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ABSTRACT

The calculations of the spectrum of vibrational-rotational bound states and new metastable states of the
beryllium dimer in ground X12g+ state important for laser spectroscopy are presented. The problem is
solved using the potential energy curves from [A.V. Mitin, Chem. Phys. Lett. 682, 30 (2017)] and [M. Lesiuk
et al, Chem. Theory Comput. 15, 2470 (2019)], and the authors’ software package that implements the
iteration Newton method and the high-accuracy finite element method. The efficiency of the proposed
approach is demonstrated by the upper and lower estimates of the spectrum of vibrational-rotational
bound states and, for the first time, rotational-vibrational metastable states with complex-valued energy
eigenvalues (with negative imaginary parts of the order of (1072° = 6) cm~") in the beryllium dimer. The
existence of these metastable states is confirmed by calculating the corresponding scattering states with
real-values resonance energies.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decade, theoretical studies [1-6] have shown
twelve vibrational bound states in the beryllium dimer, whereas 11
states were extracted from the experimental data of laser pump-
probe spectroscopy (see Fig. 1 in Ref. [7]). Earlier [8] we started to
study the vibration-rotation spectrum of the beryllium dimer. We
solved the boundary value problem (BVP) for the second-order or-
dinary differential equation with potential energy curve (PEC) nu-
merically tabulated on a non-uniform grid in a finite interval of the
independent variable values [4]. To formulate the BVP on a semi-
axis, the PEC should be continued beyond the finite interval using
the additional information about the interaction of atoms compris-
ing the diatomic molecule at large interatomic distances. The dom-
inant term of the PEC at large distances is given by the van der
Waals interaction, inversely proportional to the sixth power of the
independent variable with the constant, determined from theory
[9,10]. Proceeding in this way we faced a problem how to match
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the asymptotic expansion of the PEC with its tabulated numerical
values (within the accuracy of their calculation) at a suitable suf-
ficiently large distance and calculate correctly the required sets of
bound and metastable states [11].

In the present paper we continue studying these problems.
We recall the results of the spectrum of the vibrational-rotational
bound states and present the improved calculations of the spec-
trum of the rotational-vibrational metastable states of the beryl-
lium dimer having complex-valued eigenenergies. The existence of
these metastable states is confirmed by calculation of the corre-
sponding scattering states with real values of the resonance en-
ergies. High-precision theoretical upper and lower estimates are
of significant importance for further experiments in laser spec-
troscopy of the beryllium dimer. It is also important for modeling
of a near-surface diffusion of the beryllium dimers [12] in connec-
tion with the well-known multifunctional use of beryllium alloys
in modern technologies of the electronic, space and nuclear indus-
tries [13], and, in particular, the ITER project [14]. The adaptation
of technique for solving the above class of eigenvalue, metastable
and scattering problems for the second order ordinary differential
equations using the programs ODPEVP [15], KANTBP|16-18], and
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Fig. 1. (a) Potential V (r) (A~2.) of the beryllium dimer as a function of r (A) obtained by interpolating the tabulated values [4] (points in the subintervals, the boundaries of
which are shown by larger-size circles) by fifth-order LIPs. (b) MEMO potential V(r) (points and line 1 [4]), the asymptotic expansion Vis(r) of MEMO function (line 2, [9]),
the analytical forms of the potential function V,,(r) (line 3 [10] and line 4 [6] and line 5 [5]). r is given in A, V,(r) in cm~1.

KANTBP 5M[19], i.e., the upgraded version of KANTBP 4M [20], im-
plementing the finite element method (FEM) [21,22] in Fortran and
Maple, respectively, is also a subject of the present study.

The paper has the following structure. Section 2 describes the
procedure of approximation of PEC and its extension on large in-
terval by means of the matching procedure using Hermite inter-
polation polynomials (HIPs). In Section 3 we present the results
of calculating the spectrum of vibrational-rotational bound states
of the beryllium dimer. Section 4 demonstrates the calculation of
the spectrum of rotational-vibrational metastable states with com-
plex values of eigenenergy of the beryllium dimer. In section 5 we
present examples of scattering states at resonance energies that
confirm the existence of the typical metastable states under con-
sideration. In Conclusion we discuss further applications of the
elaborated method and results.

