T2K experiment

Takashi Kobayashi (KEK) and Yury Kudenko (INR)

Neutrino Workshop, Dubna, 24 January 2008

OUTLINE

- Neutrino mass and mixings
- T2K features and physics
- Construction status accelerator beam line
- T2K neutrino detectors

T2K (Tokai to Kamioka) LBL v experiment

J-PARC

World Highest Intensity (~MW) proton accelerator facility @ JAEA. Construction 2001~2008

T2K Collaboration

~350 members from 12 Countries Japan, US, Canada, France, UK, Switzerland, Poland, Korea, Russia (INR), Spain, Italy, Germany

3 flavor mixing

Neutrino oscillation

- Flavor change during flight

 Only when flavor mixing/finite&different m_i
- Unique & powerful way to probe ν flavor mixing and small masses
- Oscillation Probability (2 flavor) $U = \begin{pmatrix} \cos \theta_{23} & \sin \theta_{23} \\ -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix}$

$$P(\nu_{\mu} \rightarrow \nu_{\tau}) = \left| \left\langle \nu_{\tau}(t) \left| \nu_{\mu}(0) \right\rangle \right|^{2} = \sin^{2} 2\theta_{23} \sin^{2} \left(1.27 \frac{L}{E} \Delta m_{23}^{2} \right) \right|$$

<sup>*L* (km), *E* (GeV)
$$\Delta m_{23}^2 = m_2^2 - m_3^2$$</sup>

Current status of neutrino mass and mixings

3 mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ 1 CPV phase (δ) 2 (independent) mass differences $(\Delta m_{ij}=m_i^2-m_j^2)$

Only upper limit on θ_{13} No info. on δ

Solar + KamLAND

Present knowledge and What's next?

- Only unknown mixing θ_{13} (and really $\Delta m_{13}^2 \sim \Delta m_{23}^2$?)
- Mass hierarchy (sign of ∆m²)
- CP violation
- Approaches
 - LBL experiment: Multi purpose (θ_{13} , sign(Δm^2), CPV, θ_{23} , Δm_{23}^2)
 - Reactor-based ν_{e} disappearance: single purpose (θ_{13}), complementary

Goals of T2K experiment

- Establish framework of 3 flavor mixing (or find something else)
 - Discovery of v_e appearance (θ_{13} >0?)
 - At the same Δm^2 as v_{μ} disapp. \rightarrow Firm evidence of 3gen. mix.
 - Open possibility to search for CPV ($\theta_{any}=0 \rightarrow No$ observable CPV in v osc)
 - Precision measurements of osc. params.
 - Really $\sin^2 2\theta_{23} = 1$?? (disappearance)
 - Test exotic models (decay, extra dimensions,....)
 - Confirmation of $\nu_{\mu} \rightarrow \nu_{\tau}$
 - NC measurement
- Search for CPV in lepton sector
 - Give hint on Matter/Anti-matter asymmetry in the universe

Narrow intense beam: Off-axis beam

11

Ev reconstruction in water Cherenkov

Remarkable Features of T2K

- Neutrino energy reconstruction by using Quasi-elastic (QE) interaction.
 - Oscillation pattern measurement
 - BG due to miss-reconstruction of inelastic interaction
 - Greatly improved by using narrow spectrum
- Narrow spectrum tuned at the oscillation maximum.
 - High sensitivity $\Delta m^2 = 1.6 \sim 4 \times 10^{-3} \text{eV}^2$
 - Less background / $E_v = 0.4 \sim 1 \text{GeV}$
- Gigantic water Cherenkov detector
 - High statistics
 - High efficiency for low energy
 - Good PID (e/μ) capability

Super Kamiokande (far detector)

- 50 kton water Cherenkov detector (fiducial volume: 22.5 kton)
 - ~11000 x 20 inch PMTs (inner detector)
- good e-like(shower ring) / μ-like separation
- δE_{scale} ~ 2%

(Possible) strategy of F/N extrapolation & NA61

SK exp'ed obs.

