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ABSTRACT

A new efficient method of calculating the photoionization of a hydrogen atom in a strong magnetic field is
developed basing on the Kantorovich approach to the parametric boundary problems in spherical coordinates.
The progress as compared with our previous paper [SPIE Proc. 6165, p. 66–82, (2006)] consists in computation
of the wave functions of continuous spectrum, including the quasi-stationary states imbedded in the continuum.
The photoionization cross sections for the ground and excited states are in good agreement with the calculations
by other authors.
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1. INTRODUCTION

In recent decades the dynamics of transient processes in magnetic traps, such as excitation, de-excitation, ion-
ization, recombination of ions and atoms, became a subject of intense experimental and theoretical studies.1–3

Recently a new mechanism of formation of metastable positive-energy atoms via quasi-stationary states4 due to
the magnetic field was revealed. The most complicated case when the magnetic energy is comparable to that of
Coulomb interaction requires really stable numerical schemes for the states of discrete and continuous spectra,
including the quasi-stationary states, analogous to well-known doubly excited states of helium atom.5–7

In the present paper we develop the Kantorovich method (i.e. the reduction of the boundary problem for
elliptical partial differential equation in a 2D domain to a regular boundary problem for a set of ordinary
second-order differential equations with variable coefficients with the boundary conditions of the third kind)
in the form, appropriate for R-matrix calculations of the continuous spectrum and photoionization of atomic
hydrogen in a strong magnetic field.8 The solution depending on the radial variable r and the angular variable
η = cos θ = z/r with fixed values of the magnetic quantum number m and z-parity σ is expanded using the
basis set of oblate spheroidal functions, which is orthogonal at fixed values of the radial variable. A matter of
principle in the implementation of Kantorovich method is how to calculate the matrix of the variable coefficients,
expressed as angular integrals involving the derivatives of the angular functions with respect to a parameter,
keeping the accuracy the same as for the angular functions themselves. This is achieved by calculating the
mentioned derivatives as solutions of inhomogeneous boundary problem that results from differentiation of the
ordinary second-order differential equation for the spheroidal functions with respect to the parameter and the
corresponding algebraic eigenvalue problem, for which a stable symbolic-numerical algorithm is developed.9 The
stability of the computational scheme is achieved using the fact that at small r (in the vicinity of pair collision
point) the angular functions turn into the associated Legendre polynomials, while at large r near η = ±1
they turn into the Laguerre functions. This makes it possible to construct asymptotic expansions in powers of
r−2, necessary for computer-accuracy calculation of the basis set of functions at all values of the parameter r.
Substantial economy of computer resource in the numerical solution of the boundary problem for the set of radial
equations is achieved by decreasing the integration interval 0 ≤ r ≤ rmax. In the present paper for large r ≥ rmax

new asymptotic expansions of the fundamental solutions of the radial equations are constructed in the basis of
linear combinations of Coulomb regular and irregular functions and their derivatives. This is an important step
forward compared with our previous work,8 in which the basis included only the dominant asymptotic terms
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of the Coulomb regular and irregular functions. The capabilities of the computational scheme are demonstrated
by the example of photoionization cross-section of a hydrogen atom in magnetic field.

The paper is organized as follows. In Section 2 the 2D-eigenvalue problem for the Schrödinger equation
in cylindrical coordinates, describing a hydrogen atom in an axially symmetric magnetic field, is considered
together with the appropriate classification of states. The reduction of the 2D-eigenvalue problem to a 1D-
eigenvalue problem for a set of closed longitude equations via both the Kantorovich and Galerkin methods is
described briefly. It is shown that Galerkin expansion follows from Kantorovich expansion at z → ∞. In Section
2.3 the relation between the function with given parity and the function with physical scattering asymptotic form
in cylindrical coordinates is established. In Section 3 the 2D-eigenvalue problem for the Schrödinger equation in
spherical coordinates, describing a hydrogen atom in an axially symmetric magnetic field, is considered together
with the appropriate classification of states. The reduction of the 2D-eigenvalue problem to a 1D-eigenvalue
problem for a set of closed radial equations via four steps of the Kantorovich method is described briefly in
Section 3.1. Asymptotic expressions using regular and irregular Coulomb functions needed to determine the
solutions and the reaction matrix by means of the R-matrix method, are presented in Section 4. The method is
applied to the ionization of the low-lying states in Section 5. In Section 6 the numerical results obtained within
the framework of the finite-element method are discussed. In Conclusion we outline the perspectives of further
applications of this approach.

2. STATEMENT OF THE PROBLEM IN CYLINDRICAL COORDINATES

In cylindrical coordinates (ρ, z, ϕ) the wave function

Ψ̂(ρ, z, ϕ) = Ψ(ρ, z)
exp(ımϕ)√

2π
(1)

of a hydrogen atom in an axially symmetric magnetic field �B = (0, 0, B) satisfies the 2D Schrödinger equation

− ∂2

∂z2
Ψ(ρ, z) +

(
Âc − 2Z√

ρ2 + z2

)
Ψ(ρ, z) = εΨ(ρ, z), (2)

Âc = −1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

m2

ρ2
+ mγ +

γ2ρ2

4
, (3)

in the region Ωc: 0 < ρ < ∞ and −∞ < z < ∞. Here m = 0,±1, . . . is the magnetic quantum number,
γ = B/B0, B0

∼= 2.35 × 105 T is a dimensionless parameter which determines the field strength B. We use the
atomic units (a.u.) h̄ = me = e = 1 and assume the mass of the nucleus to be infinite. In these expressions
ε = 2E, E is the energy (expressed in Rydbergs, 1 Ry = (1/2) a.u.) of the bound state |mσ〉 with fixed values
of m and z-parity σ = ±1, and Ψ(ρ, z) ≡ Ψmσ(ρ, z) = σΨmσ(ρ,−z) is the corresponding wave function. The
boundary conditions in each mσ subspace of the full Hilbert space have the form

lim
ρ→0

ρ
∂Ψ(ρ, z)

∂ρ
= 0, for m = 0, and Ψ(0, z) = 0, for m 	= 0, (4)

lim
ρ→∞Ψ(ρ, z) = 0. (5)

The wave function of the discrete spectrum obeys the asymptotic boundary condition. Approximately this
condition is replaced by the boundary condition of the first type at large, but finite z = zmax 
 1, namely,

lim
z→±∞Ψ(ρ, z) = 0 → Ψ(ρ,±zmax) = 0. (6)

These functions satisfy the additional normalization condition∫ ∞

−∞

∫ ∞

0

|Ψ(ρ, z)|2ρdρdz = 1. (7)

The asymptotic boundary condition for the continuum wave function will be considered in the subsection 2.3.
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2.1. Kantorovich expansion

Consider a formal expansion of the partial solution ΨEmσ
i (ρ, z) of Eqs. (2)–(5), corresponding to the eigenstate

|mσi〉, expanded in the finite set of one-dimensional basis functions {Φ̂m
j (ρ; z)}jmax

j=1

ΨEmσ
i (ρ, z) =

jmax∑
j=1

Φ̂m
j (ρ; z)χ̂

(mσi)
j (E, z). (8)

In Eq. (8) the functions χ̂(i)(z) ≡ χ̂(mσi)(E, z), (χ̂(i)(z))T = (χ̂
(i)
1 (z), . . . , χ̂

(i)
jmax

(z)) are unknown, and the surface

functions Φ̂(ρ; z) ≡ Φ̂
m

(ρ; z) = Φ̂
m

(ρ;−z), (Φ̂(ρ; z))T = (Φ̂1(ρ; z), . . . , Φ̂jmax
(ρ; z)) form an orthonormal basis

for each value of the variable z which is treated as a parameter.