2. The potential energy curves and its extension on a large
interval

In quantum chemical calculations, the PEC of interatomic in-
teraction are presented in the form of numerical tables calcu-
lated with limited accuracy and defined on a nonuniform mesh of
nodes in a finite domain of interatomic distance variation. How-
ever, for a number of diatomic molecules the asymptotic expres-
sions for the PEC are calculated analytically for sufficiently large
distances between the atoms. The Schrédinger equation for a di-
atomic molecule in the adiabatic approximation (in which the di-
agonal nonadiabatic correction is not taken into account), com-
monly referred to as Born-Oppenheimer (BO) approximation, has
the form

h? 1d,d
(_ZmDaA'2<1’2drr dr>+VL(r)—E> ®,(r)=0, 0

R L(L+1)
omDaA” T

where L is the total angular momentum quantum number,
h2/(2Da)=1.685762920-10-7 A, the reduced mass of beryllium
molecule is m=M/2=4.506, r is expressed in A, Da = 9.10938356 -
10-31kg= 931.494061MeV is the dalton (atomic mass unit) [23], E
is the energy in cm~! and V(r) is PEC in cm~! at L = 0. The BVP
for Eq. (1) was solved in the following units: the variable r is ex-
pressed in (A), the PEC U(r) = (2mDaA2/h?)V(r) in A-2, and the
desired value of energy £=(2mDaA?/h?)E in A=2, i.e. E=s,€ cm~!
and V(r)=s,U(r) cm~!, where s, = 1/0.2672973729 is the conver-
sion factor from A=2 to cm~1.

Vi(r) =V(r)+

5

In Ref. [4] the potential V(r) (in cm~1) (see Fig. 1) is given by
the BO potential function marked as the modified expanded Morse
oscillator (MEMO) tabular values {VM(r;)}7, in interval r e [ry =
1.5, 176 = 48]A. These tabular values were chosen to provide bet-
ter approximation of the potential V(r) by the fifth-order Lagrange
interpolation polynomials (LIPs) of the variable r in subintervals
r € [rsg_4.Tsge1], k=1,...,15. Indeed, one can see that Fig. 1a dis-
plays a smooth approximation till r49 = 12, where the approximate
PEC coincides with and crosses the asymptotic potential VEO (r) =
5,UBO(r) given analytically by the expansions [9]

U (n=s1V2(r), V2 (r)=— (2142 5+10230Z8+504300Z1°),
(2)

where s; = 58664.99239 is the conversion factor from aue to A=2,
Z =r/s3 and s3 = 0.52917 is Bohr radius in A. This fact allows con-
sidering the interval r € [rpach > 12, 00) as possible for using the
asymptotic potential VEO(r) at large r and executing conventional
calculations based on tabular values of V(r) in the finite inter-
val r e [rq,r=12] (see also [6]). However, the above MEMO tab-
ular values have been calculated in the unusually larger interval
r e [ry,r=48] using special composite basis functions in different
subintervals, taking into account both polarization and relativistic
corrections by the Douglas-Kroll-Hess method [24-26], and the ex-
trapolation to the infinite basis set [27] marked as DK-MRCI in the
subinterval r € [r = 12,1 = 48] [2].

We note that the MEMO tabular values for re{ry =
6.5, ..., 148 = 11} are smaller than the asymptotic ones by 5.5 -+ 6%,
for r =r5; = 14 exceed the asymptotic ones by 8%, and beyond
the interval r € [r49 = 6.0, ..., 5, = 15] the difference is more than
10%. Based on this fact, in Ref. [11] we considered three cases of
approximation of this potential function in the extended interval
marked by the key K = -1, -3 or —4.

Here we use only the key K = —1, the potential V (r) in subin-
tervals 1€ [rsp_g,T5p1), k=1,..., 9 was approximated by the
fifth-order Lagrange interpolation polynomials (LIPs) of the vari-
able r in the interval r € [ry, 46 = 14]. In subinterval r € [re = 146 =
9, I'match = 14] we consider the approximation of the potential V (r)
by the fourth-order HIPs using the values of the potential V(r)
at the points r = {re = 146 = 9,147 = 10, 1743 = 11} and the values of
the asymptotic potential Vas(r) and its derivative dV,s(r)/dr at the
point 1 = rpach = 14. In the 1 € [ryan = 14, 00) the potential V(1)
is approximated by the asymptotic expansion (2). This approxima-
tion has been accepted in our paper [8].

In Ref. [6] the potential V(r) (in cm~!) (see Fig. 1) is given
by the BO potential function plus relativistic potential function
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Comparison of the vibrational spectra E;_q ;g — Ey;—o (in cm~) for the X! %7 state of the beryllium dimer:
the eigenvalues of vibrational energy —E,;_o (in cm~1) of the beryllium dimer calculated by the KANTBP
4M [20] and ODPEVP [15] programs implementing FEM (FEM(MEMO)) using FEM approximation of PEC
MEMO from [4] and FEM(STO) using FEM approximation of PEC STO from Lesiuk et al. [6], theoretical
(EMO) and experimental (Exp) results [7], combined ab initio [2] and EMO calculations tabulated as mod-
ified EMO (MEMO) [4], symmetry-adapted perturbation theory (SAPT) [1], the Morse-long range (MLR)
function and Chebyshev polynomial expansion (CPE) [5], the ab initio potential CV+F+R calculated in [3]
and Slater-type orbitals (STO) [6]; D, is the well depth and Dy = E,_g;—o is the dissociation energy in
cm~!, . is the equilibrium internuclear distance in A, rms is root-mean-square discrepancy between the
theoretical and experimental data.

