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Abstract—Within the effective mass approximation an adiabatic description of spheroidal and dumbbell
quantum dot models in the regime of strong dimensional quantization is presented using the expansion of
the wave function in appropriate sets of single-parameter basis functions. The comparison is given and the
peculiarities are considered for spectral and optical characteristics of the models with axially symmetric
confining potentials depending on their geometric size, making use of the complete sets of exact and
adiabatic quantum numbers in appropriate analytic approximations.
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1. INTRODUCTION

To analyze the geometrical, spectral, and optical
characteristics of quantum dots in the effective mass
approximation and in the regime of strong dimen-
sional quantization following [1], many methods and
models were used. We mention some of them, that are
in the field of our interest: the exactly solvable models
of spherical and cylindrical layer (toroid) impermeable
wells [2, 3], the adiabatic approximation for a lens-
shaped well confined to a narrow wetting layer [4],
and a hemispherical impermeable well [5], molecular
interaction and polarisability [6], the model of strongly
oblate or prolate ellipsoidal impermeable well [7–
9], as well as numerical solutions of the boundary
value problems (BVPs) with separable variables in
the spheroidal coordinates for wells with infinite and
finite wall heights [10–15], Möbius [16] nanostruc-
tures, diffraction of waves by ribbons [17], scattering
problems for toric [18] and coupled nonidentical mi-
crodisks [19].

Similar models were used for describing the en-
ergy spectra of deformed nuclei [20–26], atomic clus-
ters deposited on planar surfaces [27], and low-energy
barrier nuclear reactions [28–33]. However, thorough
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comparative analysis of spectral and optical charac-
teristics of models with different potentials, including
those with non-separable variables, remains to be a
challenging problem.

In the present paper we analyze spectral and opti-
cal characteristics of the following models: a spheri-
cal quantum dot (SQD), an oblate spheroidal quan-
tum dot (OSQD), a prolate spheroidal quantum dot
(PSQD), and a dumbbell QD (DQD). We make use
of the Kantorovich method that reduces the problem
to a set of ordinary differential equations (ODE) [34]
by means of expanding the wave function in appro-
priate sets of single-parameter basis functions [35],
similar to the well-known adiabatic method [36].

We present briefly a calculation scheme for solving
elliptical BVPs with axially-symmetric potentials in
cylindrical coordinates (CC), spherical coordinates
(SC), oblate spheroidal coordinates (OSC), and pro-
late spheroidal coordinates (PSC). Basing on the
symbolic-numerical algorithms (SNA) developed for
axially-symmetric potentials [37–39], different sets
of solutions are constructed for the parametric BVPs
related to the fast subsystem, namely, the eigenvalue
problem solutions (the terms and the basis functions),
depending upon the slow variable as a parameter, as
well as the matrix elements, i.e., the integrals of the
products of basis functions and their derivatives with
respect to the parameter. These terms and matrix
elements form the matrices of variable coefficients
in the set of second-order ODE with respect to the
slow variable, which are calculated in special cases
analytically and in the general case using the program
ODPEVP [40]. The BVP for this set of ODEs is
solved by means of the program KANTBP [41], while
in the special cases crude diagonal estimations can be
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performed using the appropriate analytic approxima-
tions.

The efficiency of the calculation scheme and the
SNA used is demonstrated by tracing the peculiar-
ities of spectral and optical characteristics in the
course of varying the aspect ratio of the prolate
or oblate spheroid and dumbbell in the models of
quantum dots with different confining potentials,
such as the isotropic and anisotropic harmonic os-
cillator, the spherical and spheroidal well with finite
or infinite walls approximated by smooth short-range
potentials, as well as by constructing the adiabatic
classification of the states.

The paper is organized as follows. In Section 2,
the calculation scheme for solving elliptic BVPs with
axially-symmetric confining potentials is briefly pre-
sented. Sections 3 and 4 are devoted to the analysis
of the spectra and absorption coefficient of quan-
tum dot models with three types of axially-symmetric
potentials, including the benchmark exactly solvable
models. In Conclusion we summarize the results and
discuss the future applications.

2. PROBLEM STATEMENT

Within the effective mass approximation under the
conditions of strong dimensional quantization, the
Schrödinger equation for the slow envelope of the
wave function Ψ̃(r̃) of a charge carrier (electron e or
hole h) in the models of QDs has the form [7, 8]

{ ˜̂
H − Ẽ}Ψ̃(r̃) (1)

= {(2μp)−1 ˜̂P2 + Ũ(r̃) − Ẽ}Ψ̃(r̃) = 0,

where r̃ ∈ R3 is the position vector of the particle
having the effective mass μp = μe (or μp = μh),
˜̂P = −i�∇r̃ is the momentum operator, Ẽ is the
energy of the particle, Ũ(r̃) is the axially-symmetric
potential confining the particle motion in SQD,
PSQD, or OSQD. In Model A, Ũ(r̃) is chosen
to be the potential of an isotropic or anisotropic
axially-symmetric harmonic oscillator in Cartesian
coordinates r = {x, y, z}:

ŨA(r̃) = μpω̃
2(ζ1(x̃2 + ỹ2) + ζ3z̃

2)/2. (2)

Here ζ1 = 1, ζ3 = 1 for a spherical QD or ζ1 =
(r̃0/ã)4, ζ3 = (r̃0/c̃)4 for a spheroidal QD, inscribed
into a spherical one, where ã and c̃ are the semiaxes of
the ellipse which transforms into a sphere at ã = c̃ =
r̃0 =

√
x̃2

0 + ỹ2
0 + z̃2

0 , ω̃ = γr̃0�/(μpr̃
2
0) is the angular

frequency, and γr̃0 is an adjustable parameter. We will
use the value γr̃0 = π2/3 that follows from equating
the ground state energies for the spherical oscillator
and the spherical QD of Model B considered below.

If necessary, this definition can be replaced with a
different one, e.g., the one conventional for nuclear
physics [24–26].

For Model B, Ũ(r̃) is the potential of a spherical or
axially-symmetric well

ŨB(r̃) = {0, S(r̃) < 0; Ũ0, S(r̃) ≥ 0}, (3)

bounded by the surface S(r̃) = 0 with walls of finite or
infinite height 1 � Ũ0 < ∞. In Eq. (3) S(r̃) depends
on the parameters ã, c̃, and 0 ≤ c̃1 ≤ 1

S(r̃) ≡ x̃2 + ỹ2

ã2
+

(z̃2 − c̃2)(z̃2c̃2
1 + 1 − c̃2

1)
2

c̃2(c̃2
1c̃

2/4 + 1 − c̃2
1)2

. (4)

At c1 = 0 we get a spheroidal quantum dot model, at
0 < c1 < 1 it becomes a dumbbell QD with a sym-
metric double well, and at c1 > 1 we get a triple-well
model.