In the Kantorovich approach the wave functions Φ̂j(ρ; z) and the potential curves Êj(z) (in Ry) are determined
as the solutions of the following one-dimensional parametric eigenvalue problem(

Âc − 2Z√
ρ2 + z2

)
Φ̂j(ρ; z) = Êj(z)Φ̂j(ρ; z), (9)

with the boundary conditions

lim
ρ→0

ρ
∂Φ̂j(ρ; z)

∂ρ
= 0, for m = 0, and Φ̂j(0; z) = 0, for m 	= 0, (10)

lim
ρ→∞ Φ̂j(ρ; z) = 0. (11)

Since the operator in the left-hand side of Eq. (9) is self-adjoint, its eigenfunctions are orthonormal〈
Φ̂i(ρ; z)

∣∣∣∣Φ̂j(ρ; z)

〉
ρ

=

∫ ∞

0

Φ̂i(ρ; z)Φ̂j(ρ; z)ρdρ = δij , (12)

where δij is the Kronecker δ-symbol. Therefore we transform the solution of the above problem into the solution
of an eigenvalue problem for a set of jmax ordinary second-order differential equations that determines the energy
ε and the coefficients χ̂(i)(z) of the expansion (8)(

−I
d2

dz2
+ Û(z) + Q̂(z)

d

dz
+

dQ̂(z)

dz

)
χ̂(i)(z) = εi Iχ̂

(i)(z). (13)

Here I, Û(z) = Û(−z) and Q̂(z) = −Q̂(−z) are the jmax × jmax matrices whose elements are expressed as

Ûij(z) =
Êi(z) + Êj(z)

2
δij + Ĥij(z), Iij = δij ,

Ĥij(z) = Ĥji(z) =

∫ ∞

0

∂Φ̂i(ρ; z)

∂z

∂Φ̂j(ρ; z)

∂z
ρdρ, (14)

Q̂ij(z) = −Q̂ji(z) = −
∫ ∞

0

Φ̂i(ρ; z)
∂Φ̂j(ρ; z)

∂z
ρdρ.

The discrete spectrum solutions obey the asymptotic boundary condition and the orthonormality conditions

lim
z→±∞ χ̂(i)(z) = 0 → χ̂(i)(±zmax) = 0,

∫ zmax

−zmax

(
χ̂(i)(z)

)T

χ̂(j)(z)dz = δij . (15)
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2.2. Galerkin expansion

Consider a formal expansion of the partial solution ΨEmσ
i (ρ, z) of Eqs. (2)–(5) corresponding to the eigenstate

|mσi〉, in terms of the finite set of one-dimensional basis functions {Φ̃m
j (ρ)}jmax

j=1

ΨEmσ
i (ρ, z) =

jmax∑
j=1

Φ̃m
j (ρ)χ̃

(mσi)
j (E, z). (16)

In the Galerkin approach the wave functions Φ̃j(ρ) = Φ̃m
j (ρ) and the potential curves Ẽj (in Ry) are determined

as the solutions of the following one-dimensional eigenvalue problem

ÂcΦ̃j(ρ) = ẼjΦ̃j(ρ), (17)

with the boundary conditions

lim
ρ→0

ρ
dΦ̃j(ρ)

dρ
= 0, for m = 0, and Φ̃j(0) = 0, for m 	= 0, (18)

lim
ρ→∞ Φ̃j(ρ) = 0. (19)

The above eigenvalue problem has the exact solution at fixed m

Φ̃j(ρ) =

√
γ Nρ!

(Nρ + |m|)! exp

(
−γ ρ2

4

)(
γ ρ2

2

) |m|
2

L
|m|
Nρ

(
γ ρ2

2

)
, Ẽj = γ(2Nρ + |m| + m + 1), (20)

where Nρ = j − 1 is the transversal quantum number and L
|m|
Nρ

(x) is the associated Laguerre polynomial. Note,
that Galerkin expansion follows from Kantorovich expansion at z → ∞, i.e.,

Φ̃j(ρ) = lim
r→∞,η∼±1

r−1 Φj(η; r), lim
r→∞ r−2Ej(r) = εth

mσj(γ) = γ(2Nρ + |m| + m + 1). (21)

Therefore we transform the solution of the above problem into the solution of an eigenvalue problem for a set of
jmax ordinary second-order differential equations that determines the energy ε and the coefficients χ̃(i)(z) of the
expansion (16) (

−I
d2

dz2
+ Ũ(z)

)
χ̃(i)(z) = εi Iχ̃

(i)(z), (22)

and the matrix Ũ(z) = Ũ(−z) is expressed as

Ũij(z) =
Ẽi + Ẽj

2
δij + H̃ij(z), H̃ij(z) = H̃ji(z) = −

∫ ∞

0

Φ̃i(ρ)
2Z√

ρ2 + z2
Φ̃j(ρ)ρdρ. (23)

The discrete spectrum solutions obey the asymptotic boundary condition and the orthonormality condition

lim
z→±∞ χ̃(i)(z) = 0 → χ̃(i)(±zmax) = 0,

∫ zmax

−zmax

(
χ̃(i)(z)

)T

χ̃(j)(z)dz = δij . (24)

2.3. Relation between the parity functions and the functions having physical scattering
asymptotic form in cylindrical coordinates

The asymptotic form of the coefficients χ̃(n)(z) of the expansion (16) (or χ̂(n)(z) of the expansion (8)) with fixed
m, σ and ε = 2E for n-th solution in open channels is

χEmσn′n(z → ±∞) =

⎧⎨
⎩

a+1n′n√
pn′

cos
(
pn′z + Z

pn′

z
|z| ln(2pn′ |z|) + z

|z|δ+1n

)
, σ = +1,

a−1n′n√
pn′

sin
(
pn′z + Z

pn′

z
|z| ln(2pn′ |z|) + z

|z|δ−1n

)
, σ = −1,

(25)
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where pn =
√

2E − εth
mσn ≥ 0 and n, n′ = 1, . . . , No, δσn = δσ

n +δc
n−(σ+1)π/4 are the phase shifts, δσ

n and δc
n are

the eigenchannel short-range and Coulomb phase shifts, aσn′n = Cσ
n′n are the amplitudes or mixed parameters

defined in section 5, and No = max2E≥εth
mσn

n is the number of open channels. Eq. (25) is rewritten in the matrix
form so that

