Track finding algorithms in emulsions of the OPERA experiment

Sheshukov Andrey

Irkutsk State University LNP JINR

The OPERA experiment

- Experiment studies $v_{\mu} \rightarrow v_{\tau}$ oscillations
- The main goal of the experiment is to obtain Δm_{23}^2
- Appearance of tau neutrinos in the muon neutrino beam is to be measured
- Photo emulsion is used to study the neutrino interaction vertex and tracks

OPERA Brick

- The OPERA Brick:
 102mm*127mm*75mm
- It contains 56 plates with2 emulsion layers each
- Each emulsion layer is scanned 16 images

Simulation scheme

A

11-41V AT NH

Efficiencies definitions

We compute reconstruction efficiency for a chosen simulated track as:

• Eff1=n1/N, where n1 is the number of simulated base segments associated to any reconstructed track.

• Eff2=n2/N, where n2 is the maximal number of base segments which belong to <u>the same</u> reconstructed track.

N is the total number of simulated base segments.

In this analysis we do not consider tracking accuracy

Effectiveness for FakeTracks

Efficiency with D=0.500000 1/cm2

Further work

• Study FEDRA built-in reconstruction algorithms and define all relevant efficiencies (vs track length, noise level, energy, etc)

- Possible improvement of FEDRA algorithms
- Build end-to-end simulation-reconstructionanalysis chain and study OPERA sensitivity to neutrino mixing angle and mass squared difference.
 - study specific channels of tau decays (lepton + hadron [pion]) – part of my diploma work

THE END