FEM FEM MLR CV+
v STO STO MEMO MEMO  EMO Exp SAPT CPE F+R
Te 24344 2447 24534 24534 24535  2.4536 2443 2445 2.4436
De 934.6 9344 929804 929.74  929.74  929.7+2 9387 9348 935410
Do 807.7 807.7  806.07 806.48  806.5 807.4 8124  808.15 808.3
1 2234 2235 22250 22216 2227 222.6 2223 22291 222.7
2 400.1 398.2 397.34 397.6 397.8 397.1 3976 39741 396.8
3 517.3 5193  517.71 517.87 5182 518.1 5203 51841 517.8
4 595.1 595.7  594.89 595.06 595.4 594.8 5979  595.08 594.7
5 651.7 652.2  651.91 652.10 6524 651.5 655.1 651.79  651.6
6 698.7 699.3  698.92 699.14  699.4 698.8 702.6  699.03  698.9
7 738.0 738.1 737.72 737.97 7382 737.7 7417 73797 738.0
8 769.3 768.6  768.27 768.56  768.8 768.2 7724 76850  768.6
9 790.1 790.1 789.74 790.05  790.7 789.9 7943  790.17  790.4
10 802.6 802.6  801.66 802.08  803.4 802.6 807.1 802.83  803.1
11 807.5 807.2  805.74 806.21 8119 807.53 8079
rms 1.0 0.7 0.4 0.4 0.6 34 0.3 0.3

marked as STO tabular values {VM(Z)}?8 in interval Z e [Z; =
3.75,Z53 = 25] a.u. which corresponds to re[r; =1.9843,ry5 =
13.229] A. One can see that these tabular values were chosen to
provide the best approximation of the potential V (r) by the fourth-
order LIPs of the variable r in subintervals r € [rg_3, Tgp41]. k=
1,..., 6. On interval Z € [Zy5, Ziatch = 27.5] a.u. we consider the
approximation of the potential V(r) by the fifth-order HIP using
the values of the potential V(Z) at the points r = {ry5 = 17.5, 156 =
20.0, 97 = 22.5, 158 = 25.0}a.u. and the values of the asymptotic
potential Vis(r) and its derivative dVas(V)/dZ = s3dVas(r)/dr at the
point Z = Zy i = 27.5 a.u.. In the r € [y = 14.552, 00) A the
potential V,s(r) = soUas(r) is approximated by the asymptotic ex-
pansion

Uas (N=s1Vas (1), Vas(N=V0(r) + Vs (n). Vs () =— (3)
(1.839-107%27+0.119442°+19.5822-8-1323.527%),

where VB (r) and VI¢(r) are given by (2) and [6], respectively. Us-
ing similar behaviour MEMO and STO potential functions on the
interval r e [12, 14]A one can use also (3) for matching MEMO po-
tential in interval r € [14, co)A, because of it was calculated by DK-
MRCI method.

For comparison we show in Fig. 1 the potential function V(r),
its asymptotic expansion V,s(r) and the analytical potential func-
tions Vg (r) in a.u. (converted into cm~!), proposed in Ref. [10].
The MEMO potential function V(r) has a minimum —D.(FEM) =
V(Re) = —929.804 cm~! at the equilibrium point Re = 2.4534 A,
which is higher than the analytical potential function Vg, (r) in the
vicinity of this point, —D.(Sheng) = Van(Re) = —948.3 cm~!. On
the contrary, in the interval r € (3.2,6.1) the analytical potential
function V,q (1) is greater than V (r). For r € (2.3, 12) the MEMO po-
tential slightly exceeds the STO one, which, in turn, is a bit higher
than the MLR&CPE potential. Thus, using the accepted approxima-
tion with the key K = —1 we have the potential function V(r) in
the analytical form in interval re(1.9, 14) and its smooth continu-
ation at r > 14 by means of the asymptotic expression (2).

The MAPLE and FORTRAN programs of approximation of the
MEMO [4] and STO [6] potential functions V;(r) are given in the
supplementary material.

3. Bound states of the beryllium dimer

For calculation of the vibrational-rotational spectrum of the
real-valued eigenenergies E,; and corresponding eigenfunctions
®,,; (r) of the bound states of the beryllium dimer we solved the
BVP for Eq. (1) using the FEM programs KANTBP 4M and ODPEVP
on the finite element mesh Q; = { 1.90, 1.95, 2.00, 2.07, 2.15, 2.22,
2.30, 2.36, 2.42, 2,50 (0.1) 4 (0.2) 6 (0.5) 14 (2) 44} with the
second-type or Neumann boundary conditions (BCs) on the bound-
ary points of the mesh. In each of the subintervals (except the last
one) the potential V(r) was approximated by a LIP of the fifth or-
der. In the BVP solution at all finite elements of the mesh the local
functions were represented by fifth-order HIPs.