χEσ(z → ±∞) =

⎧⎪⎪⎨
⎪⎪⎩

{
1
2X

(+)(z)A+1 + 1
2X

(−)(z)A∗
+1, σ = +1,

1
2ıX

(+)(z)A−1 − 1
2ıX

(−)(z)A∗−1, σ = −1,
, z > 0,{

1
2X

(+)(z)A∗
+1 + 1

2X
(−)(z)A+1, σ = +1,

1
2ıX

(+)(z)A∗−1 − 1
2ıX

(−)(z)A−1, σ = −1,
, z < 0,

(26)

where

X
(±)
n′n (z) = p

−1/2
n′ exp

(
±ıpn′z ± ı

Z

pn′

z

|z| ln(2pn′ |z|)
)

δn′n, Aσn′n = aσn′n exp(ıδσn). (27)

On the other hand, the function that describes the incidence of the particle and its scattering, having the
asymptotic form “incident wave + waves going out from the center”, is

χ
(+)
Ev̂ (z → ±∞) =

⎧⎪⎪⎨
⎪⎪⎩

{
X(+)(z)T̂, z > 0,

X(+)(z) + X(−)(z)R̂, z < 0,
, v̂ =→,{

X(−)(z) + X(+)(z)R̂, z > 0,

X(−)(z)T̂, z < 0,
, v̂ =←,

(28)

where T̂ and R̂ are the transmission and reflection matrices, T̂†T̂+ R̂†R̂ = Ioo, v̂ is marked the initial direction
of the particle motion along the z axis, and Ioo is the unit No × No matrix. Note, that due to the symmetry
of the scattering potential the transmission and reflection coefficients are independent of the direction of the
incident wave vector.

This wave function may be presented as a linear combination of the solutions having positive and negative
parity

χ
(+)

E
→←(z) = χE,+1(z)B+1 ± ıχE,−1(z)B−1. (29)

It is easy to show that Bσ = [A∗
σ]−1, and

T̂ =
1

2
(A+1B+1 + A−1B−1) =

1

2
(−Š+1 + Š−1), R̂ =

1

2
(A+1B+1 − A−1B−1) =

1

2
(−Š+1 − Š−1), (30)

where Šσ is the scattering matrix at fixed σ. However, to calculate the ionization cross section it is necessary to
use the function having the asymptotic form “waves going into the center + outgoing wave”, that is

χ
(−)

E
→←(z) = χE,+1(z)B∗

+1 ± ıχE,−1(z)B∗
−1. (31)

Note, that
(
χ

(−)

E
→←(z)

)∗
= χ

(+)

E
←→(z). The functions are normalized so that

jmax∑
n′′=1

∫ ∞

−∞

(
χ

(+)
E′mv̂′n′′n′(z)

)∗
χ

(+)
Emv̂n′′n(z)dz = 2πδ(E′ − E)δv̂′v̂δn′n. (32)

The Ŝ-matrix may be composed of the transmission and reflection coefficients

Ŝ =

(
T̂ R̂

R̂ T̂

)
. (33)

This matrix is unitary, since T̂†T̂ + R̂†R̂ = Ioo and R̂†T̂ + T̂†R̂ = 0.
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To calculate the ionization it is convenient to use the function renormalized to δ(E′ − E), i.e., divided by√
2π

|Ev̂mNρ〉 =
exp(ımϕ)

2π

jmax∑
n′=1

Φ̃n′(ρ)χ̃
(−)
Emv̂n′n(z) or |Ev̂mNρ〉 =

exp(ımϕ)

2π

jmax∑
n′=1

Φ̂n′(ρ; z)χ̂
(−)
Emv̂n′n(z), (34)

where Nρ = n − 1. The expression for the cross section of ionization by the light linearly polarized along z is

σion = 4π2αω
No−1∑
Nρ=0

∑
v̂

|〈Ev̂mNρ|z|Nlm〉|2a2
0. (35)

In the above expressions ω = E − ENlm is the frequency of radiation, ENlm is the energy of the initial bound
state |Nlm〉, α is the fine-structure constant, a0 is the Bohr radius.

For the recombination the wave function should be renormalized to one particle per the unit of length in the
incident wave

|vmNρ〉 =
√

pn
exp(ımϕ)√

2π

jmax∑
n′=1

Φ̃n′(ρ)χ̃
(+)
Emv̂n′n(z) or |vmNρ〉 =

√
pn

exp(ımϕ)√
2π

jmax∑
n′=1

Φ̂n′(ρ; z)χ̂
(+)
Emv̂n′n(z), (36)

where v = v̂pn and Nρ = n − 1. The expression for the rate of recombination induced by the light linearly
polarized along z for the particle, initially moving in the channel Nρ with the velocity v has the form

λrec
Nρ

(v) = 4π2αI
N−1∑
l=0

0∑
m=−l

|〈Nlm|z|vmNρ〉|2δ(E − ENlm − ω)a2
0, (37)

I being the intensity of the incident light.

For the light circularly polarized in the plane xOy the above expressions read as

σion = 4π2αω
No−1∑
Nρ=0

∑
v̂

|〈Ev̂m ± 1Nρ|�e±�r|Nlm〉|2a2
0, (38)

λrec
Nρ

(v) = 4π2αI
N−1∑
l=0

0∑
m=−l

|〈Nlm ± 1|�e±�r|vmNρ〉|2δ(E − ENlm − ω)a2
0, (39)

where the complex unit vectors are �e± = 1√
2
�i ± ı√

2
�j.

3. STATEMENT OF THE PROBLEM IN SPHERICAL COORDINATES

In spherical coordinates (r, θ, φ) the Eq. (2) can be rewritten as follows(
− 1

r2

∂

∂r
r2 ∂

∂r
+

1

r2
Â(p) − 2Z

r

)
Ψ(r, η) = εΨ(r, η), (40)

in the region Ω: 0 < r < ∞ and −1 < η = cos θ < 1. Here Â(p) is the parametric Hamiltonian

Â(p) = − ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
+ 2pm + p2(1 − η2), (41)

and p = γr2/2, and Ψ(r, η) ≡ Ψmσ(r, η) = σΨmσ(r,−η). The sign of z-parity, σ = (−1)Nη , is defined by the
number of nodes Nη of the solution Ψ(r, η) with respect to the variable η. We will also use the scaled radial

variable r̂ = r
√

γ, the effective charge Ẑ = Z/
√

γ, and the scaled energy ε̂ = ε/γ or Ê = E/γ. Practically it
means replacing γ with 1 and multiplying Z by 1/

