Quantum Field Theory of Neutrino Oscillations in Vacuum and Matter

Dmitry V.Naumov, Vadim A.Naumov

JINR

 ν @accelerators. JINR

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Outline

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Introduction

Leptons and neutrino

Three generations

About 50 years of experimental research yielded in discovery of three types of neutrinos associated to leptons:

$$\begin{pmatrix} e \\ \nu_e \end{pmatrix} \begin{pmatrix} \mu \\ \nu_{\mu} \end{pmatrix} \begin{pmatrix} \tau \\ \nu_{\tau} \end{pmatrix}$$
1956 1962 2000

ション ふゆ く は マ く は マ う く し マ

-Introduction

LNeutrino masses

Are neutrinos massive?

• No direct observation of neutrino mass yet. Only limits:

 $m_{\nu_e} < 2.2 \text{ eV}, \ m_{\nu_{\mu}} < 170 \text{ keV}, \ m_{\nu_{\tau}} < 15.5 \text{ MeV}$

From cosmology (model dependent)

$$\sum_{i=\nu_e,\nu_\mu,\nu_\tau} m_i < 1 \text{ eV}$$

If ν have a mass should ν_e, ν_μ, ν_τ be massive?
Not necessarely!

L Introduction

└_Neutrino masses

Masses in the SM

In the SM all particles initially are massless. They acquire their masses due to symmetry breaking interacting with Higgs boson.

- Quarks are a good example:
 - Massless quarks

$$\bar{\mathcal{U}} = \left(\bar{u}, \bar{c}, \bar{t}\right), \mathcal{D} = \left(\begin{array}{c} d\\s\\b\end{array}\right)$$

 after symmetry breaking a "mass" term with non-diagonal matrix *M* appears in the SM *L*:

$$\mathcal{L} = \frac{1}{2} \bar{\mathcal{U}} \mathcal{M} \mathcal{D} + \frac{g}{2\sqrt{2}} \bar{\mathcal{U}} \gamma_{\mu} \left(1 - \gamma_{5}\right) \mathcal{D} W^{\mu}$$

ション ふゆ く は マ く は マ う く し マ

and diagonal interaction term

L Introduction

LNeutrino masses

Masses in the SM

In the SM all particles initially are massless. They acquire their masses due to symmetry breaking interacting with Higgs boson.

- Quarks are a good example:
 - Massless quarks

$$\bar{\mathcal{U}} = \left(\bar{u}, \bar{c}, \bar{t}\right), \mathcal{D} = \left(\begin{array}{c} d\\s\\b\end{array}\right)$$

 after symmetry breaking a "mass" term with non-diagonal matrix *M* appears in the SM *L*:

$$\mathcal{L} = \frac{1}{2} \bar{\mathcal{U}} \mathcal{M} \mathcal{D} + \frac{g}{2\sqrt{2}} \, \bar{\mathcal{U}} \gamma_{\mu} \left(1 - \gamma_{5}\right) \mathcal{D} \, W^{\mu}$$

ション ふゆ く は マ く は マ う く し マ

and diagonal interaction term

L Introduction

└_Neutrino masses

Masses in the SM

 \mathcal{M} can be diagonalized introducing two unitary matrices K, N:

$$\bar{\mathcal{U}} = \bar{U}K^{\dagger}, \ \mathcal{D} = ND$$

in a way that:

$$\frac{1}{2}\bar{\mathcal{U}}\mathcal{M}\mathcal{D} = \frac{1}{2}\bar{U}K^{\dagger}\mathcal{M}ND \text{ and } K^{\dagger}\mathcal{M}N \text{ is diagonal}$$

 \rightarrow The fields U, D are physical because they have a definite mass.

 \rightarrow The price is that originally diagonal interaction term becomes non-diagonal:

$$\frac{g}{2\sqrt{2}}\,\bar{\mathcal{U}}\gamma_{\mu}\left(1-\gamma_{5}\right)\mathcal{D}\,W^{\mu}=\frac{g}{2\sqrt{2}}\,\bar{U}\gamma_{\mu}\left(1-\gamma_{5}\right)\boldsymbol{K}^{\dagger}\boldsymbol{N}\boldsymbol{D}\,W^{\mu}$$

The product of two unitary matrices $V = K^{\dagger}N$ is also a unitary matrix known as CKM matrix.

L Introduction

└_Neutrino masses

Masses in the SM

 $\mathcal M$ can be diagonalized introducing two unitary matrices K,N:

$$\bar{\mathcal{U}} = \bar{U}K^{\dagger}, \ \mathcal{D} = ND$$

in a way that:

$$\frac{1}{2}\bar{\mathcal{U}}\mathcal{M}\mathcal{D} = \frac{1}{2}\bar{\mathcal{U}}K^{\dagger}\mathcal{M}ND \text{ and } K^{\dagger}\mathcal{M}N \text{ is diagonal}$$

 $\rightarrow {\rm The~fields}~U,D$ are physical because they have a definite mass.

