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Introduction

Leptons and neutrino

Three generations

About 50 years of experimental research yielded in discovery of
three types of neutrinos associated to leptons:

(

e
νe

) (

µ
νµ

) (

τ
ντ

)

1956 1962 2000
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Introduction

Neutrino masses

Are neutrinos massive?

No direct observation of neutrino mass yet. Only limits:

mνe < 2.2 eV, mνµ < 170 keV, mντ < 15.5 MeV

From cosmology (model dependent)

∑

i=νe,νµ,ντ

mi < 1 eV

If ν have a mass should νe, νµ, ντ be massive?

Not necessarely!



ν osccilations

Introduction

Neutrino masses

Masses in the SM

In the SM all particles initialy are massless. They acqure their
masses due to symmetry breaking interacting with Higgs boson.

Quarks are a good example:

Massless quarks

Ū = (ū, c̄, t̄) ,D =





d
s
b





after symmetry breaking a “mass“ term with non-diagonal
matrix M appears in the SM L:

L =
1

2
ŪMD +

g

2
√

2
Ūγµ (1 − γ5)D Wµ

and diagonal interaction term
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ŪMD +

g

2
√

2
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Neutrino masses

Masses in the SM

M can be diagonalized introducing two unitary matrices K, N :

Ū = ŪK†, D = ND

in a way that:

1

2
ŪMD =

1

2
ŪK†MND and K†MN is diagonal

→The fields U, D are physical because they have a

definite mass.

→The price is that originally diagonal interaction term

becomes non-diagonal:

g

2
√

2
Ūγµ (1 − γ5)D Wµ =

g

2
√

2
Ūγµ (1 − γ5)K†ND Wµ

The product of two unitary matrices V = K†N is also a unitary
matrix known as CKM matrix.
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Neutrino masses

Masses in the SM

We used to think about physical massive states of quarks
grouped in three doublets:

(

u
d

) (

c
s

) (

t
b

)

and having CKM matrix in the non-diagonal interaction sector:

L =
g

2
√

2
Vudūγµ (1 − γ5) d Wµ

+
g

2
√

2
Vusūγµ (1 − γ5) s Wµ,

+
g

2
√

2
Vubūγµ (1 − γ5) b Wµ, etc
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Neutrino masses

A note about notations

1 Let me note that we never use a super position like:

ψud = Vudd + Vuss + Vubb

to write in short notation:

L =
g

2
√

2
ūγµ (1 − γ5)ψud

2 Let me also note that even if ψud was ever used I never
heard that one wants to interpret ψud as a physical state.
Did you ever heard a name like u-th down quark?
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Neutrino masses

Neutrino masses

Neutrino masses appear in the SM in exactly (or to be more
precise - VERY similar1) way: leading to the very similar mixing
matrix V called Pontecorvo-Maki-Nakagawa-Sakata matrix and
physical massive neutrinos ν1, ν2, ν3.

Psychological adaptation

However 50 years of research in neutrino field make VERY
difficult to think about so called flavour states like:
νe = Ve1ν1 + Ve2ν2 + Ve3ν3 as about non-physical mixture like
Vudd + Vuss + Vubb

We still like to call both ν1, ν2, ν3 and νe, νµ, ντ as physical sets
while in fact ν1, ν2, ν3 are physical and interaction is not
diagonal exactly as with quarks.

1Have a look for lectures of Andrea Romanino for deeper understanding at

http://astronu.jinr.ru/wiki/upload/4/49/Romanino_Lectures_Dubna_2007.pdf

http://astronu.jinr.ru/wiki/upload/4/49/Romanino_Lectures_Dubna_2007.pdf
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Neutrino masses

Namings

1 We do not use ψud = Vudd + Vuss + Vubb

(

u
d

) (

c
s

) (

t
b

)

← massive states

2 However we use νe = Ve1ν1 + Ve2ν2 + Ve3ν3

(

e
ν1

) (

µ
ν2

) (

τ
ν3

)