√
γ and ε or E by 1/γ in all equations above.
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The boundary conditions in each mσ subspace of the full Hilbert space have the form

lim
η→±1

(1 − η2)
∂Ψ(r, η)

∂η
= 0, for m = 0, and Ψ(r,±1) = 0, for m 	= 0, (42)

lim
r→0

r2 ∂Ψ(r, η)

∂r
= 0. (43)

The wave function of the discrete spectrum obeys the asymptotic boundary condition. Approximately this
condition is replaced by the boundary condition of the first type at large, but finite r = rmax, namely,

lim
r→∞ r2Ψ(r, η) = 0 → Ψ(rmax, η) = 0. (44)

In the Fano-Lee R-matrix theory10, 11 the wave function of the continuum Ψ(r, η) obeys the boundary con-
dition of the third type at fixed values of the energy ε and the radial variable r = rmax

∂Ψ(r, η)

∂r
− µΨ(r, η) = 0. (45)

Here the parameters µ ≡ µ(rmax, ε), determined by the variational principle, play the role of eigenvalues of the
logarithmic normal derivative matrix of the solution of the boundary problem (40)–(43), (45).

3.1. Kantorovich expansion

Consider a formal expansion of the partial solution ΨEmσ
i (r, η) of Eqs. (40)–(43) with the conditions (44), (45),

corresponding to the eigenstate |mσi〉, in terms of the finite set of one-dimensional basis functions {Φmσ
j (η; r)}jmax

j=1

ΨEmσ
i (r, η) =

jmax∑
j=1

Φmσ
j (η; r)χ

(mσi)
j (E, r). (46)

In Eq. (46) the functions χ(i)(r) ≡ χ(mσi)(E, r), (χ(i)(r))T = (χ
(i)
1 (r), . . . , χ

(i)
jmax

(r)) are unknown, and the sur-

face functions Φ(η; r) ≡ Φmσ(η; r) = σΦmσ(−η; r), (Φ(η; r))T = (Φ1(η; r), . . . ,Φjmax
(η; r)) form an orthonormal

basis for each value of the radius r which is treated as a parameter.

In the Kantorovich approach the wave functions Φj(η; r) and the potential curves Ej(r) (in Ry) are determined
as the solutions of the following one-dimensional parametric eigenvalue problem

Â(p)Φj(η; r) = Ej(r)Φj(η; r), (47)

with the boundary conditions

lim
η→±1

(1 − η2)
∂Φj(η; r)

∂η
= 0, for m = 0 and Φj(±1; r) = 0, for m 	= 0. (48)

Since the operator in the left-hand side of Eq. (47) is self-adjoint, its eigenfunctions are orthonormal〈
Φi(η; r)

∣∣∣∣Φj(η; r)

〉
η

=

∫ 1

−1

Φi(η; r)Φj(η; r)dη = δij . (49)

Note, that the solutions of this problem with shifted eigenvalues, Ěj(r) = Ej(r) − 2pm, correspond to the
solutions of the eigenvalue problem for oblate angular spheroidal functions12

A(p)Φj(η; r) = Ěj(r)Φj(η; r), (50)

where A(p) = Â(p) − 2pm. It means that for small p the asymptotic behavior of the eigenvalues Ej(r), j =
1, 2, . . . at fixed values of m and σ is determined by the values of the orbital quantum number, l = s, p, d, f, . . .:
Ej(0) = l(l + 1), l = 0, 1, . . ., where j runs j = (l − |m|)/2 + 1 for even z-parity states, σ = +1 = (−1)l−|m|, and
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j = (l − |m| + 1)/2 for odd z-parity states, σ = −1 = (−1)l−|m|. Taking into account the fact that the number
of nodes Nη of the eigenfunction Φ(η; r) at fixed m and σ = (−1)Nη does not depend on the parameter p, we
get the one-to-one correspondence between these sets, i.e., Nη = l − |m|.

For large r the asymptotic behavior of the eigenfunctions Φj(η; r) and eigenvalues Ej(r) at fixed values of m
and σ is determined by the value of the transversal quantum number, Nρ = j − 1 (see Eqs. (20) and (51))

Φ̃j(ρ) = lim
r→∞,η∼±1

r Φj(η; r), lim
r→∞ r−2Ej(r) = εth

mσj(γ) = γ(2Nρ + |m| + m + 1). (51)

The transversal quantum number Nρ, i.e., the number of nodes of the eigenfunction Φmσ(η; r) in the subin-
terval 0 < η < 1 or −1 < η < 0, can be expressed via Nη as follows: Nρ = Nη/2 for the even z-parity
states, σ = +1, and Nρ = (Nη − 1)/2 for the odd z-parity states, σ = −1. It means that the eigenfunctions

Φmv̂(η; r) = (Φmσ=+1(η; r)±Φmσ=−1(η; r))/
√

2 labeled by v̂ =←→ localized at large r in vicinity of η = ±1 (i.e.,
at z → +∞ and z → −∞), respectively, and have Nρ nodes in the subintervals 0 < η < 1 and −1 < η < 0. Such

asymptotic functions Φmv̂(η; r) corresponds to Φ̃
m

(ρ) from Eqs. (20) and (51).

From here we transform the solution of the problem (40) into the solution of an eigenvalue problem for a
set of jmax ordinary second-order differential equations that determines the energy ε and the coefficients (radial
wave functions) χ(i)(r) of the expansion (46)(

−I
1

r2

d

dr
r2 d

dr
+

U(r)

r2
+ Q(r)

d

dr
+

1

r2

d r2Q(r)

dr

)
χ(i)(r) = εi Iχ

(i)(r), (52)

lim
r→0

r2

(
dχ(i)(r)

dr
− Q(r)χ(i)(r)

)
= 0. (53)

Here U(r) and Q(r) are the jmax × jmax matrices whose elements are expressed as

Uij(r) =
Ei(r) + Ej(r)

2
δij − 2Zrδij + r2Hij(r),

Hij(r) = Hji(r) =

∫ 1

−1

∂Φi(η; r)

∂r

∂Φj(η; r)

∂r
dη, (54)

Qij(r) = −Qji(r) = −
∫ 1

−1

Φi(η; r)
∂Φj(η; r)

∂r
dη.