 \rightarrow The price is that originally diagonal interaction term becomes non-diagonal:

$$\frac{g}{2\sqrt{2}}\,\bar{\mathcal{U}}\gamma_{\mu}\left(1-\gamma_{5}\right)\mathcal{D}\,W^{\mu}=\frac{g}{2\sqrt{2}}\,\bar{U}\gamma_{\mu}\left(1-\gamma_{5}\right)\boldsymbol{K}^{\dagger}ND\,W^{\mu}$$

The product of two unitary matrices $V = K^{\dagger}N$ is also a unitary matrix known as CKM matrix.

L Introduction

└_Neutrino masses

Masses in the SM

 \mathcal{M} can be diagonalized introducing two unitary matrices K, N:

$$\bar{\mathcal{U}} = \bar{U}K^{\dagger}, \ \mathcal{D} = ND$$

in a way that:

$$\frac{1}{2}\bar{\mathcal{U}}\mathcal{M}\mathcal{D} = \frac{1}{2}\bar{\mathcal{U}}K^{\dagger}\mathcal{M}ND \text{ and } K^{\dagger}\mathcal{M}N \text{ is diagonal}$$

 $\rightarrow {\rm The~fields}~U,D$ are physical because they have a definite mass.

 \rightarrow The price is that originally diagonal interaction term becomes non-diagonal:

$$\frac{g}{2\sqrt{2}}\,\bar{\mathcal{U}}\gamma_{\mu}\left(1-\gamma_{5}\right)\mathcal{D}\,W^{\mu}=\frac{g}{2\sqrt{2}}\,\bar{U}\gamma_{\mu}\left(1-\gamma_{5}\right)\frac{K^{\dagger}ND}{K^{\mu}}$$

The product of two unitary matrices $V = K^{\dagger}N$ is also a unitary matrix known as CKM matrix.

L Introduction

LNeutrino masses

Masses in the SM

We used to think about physical massive states of quarks grouped in three doublets:

$$\left(\begin{array}{c} u \\ d \end{array}\right) \quad \left(\begin{array}{c} c \\ s \end{array}\right) \quad \left(\begin{array}{c} t \\ b \end{array}\right)$$

and having CKM matrix in the non-diagonal interaction sector:

$$\mathcal{L} = \frac{g}{2\sqrt{2}} V_{ud} \bar{u} \gamma_{\mu} (1 - \gamma_5) d W^{\mu} + \frac{g}{2\sqrt{2}} V_{us} \bar{u} \gamma_{\mu} (1 - \gamma_5) s W^{\mu}, + \frac{g}{2\sqrt{2}} V_{ub} \bar{u} \gamma_{\mu} (1 - \gamma_5) b W^{\mu}, \text{ etc}$$

ション ふゆ く しょう く しょう く しゃ

-Introduction

└_Neutrino masses

A note about notations

1 Let me note that we never use a super position like:

$$\psi_{ud} = V_{ud}d + V_{us}s + V_{ub}b$$

to write in short notation:

$$\mathcal{L} = \frac{g}{2\sqrt{2}}\bar{u}\gamma_{\mu}\left(1-\gamma_{5}\right)\psi_{ud}$$

2 Let me also note that even if ψ_{ud} was ever used I never heard that one wants to interpret ψ_{ud} as a physical state. Did you ever heard a name like u-th down quark? L Introduction

└_Neutrino masses

Neutrino masses

Neutrino masses appear in the SM in exactly (or to be more precise - VERY similar¹) way: leading to the very similar mixing matrix V called Pontecorvo-Maki-Nakagawa-Sakata matrix and physical massive neutrinos ν_1, ν_2, ν_3 .

Psychological adaptation

However 50 years of research in neutrino field make VERY difficult to think about so called flavour states like: $\nu_e = V_{e1}\nu_1 + V_{e2}\nu_2 + V_{e3}\nu_3$ as about non-physical mixture like $V_{ud}d + V_{us}s + V_{ub}b$

We still like to call both ν_1, ν_2, ν_3 and ν_e, ν_μ, ν_τ as physical sets while in fact ν_1, ν_2, ν_3 are physical and interaction is not diagonal exactly as with quarks.