← massive states
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Introduction

Quantum Mechanics of ν oscillations in Vacuum

Assume neutrino have a mass

If neutrinos have a mass then what?
→ an interesting effect - neutrino oscillations appears
→ We consider this in Quantum Mechanics and QFT
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Quantum Mechanics of ν oscillations in Vacuum

Naive picture

1 An evolution of a relativistic particle with 4-momenta

pi = (
√

p2 + m2
i ,p) is given by e−ipixi with 4-point

xi = (t0i ,x)

2 If in a reaction was produced | να〉 =
∑

i Vαi | νi(0)〉 then at
a position x the state | να〉 will be evolved as:

| να〉 =
∑

i

Vαie
−ipixi | νi(0)〉

3 this may look like a state 〈νβ | with a probability:

Pαβ ≡| 〈νβ(x) | να(0)〉 |2=
∑

ij

VαiV
∗
iβV ∗

αjVjβe−i(pixi−pjxj)
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Introduction

Quantum Mechanics of ν oscillations in Vacuum

Periodical transformations = oscillations

In QM we say that να transforms into νβ after some time at a
certain distance |x| with a periodicity defined by the phase

φij = pixi − pjxj

In the standard approximation ti = tj = |x| ,pi = pj :

φij = (Ei−Ei) |x|−(pi−pj)x =

(

E2
i − E2

j

Ei + Ej

)

|x| ≈
m2

i − m2
j

2E
|x|

(1)
Thus φij depends on E, |x| and φij made a ground for the new
industry in neutrino physics. How solid is the background?



ν osccilations

Introduction

Quantum Mechanics of ν oscillations in Vacuum

A small improvement

Let us make a small improvement: take into account that
neutrinos with different masses pass the distance |x| with
different times:

ti =
L

vi
= |x| Ei

p
6= tj =

|x|
vj

= |x| Ej

p

Now:

φij = (Eiti − Ejtj) − (p − p)x = (
Ei

vi
− Ej

vj
) |x|

= (
E2

i

p
−

E2
j

p
) |x| = (

p2
i + m2

i

p
−

p2
j + m2

j

p
) |x|

=
m2

i − m2
j

p
|x|

(2)

This phase is two times larger!
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Introduction

Quantum Mechanics of ν oscillations in Vacuum

Naive questions/problems

1 Is the QM description adequate2 if a small improvement
like v 6= 1 makes the phase two times larger?
→ which velocity is right?

2 In a decay energy and momentum is conserved but να → νβ

means that along the oscillation path neutrino becomes
lighter or heavier:
→ is energy-momentum conserved in oscillations?

3 if neutrino momentum is well defined then position is
undefined δx ∼ ~/p = ∞ then how one can observe
oscillations as function of |x|

Questions needs Answers

We look for answers to these naive questions/problems going
beyond this theory from QM to Quantum Field Theory

2QM can be adequte with wave packets too, see Shirokov& V.A.Naumov

paper and others
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Quantum Mechanics of ν oscillations in Matter

Interaction of neutrino with matter electrons shifts neutrino
masses because νe interacts with matter due to W and Z
exchange, while νµ and ντ only via Z boson.
Qualitative items:

1 The effect depends on GF ne

2 Neutral currents are not important as they give same shift
to all νi

3 The mixing matrix V is redefined in the matter V → Umat
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QFT

What do we want to compute in QFT?

1 We want to compute in QFT a
one-amplitude process with
macroscopically different
production and detection points

2 Neutrino which propagates from xs

to yd is virtual

3 xs to yd are localized in space and
time

4 between production and detection
points there is a moving matter
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QFT

What do we want to compute in QFT?