The calculations of the above matrix elements and there asymptotic forms were performed using the combined
codes EIGENF, MATRM and MATRA implemented in MAPLE 8 and FORTRAN.13

The discrete spectrum solutions obey the asymptotic boundary condition and the orthonormality conditions

lim
r→∞ r2χ(i)(r) = 0 → χ(i)(rmax) = 0,

∫ rmax

0

r2
(
χ(i)(r)

)T

χ(j)(r)dr = δij . (55)

The continuous spectrum solution χ(i)(r) satisfies the third-type boundary conditions

dχ(r)

dr
= Rχ(r), (56)

where the nonsymmetric matrix R is calculated using the method of.8

4. ASYMPTOTIC FORM OF THE SOLUTION

Let us write the set of differential equations (52) at fixed m, σ and ε = 2E in the explicit form for χjio
(r) ≡

χ
(io)
j (r), j = 1, . . . , jmax, io = 1, . . . , No(

− 1

r2

d

dr
r2 d

dr
− 2Z

r
− ε +

Ej(r)

r2
+ Hjj(r)

)
χjio

(r) (57)

=

jmax∑
j′=1,j′ 	=j

(
−Hjj′(r) − Qjj′(r)

d

dr
− 1

r2

d r2Qjj′(r)

dr

)
χj′io

(r).
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At large r the asymptotic form of the matrix elements is given by the relations

r−2Ej(r) = E
(0)
j +

∑
k=1

r−2kE
(2k)
j , Hjj′(r) =

∑
k=1

r−2kH
(2k)
jj′ ,

Qjj′(r) =
∑
k=1

r−2k+1Q
(2k−1)
jj′ , r 
 max(nl, nr)γ/2, (58)

E
(2k−1)
j = H

(2k−1)
jj′ = Q

(2k)
jj′ = 0.

In these expressions the asymptotic quantum numbers nl, nr correspond to the transversal quantum numbers
Nρ, N ′

ρ that are related to the unified numbers j, j′ as nl = j − 1, nr = j′ − 1 and n = min(nl, nr). Below we
display the matrix elements with arbitrary m: Qjj′(r) is an antisymmetric matrix with the elements

Q
(1)
jj′ = (nr − nl)

√
n + 1

√
n + |m| + 1δ|nl−nr|,1,

Q
(3)
jj′ = (4γ)−1(nr − nl)

√
n + 1

√
n + |m| + 1

(
2(2n + |m| + 2)δ|nl−nr|,1 (59)

+
√

n + 2
√

n + |m| + 2δ|nl−nr|,2

)
,

Hjj′(r) is a symmetric matrix with the elements

H
(2)
jj′ = (2n2 + 2n + 2|m|n + |m| + 1)δ|nl−nr|,0

−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2δ|nl−nr|,2,

H
(4)
jj′ = γ−1

(
(2n + |m| + 1)(2n2 + 2n + 2|m|n + |m| + 2)δ|nl−nr|,0

+
√

n + 1
√

n + |m| + 1(n2 + 2n + |m|n + |m| + 2)δ|nl−nr|,1 (60)

−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2(2n + |m| + 3)δ|nl−nr|,2

−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2
√

n + 3
√

n + |m| + 3δ|nl−nr|,3

)
,

Ej(r) is a diagonal matrix of potential curves, i.e., eigenvalues of the parametric problem

E
(0)
j = γ(2n + |m| + m + 1),

E
(2)
j = −2n2 − 2n − 1 − 2|m|n − |m|, (61)

E
(4)
j = (2γ)−1(−4n3 − 6n2 − 4n − 6|m|n2 − 6|m|n − 2m2n − 2|m| − m2 − 1).

Note, that E
(2)
j + H

(2)
jj = 0, i.e., at large r the centrifugal terms are eliminated from Eq. (57). It means that

the leading terms of the radial solutions, χjio
(r), have the asymptotic form of the Coulomb functions with zero

angular momentum.

Now let us consider the asymptotic solution following14

χjio
(r) = R(pio

, r)φjio
(r) +

dR(pio
, r)

dr
ψjio

(r), (62)

where R(pio
, r) = (ı F (pio

, r) + G(pio
, r))/2, F (pio

, r) and G(pio
, r) are the Coulomb regular and irregular func-

tions, respectively. These functions satisfy the condition

r2

(
G(pio

, r)
dF (pio

, r)

dr
− dG(pio

, r)

dr
F (pio

, r)

)
= 1. (63)
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The function R(pio
, r) satisfies the differential equation

d2R(pio
, r)

dr2
+

2

r

dR(pio
, r)

dr
+

(
p2

io
+

2Z

r

)
R(pio

, r) = 0. (64)

Substituting the function (62) into Eq. (52), using (64) and extracting the coefficients for the Coulomb function
and its derivative, we arrive at two coupled differential equations with respect to the unknown functions φjio

(r)
and ψjio

(r)(
− d2

dr2
− 2

r

d

dr
+ p2

io
+ Hjj(r) − ε +

Ej(r)

r2

)
φjio

(r) +

((
2p2

io
+

4Z

r

)
d

dr
− 2Z

r2

)
ψjio

(r) (65)

= −
jmax∑

j′=1,j′ 	=j

(
Hjj′(r) + Qjj′(r)

d

dr
+

1

r2

d r2Qjj′(r)

dr

)
φj′io

(r) +

(
2p2

io
+

4Z

r

) jmax∑
j′=1,j′ 	=j

Qjj′(r)ψj′io
(r),

(
− d2

dr2
+

2

r

d

dr
+ p2

io
+ Hjj(r) − ε +

Ej(r) − 2

r2

)
ψjio

(r) − 2
dφjio

(r)

dr
(66)

= −
jmax∑

j′=1,j′ 	=j

(
Hjj′(r) + Qjj′(r)

d

dr
+

1

r2

d r2Qjj′(r)

dr
− 4Qjj′(r)

r

)
ψj′io

(r) − 2

jmax∑
j′=1,j′ 	=j

Qjj′(r)φj′io
(r).

Then we expand the functions φjio
(r) and ψjio

(r) in inverse power series of r

φjio
(r) =

kmax∑
k=0

φ
(k)
jio

r−k, ψjio
(r) =

kmax∑
k=0

ψ
(k)
jio

r−k. (67)

After substituting the expansions (67) into (65) and (66) and equating the coefficients at the same powers of r

we arrive at the set of recurrence relations with respect to the unknown coefficients φ
(k)
jio

and ψ
(k)
jio(

p2
io
− 2E + E

(0)
j

)
φ

(k)
jio

− 2p2
io

(k − 1)ψ
(k−1)
jio

− (k − 2)(k − 3)φ
(k−2)
jio

−2Z(2k − 3)ψ
(k−2)
jio

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
jio

(68)

=

jmax∑
j′=1,j′ 	=j

k∑
k′=1

[(
(2k − k′ − 3)Q

(k′−1)
jj′ − H

(k′)
jj′

)
φ

(k−k′)
j′io

+
(
2p2

io
Q

(k′)
jj′ + 4ZQ

(k′−1)
jj′

)
ψ

(k−k′)
j′io

]
,

(p2
io
− 2E + E

(0)
j )ψ

(k)
jio

+ 2(k − 1)φ
(k−1)
jio

− k(k − 1)ψ
(k−2)
jio

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
jio

(69)

=

jmax∑
j′=1,j′ 	=j

k∑
k′=1

[(
(2k − k′ + 1)Q

(k′−1)
jj′ − H

(k′)
jj′

)
ψ

(k−k′)
j′io

− 2Q
(k′)
jj′ φ

(k−k′)
j′io

]
.

