Status of the long baseline neutrino experiment T2K

Yury Kudenko

(For the T2K Collaboration)

Institute for Nuclear Research Moscow

Dubna, 28 January 2009

T2K (Tokai to Kamioka) LBL neutrino experiment

The T2K Collaboration

407 members, 05 msultates, 12 countrie	407	members,	65	Institutes,	12	countrie
--	-----	----------	----	-------------	----	----------

Canada

TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto

U. Victoria York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany

U. Aachen

Italy INFN, U. Roma INFN, U. Napoli INFN, U. Padova INFN, U. Bari

Japan

U. Hiroshima ICRR ICRR Kamioka ICRR RCCN KEK Kyoto U. U. Kobe U. Miyagi U. Osaka City

U. Tokyo

Poland A. Soltan, Warsaw IFJ PAN, Krakow T. U. Warsaw U. Silesia, Katowice U. Warsaw U. Wroklaw

Russia

INR

S. Korea

N. U. Chonnam U. Dongshin N. U. Gyeongsang N. U. Kyungpook U. Sejong N. U. Seoul U. Sungkyunkwa

Spain

IFIC, Valencia U. A. Barcelona

Switzerland

U. Bern U. Geneva ETH Zurich

United Kingdom

Imperial C. London Queen Mary U. L. Lancaster U. Liverpool U. Oxford U. Sheffield U. Warwick U. STFC/RAL STFC/Daresbury

USA

Boston U. B.N.L. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester

U. Washington

2

R. Terri TAU08

Neutrino mass and mixings

3 mixing angles $(\theta_{12}, \theta_{23}, \theta_{13})$ 1 CPV phase (δ) 2 (independent) mass differences $(\Delta m_{ii}^2 = m_i^2 - m_i^2)$

Present knowledge and next steps

- Mixing angle θ_{13}
- Mass hierarchy (sign of $\Delta m_{23}^2 \rightarrow m_3 > m_1$ or $m_3 < m_1$)
- CP violation
- Absolute mass scale
- Dirac or Majorana
- Approaches
 - LBL experiments: multi purpose (θ_{13} , sign(Δm^2), CPV, θ_{23} , Δm_{23}^2)
 - Reactor-based v_e disappearance: single purpose (θ_{13}), complementary

Goals of T2K

- Confirmation of $\nu_{\mu} {\rightarrow} \nu_{\tau}$ using NC events

Yury Kudenko INR-Moscow

Neutrino BeamLine

Yury Kudenko INR-Moscow

Target Station

Horn1 Installation

Installation succeeded January 2009

T2K Target

ND280

Neutrino Facility related with ND280

JPARC milestones and timeline

LINAC fully commissioned 181 MeV achieved in January 2007

3 GeV syncrotron (RCS)

3GeV acceleration and extraction in October 2007

Main Ring

first acceleration of 30 GeV beam December 2008

Extration to neutrino beam line April 2009

30 GeV 0.1% Intensity (single bunch) Bunch width: ~10ns < "Full beam" width (58ns) Only 1st horn

Near Detectors at 280m

Photosensor issue

INGRID

Scintillator detectors with WLS fibers

- Individual fiber readout
 - FGD, POD, Ecal, SMRD, INGRID: ~ 60000 readout channels
- Limited space for photosensors
- Magnetic field

T2K decision in 2004: ND280m baseline photosensor -Multi-pixel Geiger mode avalanche photodiode

T2K photosensor

R&D for 3 years with 2 options: MRS APD (CPTA, Moscow) MPPC (Hamamatsu, Japan)

HPK311-53-1A-002-1

T2K photosensor: MPPC

Hamamatsu MPPC: active area 1.3×1.3 mm²

Number of pixels	667
Pixel size	50×50 μm
Gain	0.5×10 ⁶
PDE at 525 nm	30-35%
Dark rate, th = $0.5 \text{ p.e.},22C$	<500 kHz
Pulse width	<100 ns
Cross-talk	10-20%
After pulses	10-20%

Mass production started to be completed Yury Kudenko

60 k devices Feb 2008 Feb 2009 INR-Moscow

On-Axis Neutrino Monitor (INGRID)

- Monitor the neutrino beam
 - Direction
 - **Profile**
 - Intensity (& Energy)
- Iron-Scintillator sandwich detector: 16 modules
- Each module consists of
 - 10 Iron layers
 - 11 layers of extruded scintillator strips 1x5x100 cm³
 - 4 side veto planes
 - WLS fibers, Kuraray Y11
 - **MPPC photosensor**

Yury Kudenko

INGRID

•228 scintillator planes are built•9592 channels are tested.