¹Have a look for lectures of Andrea Romanino for deeper understanding at http://astronu.jinr.ru/wiki/upload/4/49/Romanino_Lectures_Dubna_2007.pd

ν osccilations	
Introduction	
Neutrino masses	

Namings

1 We do not use
$$\psi_{ud} = V_{ud}d + V_{us}s + V_{ub}b$$

 $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} \leftarrow \text{massive states}$
2 However we use $\nu_e = V_{e1}\nu_1 + V_{e2}\nu_2 + V_{e3}\nu_3$
 $\begin{pmatrix} e \\ \nu_1 \end{pmatrix} \begin{pmatrix} \mu \\ \nu_2 \end{pmatrix} \begin{pmatrix} \tau \\ \nu_3 \end{pmatrix} \leftarrow \text{massive states}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

11	OSCCI	lations

Introduction

 \Box Quantum Mechanics of ν oscillations in Vacuum

Assume neutrino have a mass

If neutrinos have a mass then what?

 \rightarrow an interesting effect - neutrino oscillations appears

 \rightarrow We consider this in Quantum Mechanics and QFT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

	OFCOL	latione
ν	USCCI.	rations
		1001011E

Introduction

 \Box Quantum Mechanics of ν oscillations in Vacuum

Assume neutrino have a mass

If neutrinos have a mass then what? \rightarrow an interesting effect - neutrino oscillations appears \rightarrow We consider this in Quantum Mechanics and QET.

ション ふゆ く は マ く は マ う く し マ

- ν osccilations
- Introduction
 - \Box Quantum Mechanics of ν oscillations in Vacuum

Assume neutrino have a mass

If neutrinos have a mass then what?

- \rightarrow an interesting effect neutrino oscillations appears
- \rightarrow We consider this in Quantum Mechanics and QFT

ション ふゆ く は マ く は マ う く し マ

ν osccilations
Introduction

Naive picture

- An evolution of a relativistic particle with 4-momenta $p_i = (\sqrt{\mathbf{p}^2 + m_i^2}, \mathbf{p})$ is given by $e^{-ip_i x_i}$ with 4-point $x_i = (t_i^0, \mathbf{x})$
- **2** If in a reaction was produced $|\nu_{\alpha}\rangle = \sum_{i} V_{\alpha i} |\nu_{i}(0)\rangle$ then at a position **x** the state $|\nu_{\alpha}\rangle$ will be evolved as:

$$\mid \nu_{\alpha} \rangle = \sum_{i} V_{\alpha i} e^{-ip_{i}x_{i}} \mid \nu_{i}(0) \rangle$$

3 this may look like a state $\langle \nu_{\beta} |$ with a probability:

$$P_{\alpha\beta} \equiv |\langle \nu_{\beta}(x) \mid \nu_{\alpha}(0) \rangle|^{2} = \sum_{ij} V_{\alpha i} V_{i\beta}^{*} V_{\alpha j}^{*} V_{j\beta} e^{-i(p_{i}x_{i}-p_{j}x_{j})}$$

Introduction

 \square Quantum Mechanics of ν oscillations in Vacuum

Periodical transformations = oscillations

In QM we say that ν_{α} transforms into ν_{β} after some time at a certain distance $|\mathbf{x}|$ with a periodicity defined by the phase

$$\phi_{ij} = p_i x_i - p_j x_j$$

In the standard approximation $t_i = t_j = |\mathbf{x}|, \mathbf{p}_i = \mathbf{p}_j$:

$$\phi_{ij} = (E_i - E_i) \left| \mathbf{x} \right| - (\mathbf{p}_i - \mathbf{p}_j) \mathbf{x} = \left(\frac{E_i^2 - E_j^2}{E_i + E_j} \right) \left| \mathbf{x} \right| \approx \frac{m_i^2 - m_j^2}{2E} \left| \mathbf{x} \right|$$
(1)

Thus ϕ_{ij} depends on E, $|\mathbf{x}|$ and ϕ_{ij} made a ground for the new industry in neutrino physics. How solid is the background?

Introduction

 \square Quantum Mechanics of ν oscillations in Vacuum

A small improvement

Let us make a small improvement: take into account that neutrinos with different masses pass the distance $|\mathbf{x}|$ with different times:

$$t_i = \frac{L}{v_i} = |\mathbf{x}| \frac{E_i}{p} \neq t_j = \frac{|\mathbf{x}|}{v_j} = |\mathbf{x}| \frac{E_j}{p}$$

Now:

$$\phi_{ij} = (E_i t_i - E_j t_j) - (\mathbf{p} - \mathbf{p}) \mathbf{x} = (\frac{E_i}{v_i} - \frac{E_j}{v_j}) |\mathbf{x}|$$
$$= (\frac{E_i^2}{p} - \frac{E_j^2}{p}) |\mathbf{x}| = (\frac{p_i^2 + m_i^2}{p} - \frac{p_j^2 + m_j^2}{p}) |\mathbf{x}| \qquad (2)$$
$$= \frac{m_i^2 - m_j^2}{p} |\mathbf{x}|$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 = のへぐ

This phase is two times larger!