The first six equations of the set (68), (69) have the form(
p2

io
− 2E + E

(0)
io

)
φ

(0)
ioio

= 0,(
p2

io
− 2E + E

(0)
io

)
ψ

(0)
ioio

= 0,(
p2

io
− 2E + E

(0)
j0

)
φ

(0)
j0io

= 0,(
p2

io
− 2E + E

(0)
j0

)
ψ

(0)
j0io

= 0,(
p2

io
− 2E + E

(0)
io

)
φ

(1)
ioio

= 2p2
io

∑
j0 	=io

Q
(1)
ioj0

ψ
(0)
j0io

,
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(
p2

io
− 2E + E

(0)
io

)
ψ

(1)
ioio

= −2
∑

j0 	=io

Q
(1)
ioj0

φ
(0)
j0io

,

(
p2

io
− 2E + E

(0)
j1

)
φ

(1)
j1io

= 2p2
io

Q
(1)
j1io

ψ
(0)
ioio

+ 2p2
io

∑
j0 	=io,j0 	=j1

Q
(1)
j1j0

ψ
(0)
j0io

,

(
p2

io
− 2E + E

(0)
j1

)
ψ

(1)
j1io

= −2Q
(1)
j1io

φ
(0)
ioio

− 2
∑

j0 	=io,j0 	=j1

Q
(1)
j1j0

φ
(0)
j0io

,

(
p2

io
− 2E + E

(0)
io

)
φ

(2)
ioio

− 2p2
io

ψ
(1)
ioio

− 2Zψ
(0)
ioio

(70)

=
∑

j1 	=io

[
−

(
Q

(1)
ioj1

+ H
(2)
ioj1

)
φ

(0)
j1io

+ 2p2
io

Q
(1)
ioj1

ψ
(1)
j1io

+ 4ZQ
(1)
ioj1

ψ
(0)
j1io

]
,

(
p2

io
− 2E + E

(0)
io

)
ψ

(2)
ioio

+ 2φ
(1)
ioio

− 2ψ
(0)
ioio

=
∑

j1 	=io

[(
3Q

(1)
ioj1

− H
(2)
ioj1

)
ψ

(0)
j1io

− 2Q
(1)
ioj1

φ
(1)
j1io

]
,

(
p2

io
− 2E + E

(0)
j2

)
φ

(2)
j2io

− 2p2
io

ψ
(1)
j2io

− 2Zψ
(0)
j2io

= −
(
Q

(1)
j2io

+ H
(2)
j2io

)
φ

(0)
ioio

+ 2p2
io

Q
(1)
j2io

ψ
(1)
ioio

+ 4ZQ
(1)
j2io

ψ
(0)
ioio

+
∑

j1 	=io,j1 	=j2

[
−

(
Q

(1)
j2j1

+ H
(2)
j2j1

)
φ

(0)
j1io

+ 2p2
io

Q
(1)
j2j1

ψ
(1)
j1io

+ 4ZQ
(1)
j2j1

ψ
(0)
j1io

]
,

(
p2

io
− 2E + E

(0)
j2

)
ψ

(2)
j2io

+ 2φ
(1)
j2io

− 2ψ
(0)
j2io

=
(
3Q

(1)
j2io

− H
(2)
j2io

)
ψ

(0)
ioio

− 2Q
(1)
j2io

φ
(1)
ioio

+
∑

j1 	=io,j1 	=j2

[(
3Q

(1)
j2j1

− H
(2)
j2j1

)
ψ

(0)
j1io

− 2Q
(1)
j2j1

φ
(1)
j1io

]
,

. . .

The summation indices jk, k = 0, 1, . . . , kmax possess integer values, except io and jk+1, i.e., jk = 1, 2, . . . , jmax,

jk 	= io, jk 	= jk+1. From the first four equations of the set (70) for φ
(0)
ioio

, φ
(0)
j0io

, ψ
(0)
ioio

, ψ
(0)
j0io

we get the leading
terms of the eigenfunction, the eigenvalue and the characteristic parameter, i.e., the initial data for solving the
recurrence equations (68), (69),

φ
(0)
j0io

= δj0io
, ψ

(0)
j0io

= 0, p2
io

= 2E − E
(0)
io

, (71)

that correspond to the leading term of χjio
(r) satisfying the asymptotic expansion at large r (see8)

χjio
(r) =

exp(ı pio
r + ı ζ ln(2pio

r) + ı δc
io

)

2r
√

pio

δjio
, ζ =

Z

pio

, δc
io

= arg Γ(1 − ıζ), (72)

where ζ is the Sommerfeld parameter and δc
io

is the Coulomb phase. Open channels have p2
io

≥ 0, and close
channels have p2

io
< 0. Lets there are No ≤ jmax open channels, i.e., p2

io
≥ 0 for io = 1, . . . No and p2

io
< 0

for io = No + 1, . . . jmax. Substituting these initial data into the sequent equations of the set (70), we get a

step-by-step procedure for determining the coefficients φ
(k)
jio

and ψ
(k)
jio

φ
(1)
j1io

= 0,

ψ
(1)
j1io

=
2Q

(1)
j1io

E
(0)
io

− E
(0)
j1

,

φ
(1)
ioio

= 0,
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ψ
(1)
ioio

= −
min(jmax,io+1)∑

j0=max(1,io−1),j0 	=io

Q
(1)
ioj0

ψ
(1)
j0io

,

φ
(2)
j2io

=
Q

(1)
j2io

+ H
(2)
j2io

− 2p2
io

(
Q

(1)
j2io

ψ
(1)
ioio

+ ψ
(1)
j2io

)
E

(0)
io

− E
(0)
j2

−

2 p2
io

min(jmax,j2+1)∑
j1=max(1,j2−1)

j1 	=j2,j1 	=io

Q
(1)
j2j1

ψ
(1)
j1io

E
(0)
io

− E
(0)
j2

, (73)

ψ
(2)
j2io

= 0,

φ
(2)
ioio

=
3ψ

(1)
ioio

2
+

1

4

min(jmax,io+1)∑
j1=max(1,io−1),j1 	=io

[
−2Q

(1)
ioj1

φ
(2)
j1io

+
(
5Q

(1)
ioj1

− H
(2)
ioj1

)
ψ

(1)
j1io

]
,

ψ
(2)
ioio

= −3Zψ
(1)
ioio

2p2
io

− 1

4p2
io

min(jmax,io+1)∑
j1=max(1,io−1),j1 	=io

[
4ZQ

(1)
ioj1

ψ
(1)
j1io

+ 2p2
io

Q
(1)
ioj1

ψ
(2)
j1io

]
,

. . .