For Model C, Ũ(r̃) is taken to be a spherical or
axially-symmetric diffuse potential

ŨC(r̃) = Ũ0

(
1 − (1 + exp(S(r̃)/s))−1

)
, (5)

where s is the edge diffusiveness parameter of the
function smoothly approximating the vertical walls
of finite height Ũ0. Below we restrict ourselves by
considering Model B with infinite walls Ũ0 → ∞ and
Model C with walls of finite height Ũ0.

Throughout the paper we make use of the reduced
atomic units [1, 8]: a∗B = κ�

2/μpe
2 is the reduced

Bohr radius, κ is the DC permittivity, ẼR ≡ Ry∗ =
�

2/(2μpa
∗2
B ) is the reduced Rydberg unit of energy,

and the following dimensionless quantities are in-

troduced: Ψ̃(r̃) = a
∗−3/2
B Ψ(r), 2Ĥ = ˜̂

H/Ry∗, 2E =
Ẽ/Ry∗, 2U(r) = Ũ(r̃)/Ry∗, r = r̃/a∗B, a = ã/a∗B,
c = c̃/a∗B , c1 = c̃1/a

∗
B , r0 = r̃0/a

∗
B, ω = γr0/r

2
0 =

�ω̃/(2Ry∗). For an electron with the effective mass
μp ≡ μe = 0.067m0 at κ = 13.18 in GaAs: a∗B =
ae

B = 104 Å = 10.4 nm and Ry∗ = Ẽe
R = 5.275 meV.

For a heavy hole with the effective mass μh =
μe/0.12 = 0.558m0 the corresponding values are
ah

B = ae
B(μe/μh) = 12.48 Å = 1.248 nm, and Ẽh

R =
Ẽe

R(μh/μe) = 46.14 meV.

Note that for Model A with approximation of
OSQD/PSQD by the anisotropic oscillator (2) the
separation of variables in cylindric coordinates x =
(z, ρ, ϕ) is possible and additional integrals exist [42–
44]. Similarly, for Model B the variables are sep-
arable in the oblate/prolate spheroidal coordinates
x = (ξ, η, ϕ) and the additional integrals of motion
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The values of conditionally fast xf and slow xs independent variables, the coefficients gis(xs), gjf (xf ) and the potentials
V̌f (xf ), V̌s(xs), V̌fs(xf , xs), in Eqs. (10)–(12) for SQD, OSQD, and PSQD in cylindrical (CC), spherical (SC), oblate
and prolate spheroidal (OSC and PSC) coordinates with (d/2)2 = ±(a2 − c2), + for OSC, − for PSC

CC SC OSC and PSC

OSQD PSQD SQD OSQD and PSQD

xf z ρ η η

xs ρ z r ξ

g1f 1 ρ 1 1
g2f 1 ρ 1 − η2 1 − η2

g1s ρ 1 r2 1
g2s ρ 1 r2 ξ2 ± 1
g3s 1 1 r2 1
V̌f (xf ) ω2ζ3z

2 m2/ρ2 + ω2ζ1ρ
2 m2/g2f m2/g2f ± (d/2)2g2f · 2E

V̌s(xs) m2/ρ2 + ω2ζ1ρ
2 ω2ζ3z

2 0 ∓m2/g2s − ((d/2)2g2s − 1) · 2E

V̌fs(xf , xs) 0 0 V̌ (r, η) V̌ (ξ, η)

are Λ̂: [Ĥ, Λ̂] ≡ ĤΛ̂ − Λ̂Ĥ = 0, i.e. Ĥp and Λ̂p in
PSQD

Ĥp = − 4
d2

[
1

ξ2 − η2

(
d

dξ
(ξ2 − 1)

d

dξ
(6)

+
d

dη
(1 − η2)

d

dη

)
+

(
1

(ξ2 − 1)(1 − η2)

)
d2

dϕ2

]
,

Λ̂p =
1 − η2

ξ2 − η2

d

dξ
(ξ2 − 1)

d

dξ
+

ξ2 − 1
ξ2 − η2

(7)

× d

dη
(1 − η2)

d

dη
+

(
1

ξ2 − 1
− 1

1 − η2

)
d2

dϕ2
,

Ĥo and Λ̂o in OSQD

Ĥo = − 4
d2

[
1

ξ2 + η2

(
d

dξ
(ξ2 + 1)

d

dξ
(8)

+
d

dη
(1 − η2)

d

dη

)
−

(
1

(ξ2 + 1)(1 − η2)

)
d2

dϕ2

]
,

Λ̂o = − 1 − η2

ξ2 + η2

d

dξ
(ξ2 + 1)

d

dξ
− ξ2 + 1

ξ2 + η2
(9)

× d

dη
(1 − η2)

d

dη
−

(
1

ξ2 + 1
+

1
1 − η2

)
d2

dϕ2
.

Equation (9) is obtained by substituting ξ → iξ, d →
−id from the known Eq. (7) derived in [45, 46].

Since the Hamiltonian Ĥ in Eqs. (1)–(5) com-
mutes with the z-parity operator of reflection in
the plane z = 0 (z → −z or η → −η), the solutions
are divided into even (σ = +1) and odd (σ = −1)
ones. The solution of Eq. (1), periodical with respect
to the azimuthal angle ϕ, is sought in the form
of a product Ψ(xf , xs, ϕ) = Ψmσ(xf , xs)eimϕ/

√
2π,

where m = 0,±1,±2, . . . is the magnetic quan-
tum number. Note, that in the absence of mag-
netic fields the Hamiltonian commutes also with
the inversion operator (r → −r) with the eigen-
values σ̂ = (−1)mσ and the solutions can be di-
vided into gerade (σ̂ = +1) and ungerade (σ̂ =
−1) ones. Then the function Ψmσ(xf , xs) satis-
fies the following equation in the two-dimensional
domain Ω = Ωxf

(xs) ∪ Ωxs ⊂ R2\{0}, Ωxf
(xs) =

(xmin
f (xs), xmax

f (xs)), Ωxs = (xmin
s , xmax

s ):
(
Ĥ1(xf ;xs) + Ĥ2(xs) (10)

+ V (xf , xs) − 2E
)
Ψmσ(xf , xs) = 0.

