On the duality in neutrinonucleon interactions

"Neutrino Physics at Accelerators" DLNP, JINR, January 23, 2008

> Oleg Teryaev BLTP, JINR

Outline

- Borel sum rules and Bloom-Gilman duality in QCD
- Bloom-Gilman duality in QCD: for which structure it holds better?
- Perturbative-Non-perturbative "duality": HT vs APT
- Example from PC spin-dependent DIS: GDH and Bjorken sum rules and duality
- Conclusions

Structure functions

- General expression
- 1,2 also in PC
- 3 V-A interference

$$W_{\mu\nu}(p,q) = -g_{\mu\nu}W_1(\nu,q^2) + \frac{p_{\mu}p_{\nu}}{M^2}W_2(\nu,q^2)$$

$$-i\epsilon_{\mu\nu\alpha\beta}\frac{p^{\alpha}q^{\beta}}{2M^2}W_3(\nu,q^2) + \frac{q_{\mu}q_{\nu}}{M^2}W_4(\nu,q^2)$$

$$+\frac{p_{\mu}q_{\nu}+q_{\mu}p_{\nu}}{2M^{2}}W_{5}(\nu,q^{2}).$$

 4,5 – non-transverse in q - direct signature of axial current, suppressed by lepton masses. But – essential contribution to heavy lepton polarization.

Bloom-Gilman duality in QCD and Borel Sum Rules

Methods of QCD SR

1. Calculate (handbag+higher twists) contribution to DIS

2. Write the (Borel) dispersion relation (with respect to $s = Q^2/(1 - x)$, which is a natural scale of higher twists)

 Only 1/(1-x) - enhanced (dependent on s, rather than Q) higher twist corrections should be considered (Gardi, Kortchemsky,Ross,Tafat)

Bloom-Gilman duality in QCD and Borel Sum Rules -II

3. Take the ansatz for spectral functions which includes RESO-NANCE contribution below the threshold defined by DUALITY interval and leading perturbative one above that threshold.

$$\rho(s) = \theta(s - s_0)\rho^{pert}(s) + \theta(s_0 - s)\rho^{Res}(s) \tag{1}$$

4. Put Borel parameter $M \rightarrow \infty$ (higher twists corrections disappear) and assume the finite limit of duality interval \rightarrow BG duality. Determination of the duality interval from QCD - requires the power corrections calculation.

BG duality in QCD -III

The resulting QCD SR:

s

$$\int_{\min}^{s_0} ds (\rho^{\text{pert}}(s) - \rho^{\text{Res}}(s)) = 0$$

- Separation between Resonance and DIS contribution – upper bound for Resonance and lower for DIS - the same!
- Depends on the structure function

Longitudinal vs transverse polarization

- Longitudinal more simple :
- i) kinematically enhanced by Lorentz boost (massless particle = definite helicity)
- ii) in helicity formalism (transverse = interference)
- BUT! For invariant amplitudes vice versa: important for duality.

"Duality" between pQCd and NPQCD

- Border between pQCD and NPQCD matter of convention
- Possibility to shidt HT to N...NLO (Kataev,Parente,Sidorov; talk of S. Alekhin)
- Modified QCD couplings (APT, Freesing...) – what are HTs?

Case study - Spin dependent DIS

Two invariant tensors

$$W_A^{\mu\nu} = \frac{-i\epsilon^{\mu\nu\alpha\beta}}{pq} q_\beta(g_1(x,Q^2)s_\alpha + g_2(x,Q^2)(s_\alpha - p_\alpha\frac{sq}{pq})) = \frac{-i\epsilon^{\mu\nu\alpha\beta}}{pq} q_\beta((g_1(x,Q^2) + g_2(x,Q^2))s_\alpha - g_2(x,Q^2)p_\alpha\frac{sq}{pq})$$

- Only the one proportional to g_T = g₁+g₂ contributes for transverse (appears in Born approximation of PT)
- Both contribute for longitudinal
- Apperance of \mathcal{G}_1 only for longitudinal case –result of the definition for coefficients to match the helicity formalism

Generalized GDH sum rule

• Define the integral – scales asymptotically as $\frac{1}{Q^2}$

$$I_1(Q^2) = \frac{2M^2}{Q^2} \Gamma_1(Q^2) \equiv \frac{2M^2}{Q^2} \int_0^1 g_1(x, Q^2) dx \,.$$

• At real photon limit (elastic contribution subtracted) – $\frac{1}{Q^2} + \frac{1}{Q^4} + \cdots$ - Gerasimov-Drell-Hearn SR

$$I_1(0) = -\frac{\mu_A^2}{4}$$

Proton- dramatic sign change at low Q!