Table 1 presents the results of using FEM programs KANTBP 4M
and ODPEVP to calculate 12 energy eigenvalues of the beryllium
dimer. It shows the eigenvalues calculated with the ab initio mod-
ified expanded Morse oscillator (MEMO) potential function [4] and
the corresponding FEM approximation. In contrast to the original
EMO function, which was used to describe the experimental (Exp)
vibrational levels [7], it has not only the correct dissociation en-
ergy, but also describes all twelve vibrational energy levels with
the RMS error less than 0.4 cm~!. The table also shows the re-
sults of recent calculation using the Morse long-range (MLR) func-
tion and Chebyshev polynomial expansion (CPE) alongside with the
EMO potential function [5], and CV+F+R potential function [3] dis-
cussed early in [2]. Similar results were obtained by Lesiuk et al.
[6]. Their PEC lie below the MEMO one and also include the cor-
rect long-range behavior displayed in Fig. 1. As a consequence, one
can see from the Table 1, that the corresponding results provide a
lower estimate whereas FEM and MEMO results give an upper es-
timate for the discrete spectrum of the beryllium dimer at both
L=0 and L > 0. One can see also that the FEM (STO) eigenener-
gies calculated by using the above mentioned FEM approximation
of the tabulated PEC STO gives smaller RMS error 0.7 cm~! in com-
parison with RMS error 1.0 cm~! of the STO eigenenergies calcu-
lated by using the analytical fit PEC STO [6].

The potential functions FEM (MEMO) and FEM (STO) V(1) from
L=0 to L=36 support 37+33+30+28+26+24+21+18+
14+11+7+3=252 and 37+33+30+28+26+24+21+18 +
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vibrational-rotational bound states —E,; (in cm~') of the beryllium dimer. For each L in upper line MEMO and

in lower line STO with relativistic corrections.

L v=0 1 2 3 4 5 6 7 8 9 10 1

0 806.0 583.5 408.7 2883 211.1 154.1 107.1 683 378 163 44 03

0 807.7 5841 4094 2883 2119 1554 1083 695 390 175 50 04

1 804.8 5824  407.7 2875 2104 1535 1066 67.8 374 160 42 02

1 806.5 583.0 4084 2875 2112 1548 1077 69.0 386 172 48 03

2 8024 580.1 405.7 2858 2090 1523 1055 669 366 154 38 0.1

2 8040 580.8 4064 2858 2098 1535 106.7 68.1 378 166 44 0.1

3 798.7 576.7 402.6 2832 2069 1504 103.8 655 354 145 3.2

3 8004 5774 4035 2833 2077 151.7 105.1 66.7 367 157 3.8

4 793.9 5722 3986 2798 204.1 148.0 101.7 636 338 133 24

4 795.5 573.0 3995 2799 2049 1493 1029 648 35.1 145 3.0

5 787.8 566.5 3936 2756 2005 1449 99.0 612 318 118 1.5

5 789.5 5674 3945 2758 2015 1463 1002 625 332 13.0 2.1

6 780.5 559.7 3875 2706 1963 1412 957 584 295 100 0.5

6 782.2 560.7 3886 2708 1973 1426 97.0 59.7 309 112 1.0

7 772.1 551.8 380.5 2647 1914 137.0 92.0 552 268 8.1

7 773.7 5529 3817 2650 1925 1384 933 56.5 282 92

8 7624 5428 3725 2580 1859 1321 877 515 238 59

8 764.1 5440 3738 2584 187.0 133.6 89.1 529 252 70

9 7515 5327 3635 2505 179.7 126.7 83.0 474 205 35

9 753.2 5340 3649 251.0 1809 1283 844 488 219 46

10 7394 5214 3536 2422 1728 1207 777 429 168 1.0

10 7411 5229 355.1 2428 1742 1224 792 443 183 2.0

11 726.2 509.1 3426 2332 1653 1142 720 38.0 129

11 7279 5107 3444 2339 1668 1159 736 395 144

12 7117 4956 3308 2234 157.2 107.1 65.8 328 87

12 7134 4974 3327 2243 1588 1089 674 343 10.2

13 696.0 481.1 318.0 2129 1485 995 59.2 271 44

13 697.8 4831  320.1 2139 1502 1014 609 28.7 59

14 6792 4655 3043 2017 1392 914 52.2 21.2

14 6810 467.7 3066 2028 141.0 934 53.9 229 14

15 6612 4488 289.7 189.8 1293 828 44.7 15.0

15 663.0 4512 2922 191.1 1313 848 46.5 16.7

16  642.1 4310 2742 1773 1189 738 36.9 8.5

16 6438 4337 2769 1787 1211 75.9 38.8 10.3

17 621.8 4122 2579 1642 108.0 643 28.7 1.9

17 6235 415.1 2608 1658 1103  66.5 30.7 3.7

18 6003 3924 2407 1504 96.6 54.4 20.3

18 602.1 3955 2438 1522  99.0 56.6 223
Fig. 2. (a) Potential functions V,(r) at L=0,4,8,...,56. (b) Eigenenergies E,; of vibrational-rotational bound states (lower panel) and real part REM (lower panel) and
imaginary part —SELMD with negative sign (upper panel) of complex eigenenergies E% = mEﬁf’, + iSEl‘;’/ of rotational-vibrational metastable states. V;(r) at L=0,1,..., 36 and at

L=0,4,8,...,56.