An example:
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QFT

Wave packets

Plane wave → Wave packets

Plane wave means no localization in space-time. We need to
generalize it to a wave packet.

|ki, xi; ai〉 ≡ |ki, xi〉 =

∫

dkφi(k, 〈ki〉; xi)

(2π)3
√

2k0
|k〉 (3)

=

∫

dkai(k − 〈ki〉)eik·xi

(2π)3
√

2k0
|k〉, (4)

where k = (k0,k) , k0 =
√

k2 + M2
i , with normalization:

∫

dk

(2π)3
|φi(k, 〈ki〉)|2 =

∫

dk

(2π)3
|ai(k)|2 = 1.
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QFT

The initial |in〉 and final 〈out| states are defined as a direct
product of one particle states (3). Therefore the transition
amplitude can be written as

A =〈out|S − 1|in〉 (5)

exactly as one would write using the plane waves with
|ki; xi〉 → |k〉 substitution. Explicitely the amplitude (5) reads:

A =

∫ N
∏

i=1

dki

(2π)3[2Eki
]1/2

φi(ki,ki)
M
∏

j=1

dpj

(2π)3[2Epj
]1/2

φ∗
j (pj ,pj)

〈pM . . .p1 |S − 1|kN . . .k1〉,
(6)
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QFT

SM inputs

S matrix

S = T
[

ei
R

[Ls(x)+Lm(x)+Ld(x)] dx
]

, (7)

Interaction in the source, matter and detector

Ls(x) = −
√

2GF Jµ
s (x)

∑

i

Vαi ℓ̄α(x)γµPLνi(x) + h.c.

Ld(x) = −
√

2GF Jµ
d (x)

∑

i

Vβi ℓ̄β(x)γµPLνi(x) + h.c.,

Lm(x) = 2
√

2GF

∑

kl

VekV
∗
el ν̄l(x)γµPLe(x) · ē(x)γµPLνk(x)+

+
√

2GF

∑

k

ν̄k(x)γµPLνk(x) · ē(x)γµ (ge
LPL + ge

RPR) e(x)

+ h.c.,
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QFT

Expanding the S matrix to the second order yields:

A =i2〈f |
∫

dxdy T
[

Ld(y)ei
R

dzLm(z)Ls(x)
]

|i〉 (8)

= −
∑

i,j

∫

dxdy V ∗
αiVβje

−i(ks−ps)x−i(kd−pd)y

×M′
dL〈e|T

[

νi(y)ei
R

dzLm(z)ν̄j(x)
]

|e〉M′
sR

with

M′
sR =

∏

i,j

dkiφi(ki, 〈ki〉; xs)

(2π)3[2Eki
]1/2

dpjφ
∗
i (pj , 〈pj〉; xs)

(2π)3[2Epj
]1/2

√
2GF PRJµ

s γµℓα

M′
dL =

∏

i,j

dkiφi(ki, 〈ki〉; yd)

(2π)3[2Eki
]1/2

dpjφ
∗
j (pj , 〈pj〉; yd)

(2π)3[2Epj
]1/2

√
2GF Jµ

d ℓ̄βγµPL,

where PL = 1/2 (1 − γ5), PR = 1/2 (1 + γ5).
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QFT

In the case of vanishing interaction of neutrino with matter the
object

Gij(x − y) ≡ 〈e|T
[

νi(y)ei
R

dzLm(z)ν̄j(x)
]

|e〉

is reduced to

〈0|νi(y)ν̄j(x)|0〉 = δij

∫

dq

(2π)4
e−i(x−y)q i

q̂ − mi
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QFT

Amplitude

A = −
∫

dxdy e−i(ks−ps)x−i(kd−pd)yM′
dLV βG(x − y)V †

αM′
sR,

where G(x − y) = ||Gij(x − y)||, and

V
†
α =







V ∗
α1

V ∗
α2

V ∗
α3






, V β = (Vβ1, Vβ2, Vβ3) (9)

Virtual neutrino

All non-trivial physics is encoded in neutrino propagator
integrated over source and detector space and time.
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QFT

Details of calculations

Note: No usual QFT δ functions because of localized

space-time initial states in the source and the detector

I skip all details of how to take integrals:

