodes in the grids is 2400 and 6401, so that the maximum
number of unknowns in Eqgs. (52) is 24000 and 64010, respectively.

Fig. 2 displays the cross section of photoionization from the states 3s (left) and 3d (right) at By = 6.107T
(v = 2.595 x 107°) in the energy interval between E = 6.0cm~! and E = 8.0cm™!. In this case we increased
Jmax up to 35, and the finite element grids were chosen as 0 (200) 0.03 (200) 0.2 (200) 1 and 0 (200) 0.03 (200)
0.2 (200) 1 (2000) 100 (4000) 1000. The number of nodes in these grids is 2400 and 26401, respectively. The
corresponding maximum number of unknowns in Egs. (52) is 84000 and 924035. Table 1 shows the absolute
maximum values of the continuum spectrum wave functions Xg-ql)(E,f‘) at E = 6.0cm™!. We calculated the

cross sections with the energy step 5 x 107% em ™! in all the region except the vicinity of peaks, where the step
was 5 x 1076 em 1.

Proc. of SPIE Vol. 6537 653706-15



1000 T T T T T 400 T T T T T
800 E 300 |
600 - E
200 E
=2 400 4 =2
1 1004} 2 .
200 E
TS S IVARE
2 <4
-200 T T T T T -100 T T T T T
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,00 0,05 0,10 0,15 0,20 0,25 0,30
A A
r r
2,0 T T T T T T T T T T T 3,0 T T
1,51 ) 25 i
1,0 ]
1 1 2,0 .
0,5+ ]
3 ]
T 00 T 1,51 b
0,5 .
2 ] 1,04 i
-1,04 .
1 0,54 E
1,5 4
-2,0 T T T T T T T T T T T 0,0 T T T T T
0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,00 0,05 0,10 0,15 0,20 0,25 0,30
A A
r r

Figure 3. The first three components of the calculated wave functions, x = {ijgl>(f)}: 1— "), 2 — X"V (#), 3

— Xém)(f’) (upper), and the first three components of the calculated dipole moments, d = {dg-m(m/)(f)}: 1— d§°‘“>(f),

2 — dP7 M (7), 3 — dP7™ (#) (lower) for the states 3s (left) and 3d (right) with By = 6.107T (v = 2.595 x 107?).

Note, that 3s, 3p and 3d states are nearly degenerate and Fso9 = —0.055555542 37 a.u., F319 = —0.055 555
54949 a.u., F3950 = —0.055 555 552 07 a.u., respectively. To calculate these energies we used three equations of the
system (52) (jmax = 3); increasing jmax keeps them stable. We also compared the energies with those calculated
by means of the second-order algebraic perturbation theory.!” The results agree to the 13-th digit. Fig. 3
displays the first three components of the wave functions (upper) of 3s and 3d states, and of the dipole moment
(lower) from (89) versus 7. The probability density isolines for the Zeeman wave states | N N,,m) with even parity
o = 41 in a homogeneous magnetic field are shown in Fig. 4.

In the calculations we used the following values of the physical constants'®: 1em™! = 4.55633 x 10~ a.u.,
the Bohr radius ag = 5.29177 x 10~11m and the fine-structure constant o = 7.29735 x 1073 .

7. CONCLUSIONS

A new efficient method of calculating both the discrete and the continuous spectrum wave functions of a hydrogen
atom in a strong magnetic field is developed based on the Kantorovich approach to the parametric eigenvalue
problems in spherical coordinates. The two-dimensional spectral problem for the Schrodinger equation with
fixed magnetic quantum number and parity is reduced to a one-dimensional spectral parametric problem for the
angular variable and a finite set of ordinary second-order differential equations for the radial variable. The rate

Proc. of SPIE Vol. 6537 653706-16



20 20+

10 10

~ o “ o

~10 —10
—20 ‘ —20 |

10 0 10 20 10 0 10 20
X X

Figure 4. The probability density isolines for the Zeeman wave states |N, N, m) with even parity ¢ = +1 and m = 0
in the homogeneous magnetic field v = 2.595 x 107°: left — the state |300) with the minimal energy correction; right —
the state |320) with the maximal energy correction.

of convergence is investigated numerically and is illustrated with a number of typical examples. The results are
in good agreement with calculations of photoionization cross sections by other authors. The approach developed
provides a useful tool for calculations of threshold phenomena in the formation and ionization of (anti)hydrogen-
like atoms and ions in magnetic traps.
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