The Hamiltonian of the slow subsystem Ĥ2(xs) is
expressed as

Ĥ2(xs) = Ȟ2(xs) (11)

= − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs),

and the Hamiltonian of the fast subsystem Ĥ1(xf ;xs)
is expressed in terms of the reduced Hamiltonian
Ȟf (xf ;xs) and the weighting factor g3s(xs):

Ĥ1(xf ;xs) = g−1
3s (xs)Ȟf (xf ;xs), (12)

Ȟf (xf ;xs) = − 1
g1f (xf )

∂

∂xf
g2f (xf )

∂

∂xf

+ V̌f (xf ) + V̌fs(xf , xs).

The table contains a detailed description of the condi-
tionally fast xf and slow xs independent variables,
the coefficients g1s(xs), g2s(xs), g3s(xs), g1f (xf ),
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g2f (xf ), and the reduced potentials V̌f (xf ), V̌s(xs),
V̌fs(xf , xs), entering Eqs. (10)–(12) for SQD,
OSQD, and PSQD in cylindrical (x = (z, ρ, ϕ)),
spherical (x = (r, η = cos θ, ϕ)), and oblate/prolate
spheroidal (x = (ξ, η, ϕ)) coordinates (CS, SC, and
OSC/PSC) [47]. Note that in the table, using
Eqs. (2), (5) in the reduced atomic units, the potential
V̌ (r, η) for OSQD/PSQD in SC is expressed for
Model A as

V̌ (r, η) = 2r2UA(r, η) = ω2r4(ζ1(1 − η2) + ζ3η
2),

and for Model C as

V̌ (r, η) = 2r2UC(r, η)

= 2r2U0

(
1 − (1 + exp((r2((1 − η2)/a2

+ η2/c2) − 1)/s))−1
)
,

both having zero normal first derivatives ∂V (r, η)/∂r
in the vicinity of the origin r = 0 (equilibrium point),
similar to [29]. We do not use the CC for Model C,
because the motion in this case is not restricted by
two coordinates ρ and z. For Model B in the table
ω = 0 and the potentials V̌ (r, η) = V̌ (ξ, η) = 0 are
zero, since in this case one should impose the Dirich-
let boundary conditions Ψmσ(xf , xs)|∂Ω = 0 at the
boundary ∂Ω = {R2|S(xf , xs) = 0} of Ω, restricted
by the surface S(r̃) = 0, which is equivalent to the
action of the potential (3).

The solution Ψmσ
i (xf , xs) ≡ ΨEmσ

i (xf , xs) of the
problem (10)–(12) is sought in the form of Kan-
torovich expansion [34]

ΨEmσ
i (xf , xs) (13)

=
jmax∑

j=1

Φmσ
j (xf ;xs)χ

(mσi)
j (E,xs).

The set of appropriate trial functions is chosen as the
set of eigenfunctions Φmσ

j (xf ;xs) of the Hamiltonian

Ȟf (xf ;xs) from (12), i.e., the solutions of the para-
metric BVP

{
Ȟf (xf ;xs) − λ̌i(xs)

}
Φmσ

i (xf ;xs) = 0, (14)

in the interval xf ∈ Ωxf
(xs), depending on the con-

ditionally slow variable xs ∈ Ωxs as on a parameter.
These solutions obey the boundary conditions

lim
xf→xt

f (xs)

(
N

(mσ)
f (xs)g2f (xf )

dΦmσ
j (xf ;xs)

dxf
(15)

+ D
(mσ)
f (xs)Φmσ

j (xf ;xs)
)

= 0

at the boundary points {xmin
f (xs), xmax

f (xs)} =
∂Ωxf

(xs) of the interval Ωxf
(xs). In Eq. (15),

N
(mσ)
f (xs) ≡ N

(mσ)
f , D

(mσ)
f (xs) ≡ D

(mσ)
f , unless

specially declared, are determined by the relations

N
(mσ)
f = 1, D

(mσ)
f = 0 at m = 0, σ = +1 (or at

σ = 0, i.e., without parity separation), N
(mσ)
f = 0,

D
(mσ)
f = 1 at m = 0, σ = −1 or at m �= 0. The

eigenfunctions satisfy the orthonormality condition
with the weighting function g1f (xf ) in the same
interval xf ∈ Ωxf

(xs):

〈
Φmσ

i |Φmσ
j

〉
=

xmax
f (xs)∫

xmin
f (xs)

Φmσ
i (xf ;xs) (16)

× Φmσ
j (xf ;xs)g1f (xf )dxf = δij .

Here λ̌1(xs) < . . . < λ̌jmax(xs) < . . . is the desired
set of real eigenvalues. The corresponding set of
potential curves 2E1(xs) < . . . < 2Ejmax(xs) < . . . of
Eqs. (12) is determined by 2Ej(xs) = g−1

3s (xs)λ̌j(xs).
Note that for OSC and PSC the desired set of
real eigenvalues λ̌j(xs) depends on the combined
parameter, xs → p2 = (d/2)2 · 2E, i.e., the product
of spectral 2E and geometrical (d/2)2 parameters
of the problem (10). The solutions of the prob-
lem (14)–(16) for Models A and B are calculated
in the analytical form [39], while for Model C this
is done using the program ODPEVP [40]. Sub-
stituting the expansion (13) into Eq. (1), we get a
set of ODEs for the slow subsystem with respect
to the unknown vector functions χ(mσi)(xs, E) ≡
χ(t)(xs) = (χ(t)

1 (xs), . . . , χ
(t)
jmax

(xs))T :
(
− 1

g1s(xs)
d

dxs
g2s(xs)

d

dxs
+ V̌s(xs) (17)

+ Vii(xs) − 2E
)

χ
(t)
i (xs) = −

∑

j

Vij(xs)χ
(t)
j (xs).

Here Vii(xs) = 2Ei(xs) +Hii(xs), Vij(xs) are defined
by the formula

Vij(xs) =
g2s(xs)
g1s(xs)

Hij(xs) +
1

g1s(xs)
(18)

× dg2s(xs)Qij(xs)
dxs

+
g2s(xs)
g1s(xs)

Qij(xs)
d

dxs
,

Hij(xs) = Hji(xs)
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=

xmax
f (xs)∫

xmin
f (xs)

g1f (xf )
∂Φi(xf ;xs)

∂xs

∂Φj(xf ;xs)
∂xs

dxf ,

Qij(xs) = −Qji(xs)

= −

xmax
f (xs)∫

xmin
f (xs)

g1f (xf )Φi(xf ;xs)
∂Φj(xf ;xs)

∂xs
dxf ,

and calculated analytically for Model B and by means
of the program ODPEVP [40] for Model C, while
the solutions of the BVPs for Eq. (17) with the
boundary and orthonormalization conditions of the
type (15), (16) with xf → xs were calculated by
means of the program KANTBP [41]. Note that
for Model A in SC or CC and Model B in OSC
or PSC, the variables xf and xs are separated so
that the matrix elements V̌ij(xs) = 0 are put into
the r.h.s. of Eq. (17), and Vs(xs) are substituted
from the table. For the interesting lower part of the
spectrum of Models A and B 2E: 2E1 < 2E2 < . . . <
2Et, or of Model C 2E: 2E1 < 2E2 < . . . < 2Et <
U0, the number jmax of the equations solved should
be at least not less than the number of the energy
levels of the problem (17) at a = c = r0. To ensure
the prescribed accuracy of calculation of the lower
part of the spectrum discussed below with eight
significant digits, we used jmax = 16 basis functions
in the expansion (8) and the discrete approximation
of the desired solution by Lagrange finite elements
of the fourth order with respect to the grid pitch
Ωp

hs(xs)
= [xs;min, xs;k = xs;k−1 + hs, xs;max]. The

details of the corresponding computational scheme
are given in [39].