Q—Q— Q— Q— Q— Q— Q
∏

i,j

∫

dkiφi(ki, 〈ki〉; xs)

(2π)3[2Eki
]1/2

∫

dpjφ
∗
i (pj , 〈pj〉; xs)

(2π)3[2Epj
]1/2

∫

dx

∫

dy

∫

dq0

∫

dq

in the amplitude A and integral

∫

dx0
s

in the |A|2 and give you the answer
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Vacuum case

Vacuum case

c©C. Y. Cardall, “Coherence of neutrino flavor mixing in

quantum field theory,” Phys. Rev. D 61, 073006 (2000)

|A|2
dy0

d

= dΓ(y0
d) =

∫

dxs

∫

dyd

∫

[

IS
∏

i

dki

(2π)3

]

[

f
(

ki,xs, x
0
s

)]

×
∫

dp

(2π)3
f

(

p,yd, y
0
d

)

dΓ ({k}, {p},xs,yd)

One particle rate dΓ ({k}, {p},xs,yd)

distribution functions f
(

ki,xs, x
0
s

)

, f
(

p,yd, y
0
d

)
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QFT

Vacuum case

Decode notations

dΓ ({k}, {p},xs,yd)

=

∫

dEq

[

dΓ ({k}, Eq)

L2 dΩq dEq

]

[Pmix (Eq,xs,yd)][dσ ({p}, Eq)].

[

dΓ({k},Eq)
L2 dΩq dEq

]

is the neutrino flux from source to detector at

distance L:

dEq

[

dΓ ({k}, Eq)

L2 dΩq dEq

]

=
1

L2

E2
q dEq

(2π)32Eq

[

IS
∏

i

1

2Eki

] [

FS
∏

i′

∫

dki′

(2π)32Eki′

]

×
∑

spins

|Ms ({k}, Eq)|2 (2π)4δ4 (−ks + q)
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QFT

Vacuum case

Decode notations

dσ ({p}, Eq) is the cross-section of massless neutrino in the
detector:

dσ({p}, Eq) =

1

2Eq2Ep





FD
∏

j′

dpj′

(2π)32Epj′





∑

spins

|MD ({p}, Eq)|2 (2π)4δ4 (pd − q)
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Vacuum case

Decode notations

Pmix (Eq,xs,yd) - is what one call “oscillation probability“:

Pmix =
∑

i,j

V ∗
αiVβiVαjV

∗
βjexp

[

−i
(m2

i − m2
j )L

2Eq

−
(m2

i − m2
j )

2L2

32E4
qσ2

]

with

standard phase
(m2

i−m2
j )L

2Eq
2©

new term suppresing oscillations at large L – “coherence

term“ exp

[

− (m2
i−m2

j )2L2

32E4
q
σ2

]

with σ - spread in momentum at

source and detector 2©
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Vacuum case

Examining the results

1 At L → ∞ or σ → 0 the interference disappears:

Pmix =
3

∑

i=1

V ∗
αiVβi

3
∑

j=1

VαjV
∗
βj = δαβ

2 Which velocity of neutrino is right:
−→ “standard“ QM :vi = vj = 1 or

−→ “refined“ vi =
√

E2 − m2
i /E)?

None of them! The most significant contribution comes with
an average velocity:

1

v
=

1

2

(

1

vi

+
1

vj

)
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Quantum Field Theory of Oscillations in Matter

How matters the matter?

Neutrino propagator is modified

Gij(x − y) ≡ 〈e|T
[

νi(y)ei
R

dzLm(z)ν̄j(x)
]

|e〉
const density

=

∫

dq

(2π)4
e−i(x−y)qiG(q)

iG(q) = iS(q)+ iS(q)iΩiS(q)+ iS(q)iΩiS(q)iS(q)iΩiS(q)+ . . .