Introduction

 \Box Quantum Mechanics of ν oscillations in Vacuum

Naive questions/problems

- Is the QM description adequate² if a small improvement like v ≠ 1 makes the phase two times larger?
 → which velocity is right?
- 2 In a decay energy and momentum is conserved but $\nu_{\alpha} \rightarrow \nu_{\beta}$ means that along the oscillation path neutrino becomes lighter or heavier:
 - \rightarrow is energy-momentum conserved in oscillations?
- **3** if neutrino momentum is well defined then position is undefined $\delta x \sim \hbar/p = \infty$ then how one can observe oscillations as function of $|\mathbf{x}|$

Questions needs Answers

We look for answers to these naive questions/problems going beyond this theory from QM to Quantum Field Theory

²QM can be adequte with wave packets too, see Shirokov& V.A.Naumov paper and others

Interaction of neutrino with matter electrons shifts neutrino masses because ν_e interacts with matter due to W and Z exchange, while ν_{μ} and ν_{τ} only via Z boson. Qualitative items:

- **1** The effect depends on $G_F n_e$
- 2 Neutral currents are not important as they give same shift to all ν_i
- **3** The mixing matrix V is redefined in the matter $V \to U_{mat}$

うして ふゆう ふほう ふほう ふしつ

 ν osccilations LOFT

What do we want to compute in QFT?

- We want to compute in QFT a one-amplitude process with macroscopically different production and detection points
- 2 Neutrino which propagates from x_s to y_d is **virtual**
- **3** x_s to y_d are localized in space and time
- between production and detection points there is a moving matter

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 ν osccilations LQFT

What do we want to compute in QFT?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Wave packets

Plane wave \rightarrow Wave <u>packets</u>

Plane wave means no localization in space-time. We need to generalize it to a wave packet.

$$|\mathbf{k}_{i}, x_{i}; a_{i}\rangle \equiv |\mathbf{k}_{i}, x_{i}\rangle = \int \frac{d\mathbf{k}\phi_{i}(\mathbf{k}, \langle \mathbf{k}_{i}\rangle; x_{i})}{(2\pi)^{3}\sqrt{2k_{0}}} |\mathbf{k}\rangle$$
(3)

$$= \int \frac{d\mathbf{k}a_i(\mathbf{k} - \langle \mathbf{k}_i \rangle) \mathrm{e}^{i \boldsymbol{k} \cdot \boldsymbol{x}_i}}{(2\pi)^3 \sqrt{2k_0}} |\mathbf{k}\rangle, \qquad (4)$$

where $k = (k_0, \mathbf{k})$, $k_0 = \sqrt{\mathbf{k}^2 + M_i^2}$, with normalization:

$$\int \frac{d\mathbf{k}}{(2\pi)^3} \left|\phi_i(k, \langle \mathbf{k}_i \rangle)\right|^2 = \int \frac{d\mathbf{k}}{(2\pi)^3} \left|a_i(\mathbf{k})\right|^2 = 1.$$

The initial $|in\rangle$ and final $\langle out|$ states are defined as a direct product of one particle states (3). Therefore the transition amplitude can be written as

$$\mathcal{A} = \langle out | \mathcal{S} - 1 | in \rangle \tag{5}$$

うして ふゆう ふほう ふほう ふしつ

exactly as one would write using the plane waves with $|\mathbf{k}_i; x_i\rangle \rightarrow |\mathbf{k}\rangle$ substitution. Explicitly the amplitude (5) reads:

$$\mathcal{A} = \int \prod_{i=1}^{N} \frac{d\mathbf{k}_{i}}{(2\pi)^{3} [2E_{k_{i}}]^{1/2}} \phi_{i}(k_{i}, \mathbf{k}_{i}) \prod_{j=1}^{M} \frac{d\mathbf{p}_{j}}{(2\pi)^{3} [2E_{p_{j}}]^{1/2}} \phi_{j}^{*}(p_{j}, \mathbf{p}_{j})$$
$$\langle \mathbf{p}_{M} \dots \mathbf{p}_{1} | \mathcal{S} - 1 | \mathbf{k}_{N} \dots \mathbf{k}_{1} \rangle,$$
(6)

	osccilations
L	-OFT

SM inputs

${\cal S}$ matrix

$$S = T \left[e^{i \int [\mathcal{L}_s(x) + \mathcal{L}_m(x) + \mathcal{L}_d(x)] \, dx} \right],\tag{7}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Interaction in the source, matter and detector