3. SPECTRAL CHARACTERISTICS
OF SPHEROIDAL AND DUMBBELL QDs

3.1. Model A of OSQD and PSQD

In the exactly solvable Model A the variables are
separable in spherical coordinates, and under the
variation of the aspect ratio parameters ζca = c/a and
ζac = ζ−1

ca = a/c for the oblate and prolate spheroids,
determining the transverse ωρ =

√
ζ1ω and longi-

tudinal ωz =
√

ζ3ω frequencies of the circular and
linear harmonic oscillators. The spectrum is given
by the sum of energies 2Enρm = 2ωρ(2nρ + |m|+ 1),
nρ = 0, 1, . . ., m = 0,±1, . . . (with the eigenvalues
being degenerate with respect to λρ = 2nρ + |m|
that numbers in ascending order the energy val-
ues of the states [48, 49], which is conventionally
used in practice, see, for example, [21, 27]), and

2Enz = 2ωz(nz + 1/2), nz = 0, 1, . . . , at ω = ωr0 =
π2/(3r2

0),
√

ζ1 = r2
0/a

2, and
√

ζ3 = r2
0/c

2. At a =
c = r0 the independent variables are separable in
the boundary problem for Eq. (1) in the spherical
coordinates too, i.e., we have the energy spectrum of
a spherical oscillator 2Eosc

nrlm = 2ωr0(2nr + l + 3/2),
nr = 0, 1, . . ., l = 0, 1, . . ., m = 0,±1, . . . ,±l, with
the eigenvalues being degenerate with respect not
only to m, but also to λr = 2nr + l that numbers
in ascending order the energy values of states, sep-
arated in parity σ̂ = (−1)λ = (−1)l = (−1)mσ, σ =
(−1)l−m = ±1. The energy spectrum of the spherical
oscillator 2Eosc

nrlm coincides at a = c with

2E(a, c) = 2(Enzo + Enρo,m), (19)

2E(c, a) = 2(Enρp,m + Enzp),

which, respectively, defines the one-to-one corre-
spondence between the sets of the quantum num-
bers nzo = l − |m|, nρo = nr, m = m for OSQD and
SQD and nρp = nr, m = m, nzp = l− |m| for PSQD
and SQD, that characterize the fast and slow subsys-
tems at continuous variation of the parameters ζca =
c/a and ζac = a/c. At decreasing the parameter ζca

or ζac the degeneracy of the spectrum with respect to
the quantum numbers n, l, m is removed.

Figure 1 illustrates the lower part of the equidis-
tant energy spectrum Ẽ/ẼR = 2E(a, c) and Ẽ/ẼR =
2E(c, a) for even states σ = +1 of the model of
OSQD and PSQD with parabolic confining poten-
tials (2), at m = 0, i.e., of an oblate and prolate
spheroid, depending on the minor c or a and the
major a or c semiaxes, respectively. At fixed values
of the parity σ and the magnetic quantum number
m, when the ratio of the frequencies ωρ and ωz of the
longitudinal and transverse oscillators is a rational
number, ωρ/ωz ∈ Q, as illustrated, e.g., in Fig. 1, the
exact crossings of the same-parity terms occur, after
which above each energy level of OSQD (or PSQD),
labelled with the quantum number nzo (or nρp) of the
fast subsystem, an equidistant spectrum appears with
the energy levels labelled with the quantum number
nρo (or nzp) of the slow subsystem. Note that when
the parameters tend to zero, the longitudinal energy
of OSQD and the transverse energy of PSQD tend
to infinity. However, since the variables are separable
and the energy can be presented as a sum, the finite
energies for a disc Enρo,m or a wire Enzp result from
the subtraction of the longitudinal Enzo or transverse
Enρp,m energy, respectively.

3.2. Models B and C for Oblate Spheroidal QD

At fixed coordinate xs of the slow subsystem, the
motion of the particle in the fast degree of freedom
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Fig. 1. Energies 2E = Ẽ/ER of even σ = +1 lower states of Model A OSQD at a = 2.5 (a) and PSQD at c =
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Fig. 2. Energies 2E = Ẽ/ER of even σ = +1 lower states for OSQD versus the minor c, ζca = c/a ∈ (1/5, 1) being the
spheroid aspect ratio: (a) well with impermeable walls, (b) diffusion potential with 2U0 = 36, s = 0.1, the major semiaxis
a = 2.5 and m = 0. The thin lines are minimal values 2Emin

i ≡ 2Ei(xs = 0) of potential curves.

xf is localized within the potential well having the
effective width

L (xs) = 2c
√

1 − x2
s/a

2, (20)

where L = L̃/a∗B. The parametric BVP for Eq. (12)
at fixed values of the coordinate xs, xs ∈ (0, a),
is solved in the interval xf ∈ (−L(xs)/2, L(xs)/2)
for Model C using the program ODPEVP, and for
Model B the eigenvalues Ẽno(xs)/ẼR ≡ 2Ei(xs),
no = i = 1, 2, . . ., and the corresponding parametric
eigenfunctions Φσ

i (xf ;xs), are expressed in the ana-

lytical form:

2Ei (xs) =
π2n2

o

L2 (xs)
, Φσ

i (xf ;xs) (21)

=

√
2

L (xs)
sin

(
πno

2

(
xf

L (xs) /2
− 1

))
,

where the even solutions σ = +1 are labelled with odd
no = nzo + 1 = 2i− 1, and the odd ones σ = −1 with
even no = nzo + 1 = 2i, i = 1, 2, 3, . . . The effective
potentials (18) in Eq. (17) for the slow subsystem
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are expressed analytically in terms of the integrals
over the fast variable xf of the basis functions (21)
and their derivatives with respect to the parameter xs

including the states of both parities σ = ±1:

2Ei(xs) =
a2π2n2

o

4c2(a2 − x2
s)

, (22)

Hii(xs) =
3 + π2n2

o

12
x2

s

(a2 − x2
s)2

,

Hij(xs) =
2non

′
o(n2

o + n′2
o )(1 + (−1)no+n′

o)
(n2

o − n′2
o )2

× x2
s

(a2 − x2
s)2

,

Qij(xs) =
non

′
o(1 + (−1)no+n′

o)
(n2

o − n′2
o )2

xs

a2 − x2
s

, n′
o �= no.

