NEUTRINO-NUCLEUS INTERACTIONS AT LOW AND INTERMEDIATE ENERGIES

Gennady Lykasov

in collaboration with Vadim Bednyakov

Joint Institute for Nuclear Research, Dubna

CONTENTS

- I. Motivation to study $\nu-A$ interactions at low and intermediate energies
 - II. Fermi-liquid theory and neutrino scattering off nuclear matter
 - III. Application of the FLT to the analysis of $\nu-A$ interactions
 - IV. Comparison of the obtained results with other calculations
 - V. Background from solar neutrinos
 - VI. νA interactions at intermediate energies
- VII. Conclusion

The main goal is to construct a new generator simulating neutrino interaction within a detector

The main inputs are the neutrino-nucleus cross sections in a wide energy region.

The rate of neutrino-nucleon scattering in a medium at low energies can be presented in the following form

$$W_{fi} = \frac{G_F^2 n}{4V} \left[C_V^2 (1 + \cos \theta) \mathcal{S}_V(\mathbf{q}, \omega) + C_A^2 (3 - \cos \theta) \mathcal{S}_A(\mathbf{q}, \omega) \right]$$

where θ is the scattering angle, V is the normalized volume, n is the nuclear density, S_V and S_A are the vector and axial vector dynamic form factors (FF), which depend on the transferred 3-momentum \mathbf{q} and the energy transfer ω .

The FF $\mathcal{S}_{V,A}$ are related to the corresponding response function $\chi_{V,A}$

$$S_{V,A}(\omega, \mathbf{q}) = \frac{2}{n} \frac{\operatorname{Im} \chi_{V,A}(\omega, \mathbf{q})}{1 - \exp(-\omega/T)}.$$

The Dyson type perturbation equations over the spin-independent \mathcal{F} and spin dependent \mathcal{G} interactions of quasiparticles presented in the matrix form.

$$\chi_V = \chi^0 - \chi_V \mathcal{F} \chi^0,$$

$$\chi_A = \chi^0 - \chi_A \mathcal{G} \chi^0,$$

Here χ^0 is the diagonal 2×2 matrix consisting of χ^0_p and χ^0_n which being the zero approximations of the proton and neutron response functions over the interaction. For isospin-symmetric nuclear matter $\mathcal F$ and $\mathcal G$ become also 2×2 matrices

$$\chi_V^p (1 + f_{nn} \chi_n^0) + \chi_V^n f_{pn} \chi_p^0 = \chi_p^0$$

$$\chi_V^p f_{pn} \chi_n^0 + \chi_V^n (1 + f_{pp} \chi_n^0) = \chi_n^0$$

and

$$\chi_A^p (1 + g_{nn} \chi_n^0) + \chi_A^n g_{pn} \chi_p^0 = \chi_p^0$$

$$\chi_A^p g_{pn} \chi_n^0 + \chi_A^n (1 + g_{pp} \chi_n^0) = \chi_n^0,$$

where f_{pp} , f_{nn} , f_{pn} and g_{pp} , g_{nn} , g_{pn} are the spin-independent and spin-dependent amplitudes of pp, nn and pn interactions, respectively.

Note, that the amplitude of interaction between two quasi-particles q and q' with three-momenta \mathbf{p}

and \mathbf{p}^\prime neglecting the tensor forces has the following form

$$f_{qq'}(\mathbf{p}, \mathbf{p}') = f + f'(\tau \cdot \tau') + g(\sigma \cdot \sigma') + g'(\sigma \cdot \sigma')(\tau \cdot \tau')$$

where q and q' can denote p, n, and f, f', g, g' are the Landau parameters, σ and τ are the spin and isospin Pauli matrices, respectively.

$$f_{pp} = f_{nn} = f + f',$$

 $g_{pp} = g_{nn} = g + g',$
 $f_{pn} = f_{np} = f - f',$
 $g_{pn} = g_{np} = g - g'.$

L.D.Landau, Sov.Phys.JETP, 5, 101(1957)

A.B.Migdal, "Theory of Finite Fermi Systems and Application to Atomic Nuclei", Interscience, New York, 1962

G.Baym, C.J.Pethick, "Landau Fermi-Liquid Theory: Concepts and Applications", New York, 1991 N.Iwamoto, C.J.Pethick, Phys.Rev. D25, 313 (1982)

G.L., E.Olsson, C.J.Pethick, Phys.Rev. C72, 02805 (2005)

S.Reddy, M.Prakash & J.M.Lattimer, Phys.Rev. C59, 2888 (1999)

$$1/l = V \int \frac{d^3q}{(2\pi)^3} W_{fi}.$$

With this quantity one can estimate the cross section of the elastic neutrino interaction with a heavy nucleus σ_{el}

$$\sigma_{el} = \frac{V_A}{l} = V_A \int \frac{d^3q}{(2\pi)^3} \tilde{W}_{fi}$$

where $\tilde{W}_{fi} = V_A \cdot W_{fi}$ and $V_A = A \cdot v_N$. Here A is the number of nucleons in a nucleus and $v_N = 4\pi/3r_N^3$ is the nucleon volume, r_N is the nucleon radius about 0.8 fm. To estimate the number of neutrino interactions \mathcal{R} per 1 second within a target T we use the simple formula

$$\mathcal{R} = P_{targ} N_A \sigma_{\nu A} f_{\nu}$$

Here f_{ν} denotes the initial neutrino flux.

Figure 1: The total ν -⁷¹Ge cross section as a function of the neutrino energy E_{ν} .

Figure 2: The total absorption ν - 40 Ar cross section as a function of the neutrino energy E_{ν} .

Figure 3: The flux continuum $[cm^{-2}sec^{-1}MeV^{-1}]$ as a function of the neutrino energy E_{ν} .

Figure 4: The total neutrino number per a month and MeV produced from $^8\text{B-}\nu$ flux interacting with 1.kg ^{71}Ge target as a function of the neutrino energy E_{ν} .

CONCLUSION

- I. The FLT can be applied to compute total cross sections for neutrino scattering off heavy nuclei at low neutrino energies.
- II. The obtained cross sections do not contradict to other calculations within different nuclear models.
- III. The suggested approach is much simple in comparing to other models.
- IV. The cross sections obtained within the FLT are different from the results obtained within the Fermi gas approximation in a factor 2.5-3 at $E_{\nu} \leq 5 6 MeV$.
 - V. At higher energies such difference becomes smaller.
- VI. The suggested approach can be applied to compute the background from solar neutrinos interacting within a detector.
- VII. At intermediate energies about a few hundred of MeV the main

nuclear effect is a possible baryon isobar creation in a medium.

VIII. At high energies above 1 GeV a contribution of nuclear effects to total $\nu-A$ cross sections becomes small, it is less than 10%.