$$\begin{aligned} \mathcal{L}_{s}(x) &= -\sqrt{2}G_{F}J_{s}^{\mu}(x)\sum_{i}V_{\alpha i}\,\bar{\ell}_{\alpha}(x)\gamma_{\mu}P_{L}\nu_{i}(x) + \text{h.c.} \\ \mathcal{L}_{d}(x) &= -\sqrt{2}G_{F}J_{d}^{\mu}(x)\sum_{i}V_{\beta i}\,\bar{\ell}_{\beta}(x)\gamma_{\mu}P_{L}\nu_{i}(x) + \text{h.c.}, \\ \mathcal{L}_{m}(x) &= 2\sqrt{2}G_{F}\sum_{kl}V_{ek}V_{el}^{*}\,\bar{\nu}_{l}(x)\gamma^{\mu}P_{L}e(x)\cdot\bar{e}(x)\gamma_{\mu}P_{L}\nu_{k}(x) + \\ &+\sqrt{2}G_{F}\sum_{k}\bar{\nu}_{k}(x)\gamma_{\mu}P_{L}\nu_{k}(x)\cdot\bar{e}(x)\gamma^{\mu}\left(g_{L}^{e}P_{L}+g_{R}^{e}P_{R}\right)e(x) \\ &+ \text{h.c.} \end{aligned}$$

 ν osccilations LOFT

Expanding the \mathcal{S} matrix to the second order yields:

$$\mathcal{A} = i^{2} \langle f | \int dx dy \operatorname{T} \left[\mathcal{L}_{d}(y) \mathrm{e}^{i \int dz \mathcal{L}_{m}(z)} \mathcal{L}_{s}(x) \right] |i\rangle \qquad (8)$$
$$= -\sum_{i,j} \int dx dy \, V_{\alpha i}^{*} V_{\beta j} \mathrm{e}^{-i(k_{s}-p_{s})x-i(k_{d}-p_{d})y}$$
$$\times \overline{\mathcal{M}'}_{dL} \langle \boldsymbol{e} | \operatorname{T} \left[\nu_{i}(y) \mathrm{e}^{i \int dz \mathcal{L}_{m}(z)} \bar{\nu}_{j}(x) \right] |\boldsymbol{e} \rangle \mathcal{M}'_{sR}$$

with

$$\mathcal{M}'_{sR} = \prod_{i,j} \frac{d\mathbf{k}_i \phi_i(k_i, \langle \mathbf{k}_i \rangle; x_s)}{(2\pi)^3 [2E_{k_i}]^{1/2}} \frac{d\mathbf{p}_j \phi_i^*(p_j, \langle \mathbf{p}_j \rangle; x_s)}{(2\pi)^3 [2E_{p_j}]^{1/2}} \sqrt{2} G_F P_R J_s^\mu \gamma_\mu \ell_\alpha$$
$$\overline{\mathcal{M}'}_{dL} = \prod_{i,j} \frac{d\mathbf{k}_i \phi_i(k_i, \langle \mathbf{k}_i \rangle; y_d)}{(2\pi)^3 [2E_{k_i}]^{1/2}} \frac{d\mathbf{p}_j \phi_j^*(p_j, \langle \mathbf{p}_j \rangle; y_d)}{(2\pi)^3 [2E_{p_j}]^{1/2}} \sqrt{2} G_F J_d^\mu \bar{\ell}_\beta \gamma_\mu P_L,$$

where $P_L = 1/2 (1 - \gamma_5), P_R = 1/2 (1 + \gamma_5).$

In the case of vanishing interaction of neutrino with matter the object

$$G_{ij}(x-y) \equiv \langle \boldsymbol{e} | \mathrm{T} \left[\nu_i(y) \mathrm{e}^{i \int dz \mathcal{L}_m(z)} \bar{\nu}_j(x) \right] | \boldsymbol{e} \rangle$$

is reduced to

$$\langle 0|\nu_i(y)\bar{\nu}_j(x)|0\rangle = \delta_{ij} \int \frac{dq}{(2\pi)^4} e^{-i(x-y)q} \frac{i}{\hat{q}-m_i}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

$$\nu$$
 osccilations

Amplitude

$$\mathcal{A} = -\int dx dy \ \mathrm{e}^{-i(k_s - p_s)x - i(k_d - p_d)y} \overline{\mathcal{M}'}_{dL} \boldsymbol{V}_{\beta} \boldsymbol{G}(x - y) \boldsymbol{V}_{\alpha}^{\dagger} \mathcal{M}'_{sR},$$

where $G(x - y) = ||G_{ij}(x - y)||$, and

$$\boldsymbol{V}_{\alpha}^{\dagger} = \begin{pmatrix} V_{\alpha 1}^{*} \\ V_{\alpha 2}^{*} \\ V_{\alpha 3}^{*} \end{pmatrix}, \quad \boldsymbol{V}_{\beta} = (V_{\beta 1}, V_{\beta 2}, V_{\beta 3})$$
(9)

Virtual neutrino

All non-trivial physics is encoded in neutrino propagator integrated over source and detector space and time.