15 + 11 + 7 + 3 = 253 vibrational-rotational energy levels —E,;, re-
spectively, presented in Table 2 and 3. Note, the bound state with
energy Ej_14,-g = —1.44 for PEC STO corresponds to the sharp
metastable state for MEMO PEC with complex energy E{V’=]4_v=8 =
0.083 —13-10"29, Fig. 2b shows also the rotational-vibrational
spectrum E,; = E,, (in cm~') of Be, vs L. These functions V; (r) are
displayed in Fig. 2a at L=0,...,36 with the step 4. One can see

that the potential V;(r) at L=0, L =1 and L = 2 supports 12 vibra-
tional energy levels. Note that the bound states are supported by
the potentials V;(r) at L=0,1,...,36 (see Tables 2, 3 and Fig. 2a),
while the metastable states are supported by the potentials V, (r)
at L= 3,7 8,11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49 (see Tables 4 and 6, and Fig. 2a).
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Table 3
vibrational-rotational bound states —E,; (in cm~1) of the beryllium dimer. For each L in upper line
MEMO and in lower line STO with relativistic corrections. Continuation of Table 2.

L v=0 1 2 3 4 5 6 7 8 9 10 1

19 5777 3715 2228 1362 848 44.1 11.5
19 5794 3749 2260 1382 873 464 136
20 5539 3497 2040 1215 725 335 26
20 5557 3533 2075 1237 752 359 48
21 529.1 3268 1846 1063  59.8 225

21 530.8 330.7 188.2 108.7 626  25.0

22 503.1 303.0 1644 908 468 114

22 5049 307.2 168.2 934 49.7 139

23 476.0 2782 1436 749 334 0.01

23 4778 2827 1476 778 364 25

24 4478 2525 1223 588 19.8

24 4496 2572 1264 619 22.9

25 4185 2259 1004 425 59

25 4203 2309 1047 458 9.1

26 388.2 1984  78.2 26.0

26 3900 203.7 825 29.6

27  356.7 170.1 55.7 9.5

27 3586 1756 60.1 133

28 3243 1409 331

28  326.1 146.7 375

29 2908 111.0 107

29 2927 117.0 149

30 2563 804

30 2582 86.6

31 2208 491

31 2227 556

32 1844 172

32 1863 239

33 1469
33 1489
34 108.6
34 1106
35 693
35 714
36 29.2
36 313
Table 4

The rotational-vibrational metastable states EM = 9tEM +13EM (in cm~') of Be,, where “eps” means
that —10~% < SEM < 0 (in cm~"). From left to right MEMO and STO with relativistic corrections. V;mi»
and V™ are minimal and maximum values of potentials V,(r) (in cm~!) at different values L of the
total angular momentum.

L v  MEMO STO MEMO STO
V/min ymax - ymin vmax - RE —3E RE —3E

0 -929.74 000  -93439 0.00
1 -92849  0.01 -933.15  0.03
2 -926.00 004  -93066 0.10
3 11 -92226 012  -92692 021 0.092  0.014
4 -917.27 022  -921.93 035
5 -911.04 042  -91570 052
6 -903.59  0.71 -908.22  0.74
7 10 89494 111 -899.49 1.09 0504  55e-4 0972  5.6e-3
8 10 -88505 1.62  -889.52 157  1.508  0.078 2315  0.149
9 10 -87392 224  -87830 218 3.781 0.499
10 -861.56 3.00  -865.92 292
11 9  -84796 392  -85232 392 1554  eps 0.783  eps
129  -83312 502  -83749 504 4050 0031 3592  le-3
13 9  -817.04 627  -82141 627 6.371 0.543
14 8  -79973 773 80410 764 0083  eps
14 9  -79973 773  -804.10 7.64 9.121  0.295
15 8  -78119 939  -78556 9.18 4605  le-5  3.141 eps
15 9 -781.19 939  -78556 9.18 11.957 07940
16 8  -761.44 1126 -76577 1094 8992 0018 7705  5.0e-4
17 8  -74059 1334 -74492 1294 13016 0314 1209 0032
18 7 -71851 1566 -722.84 1519 4788  eps 2917 eps
18 8  -71851 1566 —722.84 15.19 16.16  0.2586
19 7 -69521 1822 -699.54 17.69 11517 14e-4 9637  eps
20 6  -67068 21.05 —67501 2044 17.991 0036 1621  2.2e-3
21 6 —644.93 2415 -649.25 2345 6403  eps 4200  eps
21 7 -64493 2415 -649.25 2345 23915 0482 2233  0.090
22 6 61807 2751 —62246 2673 15497  eps 1326 eps