SK observation

Osc?

- Spectrum at far site is different from near site even w/o oscillation
 Effect of non-point-like source
- T2K analysis

Far/Near ratio

 $R_{F/N} = \Phi_{SK} / \Phi_{ND}$

Determined by Hadron prod. (&geometry)

no measurement of particle production off carbon with 30 (40,50) GeV protons → NA61

Far/Near ratio

Expected syst. uncertainties w/o NA61

It is difficult to evaluate the validity of the hadron production model !! → The uncertainty is probably not less than the difference among several models inspired by similar data sets

G-FLUKA vs. MARS vs. FLUKA

Ratios of F/N ratios up to ~20% difference!

F/N ratio difference among hadron production models: ~ 20% @Ev≤1GeV

Syst. error due to F/N v_e appearance $\delta(N_{bg}) \sim 15\%$ v_{μ} disappearance $\delta(\sin^2 2\theta_{23}) \sim \pm 0.015 \cdot 0.03,$ $\delta(\Delta m_{23}^2) < \sim \pm 5 \cdot 10 \ 10^{-5} eV^2$

MARS/G-FLUKA

Goal of T2K v_e appearance $\delta(N_{bg}) \le 10\%$ v_{μ} disappearance

 $\frac{\delta(\sin^2 2\theta_{23}) \sim \pm 0.01,}{\delta(\Delta m_{23}^2) < \sim \pm 3 \ 10^{-5} eV^2}$

Impossible to achieve T2K GOAL!

Measurement of $sin^2 2\theta_{23}$, Δm^2_{23}

$\nu_{\mu} \underset{\text{OA2.0deg}}{\text{disappearance}}$

v_{μ} disappearance

Goal : $\delta(\sin^2 2\theta_{23}) \sim 0.01$, $\delta(\Delta m_{23}^2) < 1 \times 10^{-4} \text{ [eV}^2\text{]}$

Precision measurement of θ_{23} , Δm_{23}^2 possible systematic errors and phase-1 stat.

•Systematic errors

- normalization $(10\% (\rightarrow 5\% (K2K)))$
- non-qe/qe ratio (20% (to be measured))
- E scale (4% (K2K 2%))
- Spectrum shape (Fluka/MARS →(Near D.))
- Spectrum width (10%)

 $\delta(\sin^2 2\theta)$

Goal

 $\begin{array}{l} \delta(sin^2 2\theta_{23}) {\sim} 0.01 \\ \delta(\Delta m^2_{23}) \ < 1 {\times} 10^{-4} \, eV^2 \end{array}$

 $\delta(\Delta m^2)$

v_e appearance in "T2K"

Back ground for v_e appearance search

- Intrinsic v_e component in initial beam
- Merged π^0 ring from ν_{μ} interactions

Requirement \square 10% uncertainty for BG estimation

The K2K 1kt π^0 data will be studied for exercise

Sensitivity for the v_e appearance

0.01

33

10

v_e appearance sensitivity (as func of CP δ)

