PION YIELDS IN NEUTRINO INTERACTIONS MEASURED IN THE NOMAD EXPERIMENT

Dmitry Naumov, Oleg Samoylov

JINR, Dubna, Russia

Workshop "Neutrino physics at accelerators" January 23rd, 2008

INTRODUCTION

- Fragmentation functions
- Experimental view on fragmentation functions
- The NOMAD experiment

2 PION PRODUCTIONS

- Analysis scheme
- Preliminary results of π^{\pm} and π^{0} productions

3 CONCLUSIONS

OUTLINE

INTRODUCTION

- Fragmentation functions
- Experimental view on fragmentation functions
- The NOMAD experiment

2 PION PRODUCTIONS

- Analysis scheme
- Preliminary results of π^{\pm} and π^{0} productions

3 CONCLUSIONS

WHAT ARE FRAGMENTATION FUNCTIONS?

 They are dimensionless functions that discribed the final state single-particle energy distributions in hard scattering process *F^h*(*x*, *s*) = 1/(*σ*_{tot}(*ν*_μ*N*→*μ*⁻*X*))/(*dx*⁻*μ*⁻*hX*), where *x* = 2*E_h*/√*s*, √*s* is c.m. energy (standard definitions) We will use *E_ν*, *Q*², *W*, *x_{Bj}*, *y* and *x_F*, *z*, *p_T*, *p*
 Multiplicity of those hadrons *n_h*(*s*) = ∫ *dx F^h*(*x*, *s*)

WHY ARE FRAGMENTATION FUNCTIONS?

- NOMAD potentials
 - wide energy spectrum

provides us study different variables E_{ν} , Q^2 , W, x_{B_i} , y

- excellent reconstruction and resolution of the individual tracks, good calorimetry

let us taking good quality of the distributions

- largest statistics of the neutrino interactions (\sim 1.1M DIS) is good chance to get most accurate results
- Important for theory Today exist <u>THREE THEORIES</u>: QEL, RES, DIS and no one for just vN (see talk by V.Naumov, O.Teryaev) Fundamental ingredients are prepared as model's cuts on Q², W

DATA RESULTS EXAMPLE

SLD, TPC, DELPHI, ALEPH, ARGUS, OPAL experiments $(e^+e^- \rightarrow \gamma/Z^0 \rightarrow hX)$

GOOD QUALITY OF THE PARTICLE IDENTIFICATION

- Current muon in Muon Chambers
- 2 Charged particles (π^{\pm} , p, ...) in Drift Chambers
- Solution Neutral particles (γ , n, ...) in Electromagnetic Calorimeter
- **(**) Neutral strange particles (K_{S}^{0} , Λ , $\overline{\Lambda}$) and photons ($\gamma \rightarrow e^{+}e^{-}$) by V-like vertexes
 - Solution Possibility to study $\pi^0 \rightarrow \gamma \gamma$ production

OUTLINE

INTRODUCTION

- Fragmentation functions
- Experimental view on fragmentation functions
- The NOMAD experiment

2 PION PRODUCTIONS

- Analysis scheme
- Preliminary results of π^{\pm} and π^{0} productions

3 CONCLUSIONS

ANALYSIS FLOW

Taking raw data

is getting reconstructed informations (tracks, deposit energies, ...)

MC study

is calculation of efficiency, smearing, ...

 $\varepsilon(x^{sim})$ - efficiency, $r(x^{rec}, x^{sim})$ - resolution matrix,

 $p(x^{rec})$ - purity

OATA unfolding

is correction of raw data

$$\mathcal{D}_{\pi} = \frac{\varepsilon_{\pi}^{-1} r_{\pi}^{-1} p_{\pi}^{-1} N^{\text{rec}}(\nu_{\mu} N \rightarrow \mu^{-} \pi X)}{\varepsilon_{\nu c c}^{-1} r_{\nu c c}^{-1} p_{\nu c c}^{-1} N^{\text{rec}}(\nu_{\mu} N \rightarrow \mu^{-} X)}$$

DATA SELECTION

- Fiducial volume of the Drift Chambers: |*x*, *y*| < 120 cm, 35 < *z* < 395 cm</p>
- No kinematics cuts: $E_{\nu}, Q^2, W, x_{b_i}, y$
- $\nu_{\mu}N$ total (QEL, RES, DIS) DIS to be finished soon
- Now just 96th years DATA subset (~ 320k events)

MC

NOMAD MC tuned to reproduce yields of π, ρ, K, f⁰, ...-mesons, Λ, Λ̄, Σ, ...-hiperons (many years of work) in DIS

∃ ▶ ∢

DMITRY, OLEG (NOMAD)

PION PRODUCTION IN NOMAD

NEUTRINO PHYSICS 16 / 3

E

E

< □ > < □ > < □ > < □ > <

DMITRY, OLEG (NOMAD)

PION PRODUCTION IN NOMAD

NEUTRINO PHYSICS 21 / 33

π^0 PRODUCTION

π^0 productions (just integral)

$$m{n}_{\pi}=rac{arepsilon_{\pi}^{-1}N^{
m rec}(
u_{\mu}N
ightarrow\mu^{-}\pi X)}{arepsilon_{
ucc}^{-1}N^{
m rec}(
u_{\mu}N
ightarrow\mu^{-}X)}$$

DATA (MC)	π^+	π^{-}	π^0
n_{π}	1.86(1.99)	1.17(1.22)	1.32(1.78)

OUTLINE

INTRODUCTION

- Fragmentation functions
- Experimental view on fragmentation functions
- The NOMAD experiment

2 PION PRODUCTIONS

- Analysis scheme
- Preliminary results of π^{\pm} and π^{0} productions

3 CONCLUSIONS

SUMMARY

- We started to study pion production properties in ν_μN interactions in the NOMAD experiment
- Based on fragmentation function conception and using 96th year data subset we got preliminary π[±]-mesons yields as functions of kinematics variables E_ν, Q², W, x_{B_j}, y and fragmentation variables x_F, z, p_T, p in ν_μN total
- Solution We got integral production of π^0 -meson and compared it with the same of π^{\pm} -mesons
- We plan to get π^0 -meson yields, study DIS and select RES from total $\nu_{\mu}N$ interactions

EFFICIENCY

EFFICIENCY

DMITRY, OLEG (NOMAD)

PION PRODUCTION IN NOMAD

NEUTRINO PHYSICS 26 / 33

RESOLUTION

An example of one slice

< ロ > < 同 > < 三 > < 三 >

PURITY

DMITRY, OLEG (NOMAD)

PION PRODUCTION IN NOMAD

NEUTRINO PHYSICS 28 / 33

DMITRY, OLEG (NOMAD)

PION PRODUCTION IN NOMAD

Э. NEUTRINO PHYSICS

3 + 4 = +

э

DATA vs MC

DATA vs MC

∃ → < ∃</p>

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A