For Model B at c = a = r0 the OSQD turns into
SQD with known analytically expressed energy levels
Et ≡ E

sp
nlm and the corresponding eigenfunctions

2Esp
nlm =

α2
nr+1,l+1/2

r2
0

, (23)

Φsp
nlm(r, θ, ϕ) =

√
2Jl+1/2

(√
2Esp

nlmr

)

r0
√

r|Jl+3/2(αnr+1,l+1/2)|
Ylm(θ, ϕ),

where αnr+1,l+1/2 are zeros of the Bessel function
of semi-integer index l + 1/2, numbered in as-
cending order 0 < α11 < α12 < . . . < αiv < . . . by
the integer i, v = 1, 2, 3, . . . Otherwise one can use
equivalent pairs iv ↔ {nr, l} with nr = 0, 1, 2, . . .
numbering the zeros of the Bessel function and
l = 0, 1, 2, . . ., being the orbital quantum number
that determines the parity of states σ̂ = (−1)l =
(−1)mσ, σ = (−1)l−m = ±1. At fixed l, the energy
levels Ẽnlm/ẼR = 2Et, degenerate with respect to
the magnetic quantum number m, are labelled with
the quantum number n = nr + 1 = i = 1, 2, 3, . . .,
in contrast to the spectrum of a spherical oscillator,
degenerate with respect to the quantum number
λ = 2nr + l. Figures 2, 3 show the lower part of
the non-equidistant spectrum Ẽ(ζca)/ẼR = 2Et and
the eigenfunctions Ψmσ

t from Eq. (13) for even states
of OSQD Models B and C at m = 0. There is
a one-to-one correspondence rule no = nzo + 1 =
2n − (1 + σ)/2, n = 1, 2, 3, . . ., and nρo = (l − |m| −
(1 − σ)/2)/2, between the sets of spherical quantum
numbers (n, l,m, σ̂) of SQD with radius r0 = a = c
and spheroidal ones {nξ = nr, nη = l − |m|,m, σ} of
OSQD with the major a and the minor c semiaxes,

and the adiabatic set of cylindrical quantum numbers
[nzo, nρo,m, σ] at continuous variation of the param-
eter ζca = c/a. The presence of crossing points of
the energy levels of similar parity under the symmetry
change from spherical ζca = 1 to axial, i.e., under the
variation of the parameter 0 < ζca < 1, in the BVP
with two variables at fixed m for Model B is caused
by the possibility of variable separation for Eq. (8) in
the OSC [47], i.e., the r.h.s. of Eq. (17) equals zero,
and by the existence of the integral of motion (9). The
transformation of the eigenfunctions occurring in the
course of a transition through the crossing points
(marked by circles) in Fig. 2, is shown in Fig. 3 for
Model B (marked by arrows) and similar for Model C.
From the comparison of these figures one can see
that if the eigenfunctions are ordered in accordance
with the increasing eigenvalues of the BVPs, then
for both Models B and C, the number of nodes [50]
is invariant under the variation of the parameter c
from c = a = 2.5 to c = 0.5 of the potentials (3) and
(5). For Model B, such a behavior follows from
the fact of separation of variables of the BVP with
the potential (3) in the OSC, while for Model C
further investigation is needed because the coordinate
system, in which the variables of the BVP with the
potential (5) are separable, is unknown. So, crossing
and quasicrossing points will correspond to branch-
ing points in the complex plane of focal parameter
d, like in the case of separable variables [51]. So,
at small values of the deformation parameter (ζca for
OSQD or ζac for PSQD) there are nodes only along
the corresponding major semiaxis. For Model C at
each value of the parameter a there is a finite number
of discrete energy levels limited by the value 2U0

of the well walls height. As shown in Fig. 2b, the
number of levels of OSQD, equal to that of SQD
at a = c = r0, is reduced with the decrease of the
parameter c (or ζca), in contrast to Models A and B
that have countable spectra, and avoided crossings
appear just below the threshold.

3.3. Models B and C for Prolate Spheroidal QD
In contrast to OSQD, for PSQD at fixed coor-

dinate xs of the slow subsystem the motion of the
particle in the fast degree of freedom xf is confined to
a 2D potential well with the effective variable radius

ρ0 (xs; a, c) = a
√

1 − x2
s/c

2, (24)

where ρ0(xs) = ρ̃0(xs)/a∗B. The parametric BVP for
Eq. (12) at fixed values of the coordinate xs from
the interval xs ∈ (−c, c) is solved in the interval xf ∈
(0, ρ0(xs)) for Model C using the program ODPEVP,
while for Model B the eigenvalues Ẽnρp+1(xs)/ẼR ≡
2Ei(xs), nρp + 1 = i = 1, 2, . . ., and the correspond-
ing parametric basis functions Φmσ=0

i (xf ;xs) ≡
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Fig. 3. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane of Model B of OSQD for the major
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Φm
i (xf ;xs) without parity separation are expressed

in the analytical form:

2Ei (xs) =
α2

nρp+1,|m|
ρ2
0 (xs)

, (25)

Φm
nρp

(xs) =
√

2
ρ0 (xs)

J|m|

(√
2Enρp+1,|m| (xs)xf

)

|J|m|+1(αnρp+1,|m|)|
,

where αnρp+1,|m| = J̄
nρp+1
|m| are positive zeros of the

Bessel function of the first kind J|m|(xf ), labeled in
the ascending order with the quantum number nρp +
1 = i = 1, 2, . . .

The effective potentials (18) in Eq. (17) for the
slow subsystem are calculated numerically in quadra-
tures via the integrals over the fast variable xf of the
basis functions (25) and their derivatives with respect
to the parameter xs, and at m = 0 may be presented
in the analytical form:

2Ei (xs) =
(J̄ i

0)
2

ρ2
0 (xs)

, (26)

Hii(xs) =
(

ρ′0 (xs)
ρ0 (xs)

)2 (1 + J̄ i
0)

3
,
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Hij(xs) = 2
(

ρ′0 (xs)
ρ0 (xs)

)2

×

⎛

⎝J̄ i
0J̄

j
0

1∫

0

J1(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x3dx

− J̄ i
0

1∫

0

J1(J̄ i
0x)

J1(J̄ i
0)

J0(J̄
j
0x)

J1(J̄
j
0 )

x2dx

− J̄j
0

1∫

0

J0(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x2dx

⎞

⎠ ,

Qij(xs) = −2
ρ′0 (xs)
ρ0 (xs)

J̄j
0

1∫

0

J0(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x2dx,

j �= i.