• >10 times improvement for almost any δ

Possible future extension

Beam power upgrade to Multi-MW New 100kt ~ Mt huge detector

To explore •CP violation in neutrino sector •Proton decay

$$v_{\mu} \rightarrow v_{e}$$
 appearance and CPV

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) = & 4C_{13}^{2} S_{23}^{2} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}} \left(1 - 2S_{13}^{2}\right)\right) & \text{Main} \\ & + 8C_{13}^{2} S_{12} S_{13} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} \\ & - 8C_{13}^{2} C_{12} C_{23} S_{12} S_{13} S_{23} \sin \delta \sin \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \sin \frac{\Delta m_{21}^{2} L}{4E} & \text{CP-odd} \\ & + 4S_{12}^{2} C_{13}^{2} \left\{C_{12}^{2} C_{23}^{2} + S_{12}^{2} S_{23}^{2} S_{13}^{2} - 2C_{12} C_{23} S_{12} S_{23} S_{13} \cos \delta\right\} \sin^{2} \frac{\Delta m_{21}^{2} L}{4E} & \text{Solar} \\ & - 8C_{13}^{2} S_{13}^{2} S_{23}^{2} \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \frac{aL}{4E} \left(1 - 2S_{13}^{2}\right) & \text{Matter} \\ & - 8C_{13}^{2} S_{13}^{2} S_{23}^{2} \cos \frac{\Delta m_{32}^{2} L}{4E} \sin \frac{\Delta m_{31}^{2} L}{4E} \frac{aL}{4E} \left(1 - 2S_{13}^{2}\right) & \text{Matter} \\ & \delta \rightarrow -\delta, a \rightarrow -a \text{ for } \overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}} & \text{Matter eff.: } a = 7.56 \times 10^{-5} [\text{eV}^{2}] \cdot \left(\frac{\rho}{[\text{g/cm}^{3}]}\right) \cdot \left(\frac{E}{[\text{GeV}]}\right) \end{split}$$

$$A_{CP} \equiv \frac{P - \overline{P}}{P + \overline{P}} \approx \frac{\Delta m_{12}^2 L}{E} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

$$N(v_e) \propto \sin^2 2\theta_{13} ; A_{CP} \propto \frac{1}{\sin \theta_{13}}$$

Size of θ_{13} critical !

Sensitivity for CPV w/ Mt Water Черенков

 3σ CP sensitivity : $|\delta| > 20^{\circ}$ for $\sin^2 2\theta_{13} > 0.01$ with 2% syst.

Construction

Status

Bird's-eye view [As of Feb.2006]

T.Ishida (IPNS, KEK)

T2KK07: 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam · Sep 30, 07 · Tokyo Japan

ACS: Annular ring Coupled Structure not installed on day-one Peak current = 30mA@181MeV (50mA@400MeV) Repetition 25Hz / Pulse Width 0.5ms

181MeV acceleration (nominal beam energy in day-one configuration) was achieved on January, 2007

Linac beam on Jan. 24, 2007

Accelerated up to design energy of 181MeV

RF Section (New Material called the Finement)

Acceleration and Extraction at 3 GeV

2007.10.31.14h03m23s

Construction status of 3-50BT and MR

Off-beam commissioning : Dec., 2007~ Beam commissioning : May, 2008~

Hadron Hall in August 2007

Commissioning Plan

[CONSTRUCTION] [INSTALATION] [COMMISSIONING]

[Day-one Operation Parameters]

- 30GeV
- 6 bunches / h = 9 (kicker rise time problem)
- Rep. period: 3.04s for Fx (3.64s for Sx)

The Neutrino Beam-Line

Construction: Apr. 2004 ~ Mar. 2009 (5yrs)

Primary beam line

Tunnel for Primary Beam-line

Completed in Dec. 2006

Primary line components

- SC magnets
 - 23 (/28) mags, 9 (/14) "doublets" completed
 - Up to 28 mags, 12 dblt's in FY2007 (by Mar.2008)
 - Corrector mags being fabricated at BNL
- Normal-conducting magnets
 - 11 mags in prep.section installed and aligned.
 - Fabrication of FF mags in progress, inst. In 2008
- Misc.
 - Level meas. in progress to monitor ground sink.

Level-measurement for the primary tunnelbein done.

Delivery of superconducting magnet (doublet)

- Graphite 26mm(D)x900mm(L)
- Forced flow Helium gas cooling in Ti-alloy container
- Remotely exchangeable
- Full-spec He flow test w/ mockup succeeded
- Day-1 target delivered.
- Full-spec He-flow test w/ real target being prepared

Electromagnetic horns

- Long term test at 320kA with 1st horn prototype and 3rd horn finished
 Minor problems are indentified and being fixed before day-1.
- The 1st Horn for day-1 is under production, will be delivered in Mar.
- The 2nd Horn is under production in US, will be delivered in April.