- The first INGRID module will be installed in March 2009 and ready for beam in April
- 15 modules will be installed by Summer 2009

ND280m off-axis detector

Refurbished UA1/NOMAD magnet

0.2 T inner volume: 3.5×3.6×7.0 m³ **Pi-Zero (POD)**

Optimized for π^0 from NC Measure v_e contamination

Tracker (2FGD + 3 TPC)

Optimized for CC studies Measure v beam flux, E spectrum, charged particle momenta, particle ID

ECAL

Photon detection from π^0 in POD and tracker Side Muon Range Detector

Measure momentum for lateral muons Provide trigger on cosmic rays

UA1/NOMAD magnet

Total weight about 1 kt Field 0.2T Being shipped from CERN to Japan Installed in ND280 pit in 2008

16 C-shape yokes

4 coils

Instrumented with scintillators

Yury Kudenko INR-Moscow

POD scintillator test

Requirement driven by shower reconstruction efficiency L.Y. > 5 p.e./MeV at far end

cosmic ray muons

Assembly Table

Glued PØDule next step, insert fibers

Dry Assembly

Yury Kudenko INR-Moscow

Gluing

Completed Ecal S-P0D with 7 P0Dules and 7 lead radiators

Tracker: mechanical design

The tracker is supported by a basket within the UA1 magnet

FGD

- Plastic FGD: 15 XY modules (30 layers thick).
- Water FGD: 7 XY modules alternate with 6 water layers (2.5cm thick)

x-y plane

Yury Kudenko INR-Moscow

TPC

gas time projection chamber modules (TPC)

 σ (p)/p < 10 % at 1 GeV/c dE/dx capability: separate e from

MicroMegas

Bulk MicroMegas technology gas amplification 12 modules (34 cm x 36 cm) on each TPC endplate

72 modules needed for 3 TPCs
48 MM modules produced
12 MM mounted on TPC #0 in November'08
12 more modules will complete TPC #0
in February 09

MicroMegas production started in early 2008 \rightarrow 8 per month. Complete 84 by May 2009.

TPC and FGD tests at TRIUMF

Tracker performance

e/μ separation

$\sim 5\sigma$ separattion between muons and electrons for momenta > 200 Mev/c

TPC+FGD

stopping track with decay electron

Tracking

Typical CCQE event in tracker

 $v_{\mu} + n \rightarrow \mu^{-} + p$

CCQE efficiency vs true neutrino energy $\int_{0}^{0} \int_{0}^{0} \frac{PRELIMINARY}{e^{0}} + \frac{1}{e^{+}} +$

ECAL functions:

 π^0 reconstruction around tracker charged particle identification energy catcher around POD incoming activity veto

- Ecal around tracker
 - 6 sci layers 5 Pb layers (4.5X₀) 20 cm wide sci slabs
- Ecal around POD
 - 32 sci layers
 - 31 Pb layers, 1.75 mm each (~10X₀) 4cm wide sci slabs
 - crossed geometry
- Downstream ECAL
 37 Pb/38 sci (~12X₀)
 crossed geometry
- Readout

WLS fibers MPPC's ~20k devices

Scintillator bar

2x2 m² DS Ecal prototype

DS-ECAL (10-11/08, Lancaster)

cabling

power distribution

completed

Support frame

SMRD

Magnet yoke: SMRD: 31.5 A R29 B + R29 30 167 107 30 31.5 15 875 Scintillator thickness is 7.1 mm Groove depth is 2.5 mm A-A

17 mm air gaps between iron plates SMRD:

3-6 layers of the gaps instrumented with scintillator counters about 2000 counters S-type configuration for fiber readout both-end readout using MPPC's

Scintillator counters

Length = 87 cm Width = 17 cm Thickmess = 7 mm S-shape grooves WLS fiber Y11

Both-end MPPC readout

SMRD detectors

Y11 fibers embedded and glued

stainless steel container

Preparation of S-grooves

Ready for shipment

Test of SMRD counters

I.y. (sum of 2 ends) = 58 p.e./MIP

MIP detection efficiency	> 99.9%
Spatial resolution	~ 7 cm

Quality Assurance

1000 counters delivery to JPARC in Oct 2008 1130 will be completed in February 2009 \rightarrow shipment to JPARC March 2009

Cosmic muon test: I.y. in center of counter sum of both ends

Physics run

Data taking start December 2009

100kW, 30 GeV, 107 sec

 $\nu_{\mu} \rightarrow \nu_{e}$ 3.7 events at CHOOZ limit background 0.25 (ν_{μ} NC) 0.39 (beam ν_{e})

$\nu_{\mu} \rightarrow \nu_{\mu}$	(FCFV μ -lik	parameters	
	null oscillation	oscillation	
All	183.2	64.4	sin²2θ ₂₃ = 1.0
CCQE	118.0	22.9	$\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$
CC non-QE	58.7	35.1	L = 295 km
NC	6.5	6.5	

T2K is expected to provide very exiting physics primary goal: discovery of $v_{\mu} \rightarrow v_{e}$

Main features: off-axis intensive v_{μ} beam from JPARC, SuperK and ND280m Complex

Neutrino beam April 2009 muon monitor and INGRID (1 module) will be ready for neutrino beam commissioning

ND280m (off-axis) Summer 2009 installation in UA1 magnet

Physics runDecember 2009ND280m starts data taking
for oscillation and non-oscillation physics