Substituting the explicit asymptotic expressions of the matrix elements (58) into Eq. (73), we get the explicit

expression of the coefficients φ
(k)
jio

and ψ
(k)
jio

in terms of the number of the state (or of the channel) io = no + 1
and the number of the current equation j = 1, . . . , jmax. For example, at jmax ≥ io + k and k = 0, 1, 2 such
elements take the form

φ
(0)
ioio

= 1, ψ
(0)
ioio

= 0,

φ
(1)
io−1io

= 0, ψ
(1)
io−1io

=

√
no

√
no + |m|
γ

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −2no + |m| + 1

γ
,

φ
(1)
io+1io

= 0, ψ
(1)
io+1io

=

√
no + 1

√
no + |m| + 1

γ
,

φ
(2)
io−2io

= −
√

no − 1
√

no + |m| − 1
√

no

√
no + |m|

(
p2

io

2γ2
+

1

4γ

)
, ψ

(2)
io−2io

= 0, (74)

φ
(2)
io−1io

=
√

no

√
no + |m|

(
p2

io
(2no + |m|)

γ2
+

1

2γ

)
, ψ

(2)
io−1io

= 0,

φ
(2)
ioio

= −p2
io

(6no
2 + 6no + 2 + |m|(6no + 3) + |m|2)

2γ2
− 2no + |m| + 1

2γ
, ψ

(2)
ioio

=
Z(2no + |m| + 1)

2p2
io

γ
,

φ
(2)
io+1io

=
√

no + 1
√

no + |m| + 1

(
p2

io
(2no + |m| + 2)

γ2
+

1

2γ

)
, ψ

(2)
io+1io

= 0,

φ
(2)
io+2io

= −
√

no + 1
√

no + |m| + 1
√

no + 2
√

no + |m| + 2

(
p2

io

2γ2
− 1

4γ

)
, ψ

(2)
io+2io

= 0.

It should be noted that at large r the linearly independent function (62) satisfy the Wronskian-type relation

Wr(Q(r);χ∗(r),χ(r)) =
ı

2
Ioo, (75)

where Wr(•;χ∗(r),χ(r)) is a generalized Wronskian with the long derivative defined as

Wr(•;χ∗(r),χ(r)) = r2

[
(χ∗(r))T

(
dχ(r)

dr
− •χ(r)

)
−

(
dχ∗(r)

dr
− •χ∗(r)

)T

χ(r)

]
. (76)

These relations will be used to examine the desirable accuracy of the above expansion.
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5. THE SCATTERING STATES AND THE PHOTOIONIZATION CROSS SECTIONS

We express the eigenfunction of the continuum ΨEmσ
i (r, η) with the energy ε = 2E describing the ejected electron

above the first threshold εth
mσ1(γ) = εth

mσ(γ) = γ(|m| + m + 1) as follows

ΨEmσ
i (r, η) =

jmax∑
j=1

Φmσ
j (η; r)χ̂

(mσ)
ji (E, r), i = 1, . . . , No, (77)

where solution χ̂(mσ)(E, r) is the radial part of the “incoming” or eigenchannel wave function. In this case the
eigenfunction ΨEmσ

i (r, η) is normalized by the condition

〈
ΨEmσ

i (r, η)

∣∣∣∣ΨE′m′σ′

i′ (r, η)

〉
=

jmax∑
j=1

∫ ∞

0

r2dr
(
χ̂

(mσ)
ji (E, r)

)∗
χ̂

(m′σ′)
ji′ (E′, r) = δ(E − E′)δmm′δσσ′δii′ . (78)

The radial of the eigenchannel function χ̂(mσ)(E, r) is calculated by formula

χ̂(mσ)(E, r) =

√
2

π
χ(p)(r)Ccos δ. (79)

Here a numerical solution χ(p)(r) of the (52) that satisfies the “standing” wave boundary conditions (56) and
has the standard asymptotic form15

χ(p)(r) = χs(r) + χc(r)K, KC = Ctan δ, CCT = CT C = Ioo. (80)

where χs(r) = 2(χ(r)) and χc(r) = 2�(χ(r)), K is the numerical short-range reaction matrix, tan δ and
C are the eigenvalue and the orthogonal matrix a set of the corresponded eigenvectors. In the latter case the
regular and irregular functions satisfy the generalized Wronskian relation (76) at large r

Wr(Q(r);χc(r),χs(r)) = Ioo. (81)

Using R-matrix calculation,8 we obtain the equation for the reaction matrix K expressed via the matrix R at
r = rmax (

Rχc(r) − dχc(r)

dr

)
K =

(
dχs(r)

dr
− Rχs(r)

)
. (82)

When some channels are closed, the matrices in Eq. (82) are rectangular. Therefore, we obtain the following
expression for the reaction matrix K

K = −X−1(rmax)Y(rmax), (83)

where

X(r) =

(
dχc(r)

dr
− Rχc(r)

)
oo

, Y(r) =

(
dχs(r)

dr
− Rχs(r)

)
oo

,

are the square matrices of dimension No × No depended on the open-open matrix (channels).

The radial part of the “incoming” wave function is expressed via the numerical “standing” wave function and
short-range reaction matrix K by the relation

χ̂(mσ)(E, r) =

√
2

π
χ−(r) = ı

√
2

π
χ(p)(r)(Ioo + ıK)−1 (84)

and has the asymptotic form

χ̂(mσ)(E, r) =

√
2

π
(χ(r) − χ∗(r)S†), (85)
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Figure 1. Cross sections of photoionization from the states 1s (left) and 3d (right) versus the energy for B0 = 2.35×104 T

(γ = 1 × 10−1), and for the final state with σ = −1 m = 0

where S is the short-range scattering matrix, depends on the scattering matrix Šσ (30) and Coulomb phase shift
δc, S = exp(−ıδc) Šσ exp(−ıδc), and

S†S = SS† = Ioo, K = ı(Ioo + S)−1(Ioo − S), S = (Ioo + ıK)(Ioo − ıK)−1. (86)

In terms of the above definitions the photoionization cross section σ(ω) (35) is expressed as

σ(ω) = 4π2αω
No∑
i=1

∣∣∣∣Dmσσ′

i,N|z|,Nρ
(E)

∣∣∣∣
2

a2
0, (87)

where Dmσσ′

i,N|z|,Nρ
(E) are the matrix elements of the dipole moment

Dmσσ′

i,N|z|,Nρ
(E) =

〈
ΨEmσ=∓1

i (r, η)

∣∣∣∣rη
∣∣∣∣Ψmσ′=±1

N|z|,Nρ
(r, η)

〉
=

jmax∑
j=1

∫ rmax

0

r2drχ̂
(mσ=∓1)
ji (E, r)d

(mσσ′)
j (r), (88)

and d
(mσσ′)
j (r) are the matrix elements of the partial dipole moments

d
(mσσ′)
j (r) =

jmax∑
j′=1

〈
Φmσ=∓1

j (η; r)

∣∣∣∣rη
∣∣∣∣Φmσ′=±1

j′ (η; r)

〉
η

χ
(mσ′=±1)
j′ (r). (89)

In the above expressions ω = E − E(N|z|, Nρ, σ′,m) is the frequency of radiation, ENlm ≡ E(N|z|, Nρ, σ′,m)

is the energy of the initial bound state Ψmσ′

N|z|,Nρ
(r, η) and N|z| = Nr = N − l − 1. The continuum spectrum

solution χ(p)(r) having asymptotic of “standing” wave conditions and reaction matrix K required for calculating
(79) or (85), and discrete spectrum solution χ(r) and eigenvalue E can be calculated with help of the program
KANTBP.15 One can see that using (79) or (85) for calculation of absolute value in formula (87) yields the
same result. Therefore, (79) is preferable for using real arithmetics.