Full setup Test of Horn and Demonstration of its Remote Maintenance Scenario at Fuji, KEK

In preparation now.

The 320 kA operation is scheduled in February.

Necessary improvements are identified and being solved.

Target Station

- Overcame water food problem during excavation in early 2007
- Installation of the helium vessel(~470ton, 1000m³) finished, passed vacuum test in Nov. 2007 as scheduled
- Construction of surface building starts soon and will finish in June 2008.

Decay Volume

- 94m-L iron helium vessel cooled by water
- Middle part was constructed in 2005.
- Upstream part (20cm^t Iron) was installed&tested in Nov 2007 as scheduled
- Downstream parts will be finished by Aug. 2008.

Middle part

Beam Dump

Beam dump

Prototype module

- 98 graphite blocks cooled by water-pipe embedded Al-casting block
- Layout of pipes & Al-casting method developed and established
- All parts are in production and will be ready by the end of Mar.2008
 - Graphite blocks being machined, ~1/4 delivered
 - First Al-cooling module delivery in Jan (out of 14)
 - Helium vessel iron plates (200mm^t)
- Module assembly will be finished by the end of Mar.2008
- Installation from Aug. 2008 ٠

Muon Monitor

- Spill-by-spill monitor for the muon profile center (= beam direction)
- Long term test of prototype at FNAL/NuMI beamline (FNAL-T968 test exp.)
- Engineering design of detectors almost finished
- Design of the support structure ongoing
- Installation in fall-winter 2008

T2K prototype detectors installed behind NuMI/MINOS MUMON

Time

Construction schedule

- Beam will start in April 2009, 15month from now.
- Installation of almost all components in 2008
 - SC magnets from Feb, Target/Horn from July,
 - SC/Horn in-situ ope. test from 2009, Intrlock inspection Mar. 2009

Near Neutrino Detectors @ 280m

On-axis neutrino moitor

- Monitor
 - Profile
 - Direction
 - Intensity (& Energy)
- Iron-Scintillator sandwich detector
 - 1mx1mx10cm Iron
 - 1.25cm thick extruded Scinti.
 - New Photo-Sensor (MPPC/SiPM)

- Lead/Scintillator tracking detector for π^0
- Electromagnetic Calorimeter
- Muon Range Detector in mag
- Key technologies
 - Photo-sensor, Micromegas

Progress on 280m Hall

Status of 280m Near Detectors

TPC

ECAL

Photo-sensor (~60k ch) in production

UA1 magnet (donation from CERN)

C refurbishing (spring 2007)

- Refurbishing done
- Shipping started
- Installation during Apr~Jun., 2008

Novel photosensor

- Multi-pixel Geiger mode avalanche photodiode •
 - Can be used in magnetic field
 - High gain \sim (5-7)x10⁵, high photon detection efficiency \sim 30-35% for green light
- Used in INGRID, FGD, P0D, SMRD, ECAL
 - In total ~60,000 channel
 - Key component
- R&D finished, mass-production started ٠

T2K will use 1.3x1.3 mm² 667 pixel MPPC produced by Hamamtsu

Side Muon Range Detector (SMRD)

Summary

- Working very hard to keep schedule
 - Both civil and equipments
 - Almost all beam line components will be installed in FY2008
- Beam commissioning will start in Apr. 2009
 w/ completed beamline, MUMON, On-axis detector
- Off-axis detector will be ready by 2009 fall run

 except for a part of ECAL
- Aim to obtain 1st physics result from 100kWx10⁷sec beam operation in 2010
- Workshop to discuss future neutrino experiments with J-PARC (<u>http://j-parc.jp/NP08/</u>)
 - Mar. 5~7, 2008 near J-PARC (Mito-city, Ibaraki, Japan)
 - YOU ARE WELCOME