Figures 4, 5 illustrate the lower part of the
non-equidistant spectrum Ẽ(ζac)/ẼR = 2Et and the
eigenfunctions Ψmσ

t from Eq. (13) of even states of
PSQD Models B and C.

A one-to-one correspondence rule nρp + 1 =
np = i = n = nr + 1, i = 1, 2, . . ., and nzp = l − |m|
holds between the quantum numbers (n, l,m, σ̂)
of SQD with the radius r0 = a = c, the spheroidal
quantum numbers {nξ = nr, nη = l − |m|,m, σ} of
PSQD with the major c and the minor a semiaxes,
and the adiabatic set of quantum numbers [np =
nρp + 1, nzp,m, σ] under the continuous variation of

the parameter ζac = a/c. The presence of crossing
points of similar-parity energy levels in Fig. 4 under
the change of symmetry from spherical ζac = 1 to
axial, i.e., under the variation of the parameter 0 <
ζac < 1, in the BVP with two variables at fixed m
for Model B is caused by the possibility of variable
separation for Eq. (6) in the PSC [47], i.e., r.h.s.
of Eq. (17) equals zero, and by the existence of the
additional integral of motion (7). For Model C, at
each value of the parameter c there is also only a finite
number of discrete energy levels limited by the value
2U0 of the well walls’ height. As shown in Fig. 4b,
the number of energy levels of PSQD, equal to that
of SQD at a = c = r0, which is determined by the
product of mass μe of the particle, the well depth Ũ0,
and the square of the radius r̃0, is reduced with the
decrease of the parameter ã (or ζac) because of the
promotion of the potential curve (lower bound) into
the continuous spectrum, in contrast to Models A and
B having countable spectra. Note that the spectrum
of Model C for PSQD or OSQD should approach
that of Model B with the growth of the walls’ height
U0 of the spheroidal well. However, at critical values
of the ellipsoid aspect ratio it is shown that in the
effective mass approximation, both the terms (lower
bound) and the discrete energy eigenvalues in models
of the B type are shifted towards the continuum.
Therefore, when approaching the critical aspect ratio
values, it is necessary to use such models, as the
lens-shaped self-assembled QDs with a quantum
well confined to a narrow wetting layer [4], or, if the
minor semiaxis becomes comparable with the lattice
constant, to proceed to models beyond the effective
mass approximation (see, e.g., [52]).
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Fig. 5. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane of Model B of PSQD for the major
semiaxis c = 2.5 and different values of the minor semiaxis a (ζac = a/c ∈ (1/5, 1)).

3.4. Models B for Dumbbell QD

For DQD at the fixed coordinate xs of the slow
subsystem the motion of the particle in the fast degree
of freedom xf is confined to a 2D potential double well
at 0 ≤ c1 ≤ 1 with the effective variable radius

ρ0 (xs) ≡ ρ0 (xs; a, c, c1) (27)

=
a

c

√
c2 − x2

s

x2
sc

2
1 + 1 − c2

1

c2
1c

2/4 + 1 − c2
1

.

Figure 6 illustrates the transformation of the prolate
spheroidal shape of QD with c = 2.5 and a = 0.5

considered in the previous section, into a “dumbbell”-
type shape and the corresponding evolution of the
lower part of the countable spectrum
Ẽ(ζac = 1/5, c1)/ẼR = 2Et of Model B versus the
deformation parameter c1 at a few fixed values c1 =
0, 0.25, . . . , 1.00 from the interval 0 ≤ c1 ≤ 1. At
c1 = 0 the discrete spectrum states are characterized
by a set of exact spheroidal or adiabatic cylindrical
quantum numbers, {nξ, nη,m, σ} or [nρp, nzp,m, σ].
Typically, one can see exact crossing of energy levels
having different parity (σ = ±1) with the growth
of the deformation parameter c1, which leads, first,
to the quasidegeneracy of these energy levels and
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Fig. 6. (a) The profile in plane zρ of closed surface generated by rotating of continuous curve ρ0(z; a, c, c1) from (4) about
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m = 0 of PSQD.

then to their exact degeneracy at the critical value
c1 = 1. On the other hand, for small values of the
deformation parameter c1 one observes, first, exact
crossings (labelled with circles like in Fig. 4b above)
of similar-parity energy levels, replaced with the
avoided crossings (labelled with squares) for greater
values of the deformation parameter approaching the
critical value c1 = 1. A similar picture was observed
in the example of a 2D-Sinai billiard [53], a 2D-
quantum billiard with the shape x2 + y2 + εx3 = 1
and the deformation parameter ε > 0, possessing the
so-called whispering gallery modes and considered
in [54, 55], as well as in the unidirectional far-field
emission of coupled nonidentical microdisks [19].

Figure 7 illustrates the evolution of the first five
eigenfunctions with the increasing deformation pa-

rameter values c1 = 0, 0.11, . . . , 0.99. The transfor-
mation of eigenfunctions when passing the avoided
crossing points (labelled with squares) in Fig. 6b,
is shown in Fig. 7 for Model B of DQD (labelled
with arrows). Comparing these figures, one can
see that if the eigenfunctions are ordered in accor-
dance with the increasing eigenvalues of the BVPs,
then the number of nodes is not invariant under the
variation of the parameter c1 from c1 = 0 to c1 = 1
in the potentials (27). In particular, in Fig. 7 one
can see that the eigenfunction of the state [nρp = 0,
nzp = 6,m = 0, σ = +1] at c1 = 0.99 has the same
number of nodes as the eigenfunction of the state
[nρp = 1, nzp = 0,m = 0, σ = +1] at c1 = 0. Above
we could already observe this in Fig. 5 at a = 1 (up-
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quantum numbers [nρp, nzp] are given at m = 0. Crossing arrows mean the transformation of nodes of pair of eigenfunctions
after passing value of parameter in which avoided crossing of corresponding pair of eigenvalues was taking place in Fig. 6b.

going arrow) after several exact and avoided crossings
of the corresponding energy levels in Fig. 6b. At the
same time, the eigenfunction of the state [nρp = 0,
nzp = 8,m = 0, σ = +1] at c1 = 0.99 after avoided
crossing of the corresponding energy levels in Fig. 6b
has the same number of nodes as the eigenfunc-
tion of the state [nρp = 6, nzp = 0,m = 0, σ = +1] at
c1 = 0.