6. NUMERICAL RESULTS

Fig. 1 displays the calculated photoionization cross section from the states 1s and 3d at B0 = 2.35 × 104 T
(γ = 1 × 10−1) in the energy interval from E = 0.05 a.u. to E = 0.25 a.u. with the final state σ = −1, m = 0.
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Figure 2. Photoionization cross section from the states 3s (left) and 3d (right) versus the energy for B0 = 6.10 T

(γ = 2.595 × 10−5) and for the final state with σ = −1, m = 0.

Table 1. The absolute maximum values, maxj1, of the continuum wave functions χ̂
(01)
j1 (E, r̂) at B0 = 6.10 T (γ =

2.595 × 10−5), E = 6.0 cm−1 and jmax = 35. The numbers x in the parenthesis denote the factors 10x.

j maxj1 j maxj1 j maxj1 j maxj1 j maxj1

1 2.309 8 0.109 15 0.080 22 0.038 29 2.974(-3)
2 0.637 9 0.234 16 0.088 23 0.075 30 1.088(-3)
3 1.859 10 0.317 17 0.084 24 0.056 31 2.677(-4)
4 1.064 11 0.171 18 0.061 25 0.058 32 5.998(-5)
5 0.510 12 0.089 19 0.087 26 0.131 33 1.689(-5)
6 0.271 13 0.055 20 0.055 27 0.071 34 3.781(-6)
7 0.183 14 0.098 21 0.051 28 0.014 35 1.043(-6)

For the initial state 1s in the whole energy interval the results are in good agreement with those of R-matrix
calculations within the multichannel quantum-defect theory.5 We also compared our results with those of the
complex-rotation method combined with a basic set of the 10 000 complex spherical Sturmian-type expansion16

and basic set of the 450 mixed Slater-Landau basis.6 In this case the agreement is good between the thresholds,
but not near them. So, the calculated photoionization cross section has threshold behavior coincided with.5

We used ten eigenfunctions (jmax = 10) of the problem (47)–(49) which requires to solve ten equations of
the system (52). The results coincide with those of the finite element method7 to ten digits. The finite element
grids of r̂ =

√
γr have been chosen as 0 (200) 3 (200) 20 (200) 100 for the discrete spectrum and 0 (200) 3 (200)

20 (200) 100 (1000) 1000 for the continuous one. The numbers in parentheses are the numbers of finite elements
of the order k = 4 in each interval. The number of nodes in the grids is 2400 and 6401, so that the maximum
number of unknowns in Eqs. (52) is 24000 and 64010, respectively.

Fig. 2 displays the cross section of photoionization from the states 3s (left) and 3d (right) at B0 = 6.10T
(γ = 2.595 × 10−5) in the energy interval between E = 6.0 cm−1 and E = 8.0 cm−1. In this case we increased
jmax up to 35, and the finite element grids were chosen as 0 (200) 0.03 (200) 0.2 (200) 1 and 0 (200) 0.03 (200)
0.2 (200) 1 (2000) 100 (4000) 1000. The number of nodes in these grids is 2400 and 26401, respectively. The
corresponding maximum number of unknowns in Eqs. (52) is 84000 and 924035. Table 1 shows the absolute

maximum values of the continuum spectrum wave functions χ̂
(01)
j1 (E, r̂) at E = 6.0 cm−1. We calculated the

cross sections with the energy step 5 × 10−4 cm−1 in all the region except the vicinity of peaks, where the step
was 5 × 10−6 cm−1.
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Figure 3. The first three components of the calculated wave functions, χ = {χ(mσ′)
j (r̂)}: 1 — χ

(01)
1 (r̂), 2 — χ

(01)
2 (r̂), 3

— χ
(01)
3 (r̂) (upper), and the first three components of the calculated dipole moments, d = {d(mσσ′)

j (r̂)}: 1 — d
(0−11)
1 (r̂),

2 — d
(0−11)
2 (r̂), 3 — d

(0−11)
3 (r̂) (lower) for the states 3s (left) and 3d (right) with B0 = 6.10 T (γ = 2.595 × 10−5).

Note, that 3s, 3p and 3d states are nearly degenerate and E300 = −0.055 555 542 37 a.u., E310 = −0.055 555
549 49 a.u., E320 = −0.055 555 552 07 a.u., respectively. To calculate these energies we used three equations of the
system (52) (jmax = 3); increasing jmax keeps them stable. We also compared the energies with those calculated
by means of the second-order algebraic perturbation theory.17 The results agree to the 13-th digit. Fig. 3
displays the first three components of the wave functions (upper) of 3s and 3d states, and of the dipole moment
(lower) from (89) versus r̂. The probability density isolines for the Zeeman wave states |NNrm〉 with even parity
σ = +1 in a homogeneous magnetic field are shown in Fig. 4.

In the calculations we used the following values of the physical constants18: 1 cm−1 = 4.55633 × 10−6 a.u.,
the Bohr radius a0 = 5.29177 × 10−11m and the fine-structure constant α = 7.29735 × 10−3 .

7. CONCLUSIONS

A new efficient method of calculating both the discrete and the continuous spectrum wave functions of a hydrogen
atom in a strong magnetic field is developed based on the Kantorovich approach to the parametric eigenvalue
problems in spherical coordinates. The two-dimensional spectral problem for the Schrödinger equation with
fixed magnetic quantum number and parity is reduced to a one-dimensional spectral parametric problem for the
angular variable and a finite set of ordinary second-order differential equations for the radial variable. The rate
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Figure 4. The probability density isolines for the Zeeman wave states |N, Nr, m〉 with even parity σ = +1 and m = 0
in the homogeneous magnetic field γ = 2.595 × 10−5: left — the state |300〉 with the minimal energy correction; right —
the state |320〉 with the maximal energy correction.

of convergence is investigated numerically and is illustrated with a number of typical examples. The results are
in good agreement with calculations of photoionization cross sections by other authors. The approach developed
provides a useful tool for calculations of threshold phenomena in the formation and ionization of (anti)hydrogen-
like atoms and ions in magnetic traps.
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