Note: No usual QFT δ functions because of localized space-time initial states in the source and the detector I skip all details of how to take integrals:

 $\prod_{i,j} \int \frac{d\mathbf{k}_i \phi_i(k_i, \langle \mathbf{k}_i \rangle; x_s)}{(2\pi)^3 [2E_{k_i}]^{1/2}} \int \frac{d\mathbf{p}_j \phi_i^*(p_j, \langle \mathbf{p}_j \rangle; x_s)}{(2\pi)^3 [2E_{p_j}]^{1/2}} \int dx \int dy \int dq_0 \int d\mathbf{q}$

in the amplitude \mathcal{A} and integral

Note: No usual QFT δ functions because of localized space-time initial states in the source and the detector I skip all details of how to take integrals:

 $\prod_{i,j} \int \frac{d\mathbf{k}_i \phi_i(k_i, \langle \mathbf{k}_i \rangle; x_s)}{(2\pi)^3 [2E_{k_i}]^{1/2}} \int \frac{d\mathbf{p}_j \phi_i^*(p_j, \langle \mathbf{p}_j \rangle; x_s)}{(2\pi)^3 [2E_{p_j}]^{1/2}} \int dx \int dy \int dq_0 \int d\mathbf{q}$

in the amplitude \mathcal{A} and integral

Note: No usual QFT δ functions because of localized space-time initial states in the source and the detector I skip all details of how to take integrals:

in the amplitude \mathcal{A} and integral

Note: No usual QFT δ functions because of localized space-time initial states in the source and the detector I skip all details of how to take integrals:

 $\int dx_s^0$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

in the amplitude \mathcal{A} and integral

Note: No usual QFT δ functions because of localized space-time initial states in the source and the detector I skip all details of how to take integrals:

 $\int dx_s^0$

◆□ → ◆□ → ◆□ → ▲□ → ◆□ → ◆□ →

in the amplitude \mathcal{A} and integral

$$\frac{\nu}{\Box_{\text{QFT}}}$$

Vacuum case

©C. Y. Cardall, "Coherence of neutrino flavor mixing in quantum field theory," Phys. Rev. D **61**, 073006 (2000)

$$\frac{|\mathcal{A}|^2}{dy_d^0} = d\Gamma(y_d^0) = \int d\mathbf{x}_s \int d\mathbf{y}_d \int \left[\prod_i^{I_s} \frac{d\mathbf{k}_i}{(2\pi)^3}\right] \left[f\left(\mathbf{k}_i, \mathbf{x}_s, x_s^0\right)\right] \\ \times \int \frac{d\mathbf{p}}{(2\pi)^3} f\left(\mathbf{p}, \mathbf{y}_d, y_d^0\right) d\Gamma\left(\{\mathbf{k}\}, \{\mathbf{p}\}, \mathbf{x}_s, \mathbf{y}_d\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

One particle rate dΓ ({k}, {p}, x_s, y_d)
distribution functions f (k_i, x_s, x⁰_s), f (p, y_d, y⁰_d)

Decode notations

$$d\Gamma\left(\{\mathbf{k}\},\{\mathbf{p}\},\mathbf{x}_{s},\mathbf{y}_{d}\right)$$
$$=\int dE_{\mathbf{q}}\left[\frac{d\Gamma\left(\{\mathbf{k}\},E_{\mathbf{q}}\right)}{L^{2}\,d\Omega_{\mathbf{q}}\,dE_{\mathbf{q}}}\right]\left[P_{\mathrm{mix}}\left(E_{\mathbf{q}},\mathbf{x}_{s},\mathbf{y}_{d}\right)\right]\left[d\sigma\left(\{\mathbf{p}\},E_{\mathbf{q}}\right)\right].$$