4. ABSORPTION COEFFICIENT
FOR AN ENSEMBLE OF QDs

One can use the mentioned differences in the en-
ergy spectra to verify the considered models of QDs
by calculating the absorption coefficient K(ωph, ã, c̃, )

of an ensemble of identical semiconductor QDs [56]:

K̃(ω̃ph, ã, c̃) =
∑

ν,ν′

K̃ν,ν′(ω̃ph, ã, c̃) (28)

= Ã
∑

ν,ν′

Ĩν,ν′δ(�ω̃ph − W̃νν′),

Ĩν,ν′ =
∣∣
∣∣

∫
Ψ̃e

ν(r̃; ã, c̃, )Ψ̃h
ν′((r̃; ã, c̃, ))dr̃

∣∣
∣∣

2

,

W̃νν′ = Ẽg + Ẽe
ν(ã, c̃) + Ẽh

ν′(ã, c̃),

where Ã is proportional to the square of the matrix el-
ement in the Bloch decomposition, Ψ̃e

ν(u) and Ψ̃h
ν′ are

the eigenfunctions of an electron (e) and a heavy hole
(h), Ẽe

ν and Ẽh
ν′ are the energy eigenvalues for an elec-

tron (e) and a heavy hole (h), depending on the semi-
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axis size c̃, ã for OSQD (or ã, c̃ for PSQD) and the
adiabatic set of quantum numbers ν = [nzo, nρo,m]
and ν ′ = [n′

zo, n
′
ρo,m

′] (ν = [nρp, nzp,m] and ν ′ =
[n′

ρp, n
′
zp,m

′]), where m′ = −m, Ẽg is the band gap
width in the bulk semiconductor, ω̃ph is the incident
light frequency, W̃νν′ is the inter-band transition
energy for which K̃(ω̃ph) has the maximal value.
We rewrite the expression (28) using dimensionless
quantities in reduced atomic units

K̃(ωph, ã, c̃) = ÃẼ−1
g

∑

ν,ν′

Ĩν,ν′δ[fν,ν′(u)],

fν,ν′(u) = λ1

− (2Eg)−1(2Ee
ν(a, c) + 2Eh

ν′(a, c)(μh/μe)),

where the parameter u will be defined below, λ1 =
(�ω̃ph − Ẽg)/Ẽg is the energy of the optical in-

terband transitions scaled to Ẽg, 2Eg = Ẽg/Ẽ
e
R =

1.43/(5.27 × 10−3) is the dimensionless band gap
width. For both electron and hole carriers the dimen-
sionless energies 2Ee

ν = Ẽe
ν/Ẽe

R and 2Eh
ν (μh/μe) =

Ẽh
ν /Ẽe

R are expressed in the same reduced atomic
units Ẽe

R.

Now consider an ensemble of OSQDs (or
PSQDs) with different values of the minor semiaxis
c = uoc̄ (or a = upā) determined by the random
parameter u = uo (or u = up). The corresponding
minor semiaxis mean value is c̄ at fixed major semiaxis
a (or ā at fixed major semiaxis c) and the appropriate
distribution function is P (uo) (or P (up)). Conven-
tionally, they use the normalized Lifshits–Slezov
P (u) ≡ P LS(u) [57] or Gaussian P (u) ≡ P G(u)
distribution functions (

∫
P (u)du =

∫
uP (u)du = 1):

P LS(u) := {34eu2 exp(−1/(1 − 2u/3))/25/3/(u + 3)7/3/(3/2 − u)11/3, u ∈ (0, 3/2); 0, otherwise},
P G(u) := 1/

√
2π/σ exp(−(u − 1)2/(2σ2)),

where ū =
∫

uP G(u)du = 1 is the mean value of u

and σ2 = (
∫

(u − ū)2P G(u)du) is the variance. The
absorption coefficient of an ensemble of semiconduc-
tor QDs with different dimensions of minor semiaxes
is then expressed as

K̃o(ωph, ¯̃a, c̃) =
∫

K̃(ωph, ¯̃a, c̃, uo)P (uo)duo,

K̃p(ωph, ã, ¯̃c) =
∫

K̃(ωph, ã, ¯̃c, up)P (up)dup.

Taking the known properties of the δ function into
account, we arrive at the analytical expression for
the the absorption coefficient K̃(ωph, ã, c̃) of a system
of semiconductor QDs with a distribution of minor
semiaxes:

K̃(ωph)
K̃0

=
∑

ν,ν′,s

K̃ν,ν′(ωph)
K̃0

, (29)

K̃ν,ν′(ωph)
K̃0

= Ĩν,ν′

∣∣
∣
∣∣
dfν,ν′(u)

du

∣
∣∣
∣
u=us

∣∣
∣
∣∣

−1

P (us),

where K̃0 = Ã−1Ẽg is the normalization factor, us are
the roots of the equation fν,ν′(us) = 0.

In particular, for Model B of OSQD or
PSQD we have the interband overlap
Ĩν,ν′ = δnρo,n′

ρo
δnzo,n′

zo
δm,−m′ for OSQD,

Ĩν,ν′ = (J1+|m|(αnρp+1,|m|)/J1−|m|(αnρp+1,|m|))2 ×
×δnzp,n′

zp
δnρp,n′

ρp
δm,−m′ for PSQD, and the selection

rules nzo = n′
zo, nρo = n′

ρo, and m = −m′ or nρp =
n′

ρp, nzp = n′
zp and m = −m′, respectively. Note that

the contributions of non-diagonal matrix elements
to the energy values are about 1% for OSQD and
PSQD of Model B; then in the Born–Oppenheimer
approximation of the order bmax for the absorption
coefficient we get

fν,ν′(u) = λ1 −
bmax∑

j=0

Ě(j)uj−2. (30)

Here the coefficients Ě(j) are defined by

Ě(j) = (2Eg)−1E
(j)
io ω2−j

ρ;no
(c̄)(1 + μe/μh) (31)

or Ě(j) = (2Eg)−1E
(j)
ip ω2−j

z;nρp
(ā)(1 + μe/μh),

ωρ;no(c̄) = πno/(ac̄), ωz;nρp(ā) = αnρp+1,|m|/(āc),

E
(0)
io = a2/4, E

(1)
io = (2nρo + |m| + 1),

E
(2)
io = (6nρo|m| + 2 + 6nρo + 6n2

ρo

+ |m|2 + 3|m|)a−2,

E
(3)
io = 3(6nρo + 3|m| + 2 + |m|2 + 6n2

ρo

+ 6nρo|m| + 4n3
ρo + 6|m|n2

ρo + 2|m|2nρo)a−4/2,
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Fig. 8. Absorption coefficient K/K0 from (29) consists of a sum of the first partial contributions versus the energy λ =
λ1 of the optic interband transitions for the Lifshits–Slezov distribution in first, second, and third (from top to bottom)
Born–Oppenheimer approximations: (left panels) for ensemble of OSQDs c̄ = 0.5, a = 2.5 (summation by no = 1, 2, 3,
nρo = 0, 1, 2, 3, 4, 5, m = 0), (right panels) for ensemble of PSQDs ā = 0.5, c = 2.5 (summation by np = 1, 2, 3, nzp =
0, 1, 2, 3, 4, 5, m = 0).