5

—-590.08 31.24 59448 30.30 24.444 3.7e-3 22220 2.5e-4
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Fig. 3. Plots of real (solid curve) and imaginary (dashed curve) parts of eigenfunctions ®; = Q% (r) of selected metastable states having eigenvalues from the table marked
by L =3, 7,12, 18, 24 and v.

Fig. 4. Plots of real (solid curve) and imaginary (dashed curve) parts of eigenfunctions @, = ®¥(r) of selected metastable states having eigenvalues from the table marked

by L =30, 36, 42, 49 and v.

Fig. 5. Plots of the real (solid) and imaginary (dashed) parts of scattering functions ®; = ®;(r) in the vicinity of the resonance energy E(res) ~ 4.0444958 cm~! at L = 12
(b) and at energies E = E(res) — 0.5 cm~! (a) and E = E(res) + 0.5 cm~! (c).
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Table 5
The rotational-vibrational metastable states EM = EM +13EM (in cm™!) of Be,, where “eps” means that
—1075 < SEM < 0 (in cm™!). Continuation of Table 4

L v MEMO STO MEMO STO
yjmin ymax  ymin vjmax 9E —3E 9 —SE
24 5 -561.68 3518 56528 3417 11484  eps 8.853 eps
24 6 -561.68 3518  —56528 3417 32872 0169 30743  0.037
25 4 -531.76 3958 53487 3836 22998  eps 20324 eps
25 5 53176 3958 53487 3836 40608  1.156 38193  0.722
26 4 50063 4418  —50334 4290  7.996 eps 4773 eps
26 5 50063 4418 50334 4290 34354  14e-3 31.670  13e-4
27 4 -46831 4930  —470.75 47.80 22032  eps 18779 eps
27 5 46831 4930 47075 47.80 45187 0100 42567  0.034
28 3 —43478 5466  —43696 53.00 6963 eps 3.009 eps
28 4 43478 5466  —436.96 53.00 35991  eps 32731 eps
28 5 43478 5466 43696 53.00 55158 0963 52659 0817
29 3 —40025 6057  —40196 5857 23517  eps 19452 eps
29 4 40025 6057  —401.96 5857  49.669  3.0e-4 46445  5.2e-4
30 2 -36462 6691  —401.96 6470 11354  eps 7.180 eps
30 3 36462 6691 36583 6470  40.058  eps 35968  eps
30 4 -36462 6691 36583 6470 62639 0155 59548  0.091
31 2 -327.81 7360 36583 7130 32621  eps 28549  eps
31 3 -327.81 7360 32872 7130 56534  16e-4 52550  1le-5
*31 4 32781 7360  -32872 7130 74625 1305 71651 0818
32 2 -29009 80.68  —29041 7837 52660  eps 48671  eps
32 3 -29009 8068  -29041 7837 72662 0030 68982  0.013
33 1 25121 8821  —250.90 8594 15028  eps 8.238 eps
33 2 -25121 8821  -250.90 8594 71131  2.4e-4
33 3 -25121 8821  -250.90 8594  87.630  0.696
34 1 -21133 8042  -21026 9404  47.644  eps 40779 eps
35 1 17041 10147 —16869 10273 80254  eps 73432 eps
36 1 12847 12402 -12636 12039 111593 0057 105388  7.1e-3

Table 6
The rotational-vibrational metastable states E}M = REM +13EM (in cm™) of Be,, where “eps” means
that =10~ < SEM < 0 (in cm™!). Continuation of Table 5.

L v MEMO STO MEMO STO

V/min Vjmax vmin V/max RE —3E RE —SE
37 0 -8556 147.94 -83.10 14401 11780  eps 9.538 eps
37 1 -8556 147.94 -83.10 14401 143263 3429 135737 3.656
38 0 -4166 173.18 -38.98 16891 53.590  eps 512338 eps
*38 1 —41.66 173.18 3898 16891 174945 4.014  167.103  3.847
39 0 320 199.73  6.08 195.12  96.169  eps 93.6727  eps
40 0 4896 22757  52.06 222,65 139.466  eps 136.795  eps
41 0 9570 256.70  98.87 25152 183406 83e-4 180520  1.2e-3
42 0 14328 287.15 14647 28176 227.880 0.023 224726  0.030
43 0 19172 31891 19487 31339 272755 0.148  269.267 0.173
44 0 24102 35203 24403 34595 317.922 0544 314016 0.621
45 0 29113 38652 29392 37925 363371 1432 358964  1.622
46 0 34201 42241 34447 41344 409200 3.007 403499  5.838
47 0 39359 45974 39560  449.11 450402 6810  445.144 6.238
*48 0 44584 49857 44731  487.86 499.563 5439  489.343  7.245
*49 0 49871 53892 49948 52837 542927 6.046
50 552.15  580.82  552.02  570.61
51 606.00 62452 60478  614.64
52 660.18  670.09  657.53  660.69
53 71445  717.43
54