 $\begin{bmatrix} \frac{d\Gamma(\{\mathbf{k}\}, E_{\mathbf{q}})}{L^2 d\Omega_{\mathbf{q}} dE_{\mathbf{q}}} \end{bmatrix}$ is the neutrino flux from source to detector at distance *L*:

$$dE_{\mathbf{q}}\left[\frac{d\Gamma\left(\{\mathbf{k}\}, E_{\mathbf{q}}\right)}{L^{2} d\Omega_{\mathbf{q}} dE_{\mathbf{q}}}\right] = \frac{1}{L^{2}} \frac{E_{\mathbf{q}}^{2} dE_{\mathbf{q}}}{(2\pi)^{3} 2E_{\mathbf{q}}} \left[\prod_{i}^{I_{S}} \frac{1}{2E_{\mathbf{k}_{i}}}\right] \left[\prod_{i'}^{F_{S}} \int \frac{d\mathbf{k}_{i'}}{(2\pi)^{3} 2E_{\mathbf{k}_{i'}}}\right] \\ \times \sum_{\text{spins}} |\mathcal{M}_{s}\left(\{\mathbf{k}\}, E_{\mathbf{q}}\right)|^{2} (2\pi)^{4} \delta^{4}\left(-k_{s}+q\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Decode notations

 $d\sigma\left(\{\mathbf{p}\},E_{\mathbf{q}}\right)$ is the cross-section of massless neutrino in the detector:

$$d\sigma(\{\mathbf{p}\}, E_{\mathbf{q}}) = \frac{1}{2E_{\mathbf{q}}2E_{\mathbf{p}}} \left[\prod_{j'}^{F_D} \frac{d\mathbf{p}_{j'}}{(2\pi)^3 2E_{\mathbf{p}_{j'}}} \right] \sum_{\text{spins}} |\mathcal{M}_D(\{\mathbf{p}\}, E_{\mathbf{q}})|^2 (2\pi)^4 \delta^4(p_d - q)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Decode notations

 $P_{\min}(E_{\mathbf{q}}, \mathbf{x}_s, \mathbf{y}_d)$ - is what one call "oscillation probability":

$$P_{\text{mix}} = \sum_{i,j} V_{\alpha i}^* V_{\beta i} V_{\alpha j} V_{\beta j}^* \exp\left[-i\frac{(m_i^2 - m_j^2)L}{2E_{\mathbf{q}}} - \frac{(m_i^2 - m_j^2)^2 L^2}{32E_{\mathbf{q}}^4 \sigma^2}\right]$$

with

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Examining the results

1 At $L \to \infty$ or $\sigma \to 0$ the interference disappears:

$$P_{\text{mix}} = \sum_{i=1}^{3} V_{\alpha i}^* V_{\beta i} \sum_{j=1}^{3} V_{\alpha j} V_{\beta j}^* = \delta_{\alpha \beta}$$

2 Which velocity of neutrino is right: \longrightarrow "standard" QM : $v_i = v_j = 1$ or

$$\longrightarrow$$
 "refined" $v_i = \sqrt{E^2 - m_i^2}/E)?$

• None of them! The most significant contribution comes with an average velocity:

$$\frac{1}{v} = \frac{1}{2} \left(\frac{1}{v_i} + \frac{1}{v_j} \right)$$

ション ふゆ く は マ く は マ う く し マ

 L_{QFT}

Quantum Field Theory of Oscillations in Matter

How matters the matter?

Neutrino propagator is modified

$$G_{ij}(x-y) \equiv \langle \boldsymbol{e} | \mathbf{T} \left[\nu_i(y) \mathrm{e}^{i \int dz \mathcal{L}_m(z)} \bar{\nu}_j(x) \right] | \boldsymbol{e} \rangle$$

$$\stackrel{\text{const density}}{=} \int \frac{dq}{(2\pi)^4} \mathrm{e}^{-i(x-y)q} i \boldsymbol{G}(q)$$

 $i\mathbf{G}(q) = i\mathbf{S}(q) + i\mathbf{S}(q)i\mathbf{\Omega}i\mathbf{S}(q) + i\mathbf{S}(q)i\mathbf{\Omega}i\mathbf{S}(q)i\mathbf{\Omega}(q)i\mathbf{\Omega}(q)i\mathbf{\Omega}(q) + \dots$ Apparently $\mathbf{G}(q)$ satisfies to Dyson-type equation:

$$(\boldsymbol{S}^{-1} - \boldsymbol{\Omega})\boldsymbol{G}(q) = 1, \qquad (10)$$

which formal solution is

$$G(q) = (S^{-1} - \Omega)^{-1}.$$
 (11)