E
(0)
ip = c2, E

(1)
ip = (2nzp + 1),

E
(2)
ip = +3(2nzp + 2n2

zp + 1)c−2/4,

E
(3)
ip = 3(3n2

zp + 7nzp + 2n3
zp + 3)c−4/16.

The coefficients of the order bmax ≥ 4 are calculated by
the perturbation theory algorithms [37, 38] using ex-
act solutions of 2D and 1D oscillators with adiabatic
frequencies ωρ;no(c̄) and ωz;nρp(ā) from (31) that dis-
tinguish from conventional ones, for example, ωρ and
ωz used in Section 3.1 or in [21, 27]. The accuracy
of such approximations up to bmax = 5 is about 4–6

decimal digits in comparison with the numerical re-
sults of the crude diagonal adiabatic approximation
(CDAA) of Eq. (17) without Hii(xs) for the states
from Fig. 2a at c = 0.5 and Fig. 4a at a = 0.5. In
the case a = c = 1 the accuracy is only about two
decimal digits in comparison with the CDAA of the
exact spectrum Eq. (23) of Model B of SQDs [56].

Note that in Model B 2Eio and 2Eip monotoni-
cally depend upon the parameter u and, therefore, the
algebraic equation fν,ν′(u) = 0 has the only solution
in the considered domain of definition. Using the

notations λ′
1 = λ1 for bmax = 1 and λ′

1 = λ1 −E
(2)
io , or
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Fig. 9. Schematic plots of interband transition corresponding to Fig. 8.

λ′
1 = λ1 − E

(2)
ip for bmax ≥ 2, we rewrite this equation

in the Born–Oppenheimer approximations up to the
third order bmax ≤ 3

fν,ν(u) = λ′
1 − Ě(0)u−2 − Ě(1)u−1 − Ě(3)u = 0,

which has the required roots u1 = u
(bmax)
1 :

u
(1,2)
1 = (2λ′

1)
−1(Ě(1) + ((Ě(1))2 + 4λ′

1Ě
(0))1/2),

u
(3)
1 ≈ u

(2)
1 + Ě(3)(u(2)

1 )4/(2Ě(0) + Ě(1)u
(2)
1 ).

For the Lifshits–Slezov distribution Fig. 8 dis-
plays the total absorption coefficients K̃(ωph)/K̃0

and the partial absorption coefficients K̃ν,ν(ωph)/K̃0,
that form the corresponding partial sum (29) over
a fixed set of quantum numbers ν at m = −m′ = 0.
One can see that the summation over the quantum
numbers nzo (or nρp) numerating the nodes of the
wave function with respect to the fast variable gives
the corresponding principal maxima of the total ab-
sorption coefficients for the ensemble of QDs with
distributed dimensions of minor semiaxis, while the
summation over the quantum number nρo (or nzp)
that label the nodes of the wave function with respect
to the slow variable leads to the increase of amplitudes
of these maxima and to appearing secondary maxima
in the case of sparer energy levels of Model B OSQDs
(or PSQDs).

In the regime of strong dimensional quantization
the frequencies of the interband transitions between
the levels no = 1, nρo = 0, m = 0 for OSQD or
np = 1, nzp = 0, m = 0 for PSQD in the BO1, at
the fixed values ã = 2.5ae and c̃ = 0.5ae for OSQD

or ã = 0.5ae and c̃ = 2.5ae for PSQD, are equal to
Δω̃ph

100 = 1.64× 1013 s−1 or Δω̃ph
100 = 3.32× 1013 s−1

(Δω̃ph
100 = (2π�)−1(W̃100,100 − Ẽg) with the accuracy

to 3% and 0.5%, respectively), corresponding to
the infrared spectral region [7, 8]. With decreasing
semiaxis the threshold energy increases, because
the “effective” band gap width increases, which is
a consequence of the enhancement of dimensional
quantization. Therefore, the above frequency is
greater for PSQD than for OSQD, because the
OSQD implemented in two directions of the plane
xy is effectively greater than that in the direction
of the z axis solely at similar values of semiaxes.
Higher-accuracy calculations reveal an essential
difference in the frequency behavior of the absorption
coefficient for interband transitions (see Fig. 9) in
systems of semiconductor OSQDs or PSQDs having
a distribution of minor semiaxes, which can be used
to verify the above models.

5. CONCLUSIONS

The presented examples of the analysis of en-
ergy spectra of SQD, OSQD, PSQD, and DQD
models with three types of axially symmetric po-
tentials demonstrate the efficiency of the developed
computational scheme and SNA. Only Model A
(anisotropic harmonic oscillator potential) is shown
to have an equidistant spectrum, while Models B
and C (wells with infinite and finite wall height)
possess non-equidistant spectra. In Model C, there
is a finite number of energy levels. This number
becomes smaller as the parameter a or c (ζac or
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ζca) is reduced because the potential curve (lower
bound) moves into the continuum. Models A and
B have countable discrete spectra. This difference
in spectra allows verification of SQD, OSQD, and
PSQD models using the experimental data [2], e.g.,
photoabsorption, from which not only the energy level
spacing, but also the mean geometric dimensions
of QD may be derived [7, 12, 13]. The considered
examples of calculating the absorption coefficient for
ensembles of OSQDs or PSQDs with random minor
semiaxes in Model B have proved the possibility of a
similar verification. It is shown that there are critical
values of the ellipsoid aspect ratio, at which in the
approximation of effective mass the discrete spectrum
of the models with finite-wall potentials turns into
a continuous one. Hence, using the experimental
data, it is possible to verify different QD models
like the lens-shaped self-assembled QDs with a
quantum well confined to a narrow wetting layer [4],
or to determine the validity domain of the effective
mass approximation, if a minor semiaxis becomes
comparable with the lattice constant and to proceed
opportunely to more adequate models such as [52].

Further development of the method, symbolic–
numerical algorithms, and the software package is
planned for solving the quasi-2D and quasi-1D BVPs
with both discrete and continuous spectrum, which
are necessary for calculating the optical transition
rates, channeling and transport characteristics in the
models like quantum wells or quantum wires and low-
energy barrier nuclear reactions.
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