Decomposition of $g_1 = g_T - g_2$ (J. Soffer, OT '92)

- Inspired by the fact that $I_T(0) = + \frac{\mu_A}{4}$
- Linear in μ_A , quadratic term from g_2
- Natural candidate for NP (like QCD SR!) analysis – hope to get low energy theorem via WI (C.f. pion F.F. – Radyushkin) - smooth model
- For g₂-strong Q dependence due to Burkhardt-Cottingham SR

 $I_2(Q^2) = \frac{1}{4} \mu G_M(Q^2) [\mu G_M(Q^2) - G_E(Q^2)]$

Models for g_T :proton

- Simplest linear extrapolation – PREDICTION (10 years prior to the data) of low (0.2 GeV) crossing point
- Accurate JLAB data require model account for PQCD/HT correction – matching of chiral and HT expansion
- HT values predicted from QCD SR (Balitsky, Braun, Kolesnichenko)
- Rather close to the data, like the resonance approach of Burkert and loffe (the latter similarity to be discussed below)

Models for g_T :neutron and deuteron

 Access to the neutron – via the (p-n) difference – linear in <u>#A</u> Deuteron – refining the model eliminates the structure

for neutron and deuteron

Duality for GDH – resonance approach

- Textbook (loffe, Lipatov. Khoze) explanation of proton GGDH structure – contribution of △(1232) dominant magnetic transition form factor
- Is it compatible with g_2 explanation?!
- Yes!- magnetic transition contributes entirely to g_1 and as a result to $g_1 = g_T - g_2$

$\Delta(1232$) and Bloom-Gilman duality

- Observation (Ricco et al): Δ (1232) violates BG duality for g_1
- Natural explanation : Δ (1232) contributes only via g_2
- For *g*₂ BG duality is difficult to reach: due to BCSR elastic contribution should compensate all the integral from 0 to 1 (global duality enforced by rotational invariance) – 0.T. (2005)
- g_{T} -natural candidate for BG duality

(Pol) Bjorken SR at low Q

 The same decomposition –

Smooth interpolation of g1 – possible but wrong

J. Soffer, O.V. Tervaev / Physics Le

Fig. 2. Our prediction for $I_1^{p-n}(Q^2)$, directly related to the Bjorken sum rule.

10 -1

 $Q^2(GeV^2)$

D-SPIN 2007

Bjorken SR and APT (R.Pasechnik, D.V.Shirkov,OT)

- Pioneering application to Bjorken SR- K. Milton, I. Solovtsov, O. Solovtsova (98)
- Fast convergence of PT!

How APT confronts recent data?

- APT close to
 Simonov's
 freesing
- Step back??

$Q^2, \ { m GeV^2}$	μ_4/M^2	μ_6/M^4	μ_8/M^6
0.5 - 11.0	-0.060 ± 0.063	0.086 ± 0.11	0.011 ± 0.05

APT – quite different – Exponentially decreasing series!

Comparing HT

Powers for coupling:

$$\Gamma^{p-n}_{1,pQCD}(Q^2) \simeq 0.21 + f(\frac{1}{\ln(Q^2/\Lambda^2)}) + 0.43\frac{\Lambda^2}{Q^2} + 1.14\frac{\Lambda^4}{Q^4} + 2.23\frac{\Lambda^6}{Q^6} + 3.69\frac{\Lambda^8}{Q^8} + \dots$$

First correction – increasing (step back)

$$\frac{\mu_4^{APT} + 0.43\Lambda_{QCD}^2}{M^2} \simeq \frac{\mu_4}{M^2} \simeq -0.061$$

But higher – decreasing (two + steps forward!)

$$\Gamma_1^{tw}(Q^2) = \frac{\xi_1}{Q^2} e^{-\xi_2^2/Q^2}$$

HT in PT

	$Q^2, \ { m GeV^2}$	μ_4/M^2	μ_6/M^4	μ_8/M^6		
	0.5 - 11.0	-0.060 ± 0.063	0.086 ± 0.11	0.011 ± 0.05		
HT in APT – frontier moving						

data	Total fit					
Q^2	0.47 - 2.918	0.268 - 2.918	0.17 - 2.918	0.101 - 2.918		
μ_4^{APT}/M^2	-0.0579 ± 0.0015	-0.0772 ± 0.0028	-0.0839 ± 0.0042	-0.0843 ± 0.0047		
μ_6^{APT}/M^4	0	0.0129 ± 0.0011	0.0202 ± 0.0028	0.0217 ± 0.0036		
μ_8^{APT}/M^6	0	0	-0.0017 ± 0.0004	-0.0027 ± 0.0006		
μ_{10}^{APT}/M^8	0	0	0	$2.3(-4) \pm 0.8(-4)$		
μ_{12}^{APT}/M^{10}	0	0	0	$-1.9(-5)\pm1.0(-5)$		
μ_{14}^{APT}/M^{12}	0	0	0	$1.4(-6) \pm 0.9(-6)$		

Implications for Spinindependent and PV DIS

- 1,2 (better-protected by momentum SR)– should hold also for PV case: VV+(=)AA
- 3 V-A interference
- 4-5 no LO (+HT) counterpart!
- Analytic QCD couplings?

CONCLUSIONS

- Methods from QCD SR are helpful, in particular BG duality may be quantitatively understood in the framework of Borel sum rules
- Large x HT corrections are important.
- g_{T} natural candidate for Bloom-Gilman duality and allows for good description of GGDH SR
- Generalization for PV –special role of 4,5
- Analytic couplings intriguing results from BjSR