 L_{QFT}

Quantum Field Theory of Oscillations in Matter

Matter effect

with

 L_{QFT}

Quantum Field Theory of Oscillations in Matter

Solution for the neutrino propagator

$$P_L \boldsymbol{G} P_R = P_L \left(\boldsymbol{T}_{-}^{\dagger} \frac{\hat{q}_{-}}{\mathcal{P}_{\mathrm{m},-}^2 - \mathbf{q}^2} \boldsymbol{T}_{-} + \boldsymbol{T}_{+}^{\dagger} \frac{\hat{q}_{+}}{\mathcal{P}_{\mathrm{m},+}^2 - \mathbf{q}^2} \boldsymbol{T}_{+} \right) P_R$$

with

$$q_{\pm} = \frac{1}{2}(q_0(1\pm\mathbf{vn}), q_0(\mathbf{v}\pm\mathbf{n}))$$

 \blacksquare $\mathbf v$ - velocity of neutrino

 n - unit vector of relative velocity between neutrino and matter

◆□ → ◆□ → ◆□ → ▲□ → ◆□ → ◆□ →

■ $\mathcal{P}^2_{m,\pm}$ - diagonal "effective" momentum-squared in the matter (depends on $n_e, q \cdot u$)

LOFT

Quantum Field Theory of Oscillations in Matter

Examining the result

- I Further steps in integrations are exactly like in vacuum case. The only thing which is changed is P_{mix} : matter modifies oscillations
- 2 In case of matter in rest we get the same answer as standard MSW, while moving matter adds a number of effects:
 - The matter effect increases due to Lorentz boost $n_e \to \gamma_u n_e$
 - The matter effect depends on 1 − **uv**: decreases for parallel velocities, increases for anti-parallel,

remains the same for the matter in rest for orthogonal case.

new effect: If matter moves faster then neutrino (maybe only academical case, but remember about relic or heavy ν): the oscillations appears between right and left components of neutrino!

L_{QFT}

Quantum Field Theory of Oscillations in Matter

Moving Matter

$$P_{\text{mix}} = |\alpha_{+}|^{2} \sum_{ij} U_{\beta i}^{+} U_{\alpha i}^{+\dagger} U_{\beta j}^{+} U_{\alpha j}^{+\dagger} e^{i(p_{i}^{+} - p_{j}^{+})L} + |\alpha_{-}|^{2} \sum_{ij} U_{\beta i}^{-} U_{\alpha i}^{-\dagger} U_{\beta j}^{-} U_{\alpha j}^{-\dagger} e^{i(p_{i}^{-} - p_{j}^{-})L} + \alpha_{-} \alpha_{+} \sum_{ij} U_{\beta i}^{+} U_{\alpha i}^{+} U_{\beta j}^{-} U_{\alpha j}^{-\dagger} e^{i(p_{i}^{+} - p_{j}^{-})L} + \alpha_{+} \alpha_{-} \sum_{ij} U_{\beta i}^{-} U_{\alpha i}^{-\dagger} U_{\beta j}^{+} U_{\alpha j}^{+} e^{i(p_{i}^{-} - p_{j}^{+})L}$$

Phases φ_± = (p_i[±] - p_j[±])L do not contain neutral currents
 Phases φ₊₋ = (p_i⁺ - p_j⁻)L do contain neutral currents
 In cases of matter slower than neutrino (most applications) α₋ = 0, α₊ = 1 and no unusual terms appears

Sac

LQFT

Quantum Field Theory of Oscillations in Matter

Qualitative Picture. Matter at rest

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

 L_{QFT}

Quantum Field Theory of Oscillations in Matter

Qualitative Picture. Fast moving matter

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

LQFT

Quantum Field Theory of Oscillations in Matter

Qualitative Picture. Fast moving matter

 L_{QFT}

Quantum Field Theory of Oscillations in Matter

Does fast moving matter exists?

http://antwrp.gsfc.nasa.gov/apod/ap000706.html Explanation: What's causing a huge jet to emanate from the center of galaxy M87? Although the unusual jet was first noticed early in the twentieth century, the exact cause is still debated. The above recently released picture taken by the Hubble Space Telescope shows clear details, however. The most popular hypothesis holds that the jet is created by energetic gas swirling around a massive black hole at the galaxy's center. The result is a 5000 light-year long blowtorch where electrons are ejected outward at near light-speed, emitting eerily blue light during a magnetic spiral. M87 is a giant elliptical galaxy residing only 50 million light-years away in the Virgo Cluster of Galaxies. The faint dots of light surrounding M87's center are large ancient globular clusters of stars.

└QFT └Quantum Field Theory of Oscillations in Matter

Note on neutral current

- I For matter in rest neutrino momentum gets a shift due to neutral current like $p \rightarrow p + w_{NC}$ equal for all neutrinos thus no effect on oscillations.
- **2** for moving matter it is no more true:

1 Left component gets shift like $p \rightarrow p + (1+ | \mathbf{u} - \mathbf{v} |) w_{NC}$ 2 Right component gets shift like $p \rightarrow p + (1- | \mathbf{u} - \mathbf{v} |) w_{NC}$ These shifts disappear in left-left and right-right terms and do not disappear in left-right and right-left

うして ふゆう ふほう ふほう ふしつ