Fig. 6. Plots of the real (solid) and imaginary (dashed) parts of scattering functions ®; = ®,(r) in the vicinity of resonance energy E(res) ~ 4.78829358850231 cm~! at
L =18 (b) and at energies E = E(res) — 10~ cm~' (a) and E = E(res) + 103 cm™! (c).
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Fig. 7. Phase shifts §; vs scattering energy E counted from E(0) at L =12 (a) and L = 18 (b). Phase shifts § at L = 18 in the vicinity of resonance energy E(res) (c). Here

SE(res) = E — E(res).

Fig. 8. Estimate of scattering length ao in A vs k= +/€ in A-1 and wave function &, = o (r) at k= 0.001A-', L=0.

4. Metastable states of the beryllium dimer

The complex eigenenergies EM = REM +13EM, (in cm™!) of Be,
rotational-vibrational metastable states, where v is the number of
states at fixed value of L, are shown in Tables 4 and 6. Their real
parts ﬂiE% in comparison with the eigenenergies E,; of vibrational-
rotational bound states are displayed in lower panel of Fig. 2b.
Note that the real parts of energies S)tEi‘:’/ of the metastable states
marked by an asterisk in Tables 4 and 6 lie above the top V™ of
the potential barrier Vi (r). The BVP for Eq. (1) was solved by the
FEM programs on the above finite element mesh £2; with mixed
BVPs, i.e. the Neumann BC at the left point r; of the finite inter-
val r € [ry, ™3] and the third-type or Robin BC at the right point
rmax Which is calculated using the corresponding asymptotic solu-
tion <I>%(as) (r) in the form of an outgoing wave [22].

The BVP for Eq. (1) was solved using the FEM programs
KANTBP 5M on the finite element mesh ; = {1.90, 1.95, 2.00,
2.07, 215, 2.22, 230, 2.36, 242, 2.50 (0.1) 4 (y1) 6 (y») 14
(v3) va}, where y; ={0.2,L <44;0.1}, y, ={0.5,L <25;0.25,L <
38;0.1(6), L < 44;0.125}, y3 = 3.1/\/@, Lo = max(L, 9)y4 is the
lowest number of sequence 14 + ny3, n € A" greater than 80, with
the Neumann boundary conditions on the boundary point r = 1.90

and the Robin boundary condition with logarithmic derivative for
@y (kr) = OM (kr)

+ HY (kr
d<1>d(kr) _ROGr) =0, R— +1 d®§(kr) L L(T)L()
r g5 (k) dr T HY (k)

(4)

that followed from asymptotic solution for only the outgoing wave
D (kr) [22]

/2
O (kr) = ﬁ/ HY Ly (kr)
- exp(xi1(kr —mL/2))
Vkr

+0(k™372172). (5)

Here k=kM =./éM= /EM/s; in A-' is the wave num-

ber and EM=s,eM cm™!, HL(l‘lz/)z(r) and HL(l‘;/)z(r) are Hankel

functions [28] (LH17),(2) = (L+ 1/2)H{}7),(2)/z - H{!} ,(2)) and
s, = 1/0.2672973729 is the conversion factor from cm~! to A-2.
The potential functions V;(r) at L=3,7,8,11,12,14,...,49 sup-
ported this set of metastable states. These functions are plotted in
Fig.2aatL=38,..., 56 with the step 4.