Apparently G(q) satisfies to Dyson-type equation:

(S−1 − Ω)G(q) = 1, (10)

which formal solution is

G(q) = (S−1 − Ω)−1. (11)
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Quantum Field Theory of Oscillations in Matter

Matter effect

iΩ =

W+(p − q)

e−(q)

νi(p) νj(p)
+

νi(p) νi(p)

Z0(p − q)

e−(q)

iΩcc
ij = −i

√
2GF neVeiV

∗
ej ûPL,

iΩnc
ij = iδij

GF (ge
L + ge

R)√
2

neûPL

with

ne - density of electrons

û = γu(1,u) - average four-velocity of matter
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QFT

Quantum Field Theory of Oscillations in Matter

Solution for the neutrino propagator

PLGPR = PL

(

T
†
−

q̂−
P2

m,- − q2
T− + T

†
+

q̂+

P2
m,+ − q2

T +

)

PR

with

q± =
1

2
(q0(1 ± vn), q0(v ± n))

v - velocity of neutrino

n - unit vector of relative velocity between neutrino and
matter

P2
m,± - diagonal “effective“ momentum-squared in the

matter (depends on ne, q · u)
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Quantum Field Theory of Oscillations in Matter

Examining the result

1 Further steps in integrations are exactly like in vacuum
case. The only thing which is changed is Pmix: matter
modifies oscillations

2 In case of matter in rest we get the same answer as standard
MSW, while moving matter adds a number of effects:

The matter effect increases due to Lorentz boost ne → γune

The matter effect depends on 1 − uv:
decreases for parallel velocities,
increases for anti-parallel,
remains the same for the matter in rest for orthogonal case.
new effect: If matter moves faster then neutrino (maybe
only academical case, but remember about relic or heavy
ν): the oscillations appears between right and left
components of neutrino!
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Quantum Field Theory of Oscillations in Matter

Moving Matter

Pmix = | α+ |2
∑

ij

U+
βiU

+†
αiU

+
βjU

+†
αje

i(p+

i −p+

j )L

+ | α− |2
∑

ij

U−
βiU

−†
αiU

−
βjU

−†
αje

i(p−i −p−j )L

+ α−α+

∑

ij

U+
βiU

+†
αiU

−
βjU

−†
αje

i(p+

i −p−j )L

+ α+α−

∑

ij

U−
βiU

−†
αiU

+
βjU

+†
αje

i(p−i −p+

j )L

1 Phases φ± = (p±i − p±j )L do not contain neutral currents

2 Phases φ+− = (p+
i − p−j )L do contain neutral currents

3 In cases of matter slower than neutrino (most applications)
α− = 0, α+ = 1 and no unusual terms appears
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Qualitative Picture. Matter at rest
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Qualitative Picture. Fast moving matter
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Qualitative Picture. Fast moving matter
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Does fast moving matter exists?

http://antwrp.gsfc.nasa.gov/apod/ap000706.html

Explanation: What’s causing a huge jet to emanate from the
center of galaxy M87? Although the unusual jet was first
noticed early in the twentieth century, the exact cause is still
debated. The above recently released picture taken by the
Hubble Space Telescope shows clear details, however. The most
popular hypothesis holds that the jet is created by energetic gas
swirling around a massive black hole at the galaxy’s center. The
result is a 5000 light-year long blowtorch where electrons are
ejected outward at near light-speed, emitting eerily blue light
during a magnetic spiral. M87 is a giant elliptical galaxy
residing only 50 million light-years away in the Virgo Cluster of
Galaxies. The faint dots of light surrounding M87’s center are
large ancient globular clusters of stars.

http://antwrp.gsfc.nasa.gov/apod/ap000706.html
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Note on neutral current

1 For matter in rest neutrino momentum gets a shift due to
neutral current like p → p + wNC equal for all neutrinos
thus no effect on oscillations.

2 for moving matter it is no more true:

1 Left component gets shift like p → p + (1+ | u − v |)wNC

2 Right component gets shift like p → p + (1− | u − v |)wNC

These shifts disappear in left-left and right-right terms and
do not disappear in left-right and right-left
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