Backup slides

Experimental Setup

Muon monitors @ ~140m

 Fast (spill-by-spill) monitoring of beam direction/intensity

Near detector @280m

- On-axis
 - Monitor Intensity and direction (profile)
- Off-axis
 - Flux/spectrum/ve
- Far detector @ 295km
 Super-Kamiokande (50kt)

Neutrino spectrum at Far is different from Off-axis

T.Kobayashi (KEK)

Proton beam monitors

- Position: ESM
 - 9 prep ESMs delivered
 - ARC ESMs being manufactued
- Profile: SSEM
 - Chambers and Moving mechanisms for Prep SSEMs delivered, installation in this FY.
 - Chambers and Moving mechanisms for SC part will be manufactured soon
 - SSEM sensor will be assembled/installed in the next FY
- Intensity: CT
 - Final design fixed
 - All parts are ordered
 - Prep CTs will be assembled/installed in this FY
- Loss: Ionization chamber
 - Commercially available (used by J-PARC acc group)
 - Layout/configuration fixed
 - Twenty monitors are purchased in this FY

T.Kobayashi (KEK)

Hadron production measurements at CERN-SPS NA61 (SHINE) experiment

- Measure hadron (π/K) production from (
 - to predict
 - Near and far energy spectra (<2~3%)
 - Near to far spectrum extrapolation (<2~3%)
 - \Box v_e contami. (from K, µ) (<2~3%)

hick target

First data taking successfully finishe Thin target (1month)

- Beam: 30GeV proton
- Thin target (2cm^t 4%int):~ 500k int.
- Replica target (90cm, 80%int): ~180k int.
 - (Goal: 1M int. for both)
- Intense analysis started
- Measurements in 2008 planned
 - DAQ rate: ~1Hz → ~100Hz

Goal of NA61 for T2K

ν_µ Far/Near ratio shape ~< 2~3% ν_e Far/Near ratio R(<1GeV), R(>1GeV) ~2~3%

	T2K goal	Error from F/N ratio		
		w/o NA61	w/ NA61	
$\delta(N_{\rm bg})$ for $v_{\rm e}$ app.	10%	15%	<4%	
$\delta(sin^22\theta_{23})$	1%	1.5~3%	0.5%	
$\delta(\Delta m_{23}^2)[10^{-4}eV^2]$	1	0.5~1	0.15	

 ~200k good recon'ed pion tracks give sufficient precision

Based on Ken Sakashita's MC Studies

Summary of Status

	Conceptual Design	Engineering Design	Real Production	Installation
Proton Beam monitor				Feb.~
Superconducting magnets				Feb~
Cryogenics				Apr~
Normal Conducting magnets				
Vacuum system				
Target				Aug.~
Horn				Aug.~
Target Station				
Beam Window				Jul~
Decay Volume				
Beam Dump				Aug~
Muon monitor				08/09

- All components are in production phase
- Installations is starting as scheduled

Completion of the MLF Building

Super Kamiokande Rebuild

IACO7 T2K

Super-K III

Dave Wark Imperial College/RAL

DAQ System Upgrade in SK

Motivations

Stable DAQ for the next 10 ~ 20 years

- long-life electronics
- lower power dissipation

Good Data Quality

- wide charge dynamic range
- low noise electronics

– Dead Time Free DAQ

- high speed AD conversion & data transfer
- "recoding all hits of PMTs"
- no dead time for higher rate Supernova bursts

R&D of electronics & online is underway.

SK data flow @ T2K era

GPS

Collect ALL the hits, Stamp GPS local timing and send to Software Trigger

Apply 'Trigger' by software >GPS based trigger for T2K >Hitsum trigger for usual analysis >Reconstructed vertex based trigger for the lower energy event analysis

Transfer and store reduced data

New Electronics Development in SK

Schedule

QBEE will be delivered in May~July

SK installation from Sep. 2008 (three month delay from initial plan)