For L > 0 the potential functions at large r decrease proportion-
ally to r~2 and at L <38 have the form of a potential well with
a minimum below the dissociation threshold Dy, while at L > 38
the potential well has a minimum above the dissociation thresh-
old. The height of the centrifugal barrier increases with increas-
ing L, but its width at the dissociation threshold energy is infi-
nite. With increasing energy, the effective width of the barrier de-
creases. The number of metastable states §v at L <38 is deter-
mined by the number of positive-energy states in the potential
well with the barrier with the height V™ taken into account, i.e.,
in the well with the potential V;* = {V(r). T < rmax: Vmax. T > 'max}-
For small L < 16 the barrier height V/™** counted from the zero en-
ergy is smaller than the energy difference between two upper lev-
els of metastable states. This means that even one metastable state
can exist not for all values of L. With the growth of L to L =33
the barrier height increases, but the width of the well changes
insignificantly. As a result, the number of metastable states in-
creases to three. With further increase in L, when in the inter-
val r € (3.5, 6) the slope of centrifugal potential exceeds the slope
of MEMO potential, the well width rapidly decreases, so that only
two states can exist in the well, a bound state and a metastable
one at L =34,35,36 and two metastable states at L = 37,38. At
L > 39 the potential well minimum turns to be above the disso-
ciation threshold and the effective barrier width, the width and
depth of the well decrease. Only one state exists in the well,
its width increasing with the growth of L. At L > 49 there are
no energy levels in the well, and at L > 54 the potential well
disappears.
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As can be seen from Tables 2, 4 and 6 and Figs. 3-4, the eigen-
functions of metastable states with complex energy values for a
fixed value of the orbital momentum L have an increasing num-
ber of nodes localized inside the potential well. Beginning from
each lower state above the dissociation threshold, they have one
node more than the last bound state with real energy under the
dissociation threshold (E = 0) with the same value of the orbital
momentum L. Thus, there is a continuation of the upper and lower
estimates of the real energy eigenvalues E;, = RE, to the complex
plane EM = %EM +13EM | labelled by the number of nodes of eigen-
functions localized inside the potential well, for each value of the
orbital moment L.

5. Scattering states of the beryllium dimer

The scattering problem for Eq. (1) at real-valued E >
0 in cm~! was solved using the FEM programs KANTBP
5M on the finite element mesh ;= {1.90, 195, 2.00, 2.07,
215, 2.22, 230, 2.36, 242, 2.50 (0.1) 4 (y1) 6(y2) 14 (y3)
va}, where y;={0.2,E <360;0.1}, y5 ={0.5E <35;0.25,E <
148;0.1(6). E < 320; 0.125}, y3 = 2.9/+E, y, is the lowest number
of sequence 14 + ny3, n e N greater than 80. The eigenfunctions
@, (kr) of the scattering states are subjected the Neumann bound-
ary conditions (BCs) on the boundary point r = r,;; = 1.90 and the
Robin boundary condition formulated by the following relations:

L

dq)é,(,kr) _ dd:'tzjsr(kr)’ L (kr) = DL, (kr), 6)
at r = rmax using the asymptotic form “incident wave + outgoing
wave” [28]

®L(r) = %(@a‘s (kr) + @ (kr)SL(E)). (7)

Here S;(E) = exp(215,(E)) is the partial scattering matrix, and
®Z (kr) are given by formula (4) at real-valued k = & > 0 in A-1.

Plots of the real (solid) and imaginary (dashed) parts of scatter-
ing functions in the vicinity of the resonance energy for the nar-
row resonance at L =12 and very narrow resonance at L = 18 are
shown in Figs. 5 and 6. One can see that the resonant scattering
functions are localized in the potential well, which is no longer
observed with a minor change in the energy of the incident wave.
As can be seen from Tables 4 and 6, the energies of resonant states
coincide with the real parts of the energies of metastable states. In
Fig. 7 the phase shifts § vs the scattering energy E are shown, as
expected, the phase shifts take the value § = 77 /2 for resonant en-
ergies and change rapidly in their vicinity. For rough estimation of
scattering length ag of the scattering state at k — 0 one can apply
the formula

tando(k) _dBO(k)

~ o So(kit1) —8o(ki_1)
k dk

k—0 ki1 — ki1 ki—0

s

ap= — lim
k—0

where k=' = ,/1/¢ in Aand € in A=2 are accepted in our calcu-

lations. The calculated plot —% ~ ag presented in Fig. 8 gives

us an estimate for ag ~ 3.348 A. For example, a plot of the corre-
sponding wave function is shown at k = 0.001A1.

6. Conclusion

The efficacy of the applied approach and programs is demon-
strated by the upper and lower estimates of twelve eigenenergies of
the vibrational bound states of the beryllium dimer with the re-
quired accuracy in comparison with those known from literature,
as well as the vibrational-rotational spectrum bound states and
rotational-vibrational spectrum of narrow-band metastable states
with complex valued eigenenergies.

Journal of Quantitative Spectroscopy & Radiative Transfer 262 (2021) 107529

We believe that these results can serve as a guide for future
high-precision laser spectroscopy of weakly-bound, metastable and
scattering states of the beryllium dimer. Laser spectroscopy of such
objects offers unique opportunities for clarifying the nature of elec-
tron correlation bonding in molecules that could not exist in the
standard chemical bond theory based on the Hartree-Fock self-
consistent field approximation.

The presented approach and KANTBP 5M program [19] pro-
vide a useful tool for further study of approximations of the tab-
ulated potential function in a finite interval and its extension be-
yond this interval using asymptotic expansions and its matching
via interpolation Hermite polynomials, and modeling calculations
of the weakly bound states with eigenenergies close to the dissoci-
ation threshold and processes of near-surface diffusion of diatomic
molecules [12].
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