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a b s t r a c t 

The calculations of the spectrum of vibrational-rotational bound states and new metastable states of the 

beryllium dimer in ground X 1 �+ 
g state important for laser spectroscopy are presented. The problem is 

solved using the potential energy curves from [A.V. Mitin, Chem. Phys. Lett. 682, 30 (2017)] and [M. Lesiuk 

et al, Chem. Theory Comput. 15, 2470 (2019)], and the authors’ software package that implements the 

iteration Newton method and the high-accuracy finite element method. The efficiency of the proposed 

approach is demonstrated by the upper and lower estimates of the spectrum of vibrational-rotational 

bound states and, for the first time, rotational-vibrational metastable states with complex-valued energy 

eigenvalues (with negative imaginary parts of the order of ( 10 −20 ÷ 6 ) cm 

−1 ) in the beryllium dimer. The 

existence of these metastable states is confirmed by calculating the corresponding scattering states with 

real-values resonance energies. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

During the last decade, theoretical studies [1–6] have shown 

welve vibrational bound states in the beryllium dimer, whereas 11 

tates were extracted from the experimental data of laser pump- 

robe spectroscopy (see Fig. 1 in Ref. [7] ). Earlier [8] we started to

tudy the vibration-rotation spectrum of the beryllium dimer. We 

olved the boundary value problem (BVP) for the second-order or- 

inary differential equation with potential energy curve (PEC) nu- 

erically tabulated on a non-uniform grid in a finite interval of the 

ndependent variable values [4] . To formulate the BVP on a semi- 

xis, the PEC should be continued beyond the finite interval using 

he additional information about the interaction of atoms compris- 

ng the diatomic molecule at large interatomic distances. The dom- 

nant term of the PEC at large distances is given by the van der 

aals interaction, inversely proportional to the sixth power of the 

ndependent variable with the constant, determined from theory 

9,10] . Proceeding in this way we faced a problem how to match 
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022-4073/© 2021 Elsevier Ltd. All rights reserved. 
he asymptotic expansion of the PEC with its tabulated numerical 

alues (within the accuracy of their calculation) at a suitable suf- 

ciently large distance and calculate correctly the required sets of 

ound and metastable states [11] . 

In the present paper we continue studying these problems. 

e recall the results of the spectrum of the vibrational-rotational 

ound states and present the improved calculations of the spec- 

rum of the rotational-vibrational metastable states of the beryl- 

ium dimer having complex-valued eigenenergies. The existence of 

hese metastable states is confirmed by calculation of the corre- 

ponding scattering states with real values of the resonance en- 

rgies. High-precision theoretical upper and lower estimates are 

f significant importance for further experiments in laser spec- 

roscopy of the beryllium dimer. It is also important for modeling 

f a near-surface diffusion of the beryllium dimers [12] in connec- 

ion with the well-known multifunctional use of beryllium alloys 

n modern technologies of the electronic, space and nuclear indus- 

ries [13] , and, in particular, the ITER project [14] . The adaptation 

f technique for solving the above class of eigenvalue, metastable 

nd scattering problems for the second order ordinary differential 

quations using the programs ODPEVP [15] , KANTBP [16–18] , and 
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http://www.elsevier.com/locate/jqsrt
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Fig. 1. (a) Potential V (r) ( ̊A −2 .) of the beryllium dimer as a function of r ( ̊A) obtained by interpolating the tabulated values [4] (points in the subintervals, the boundaries of 

which are shown by larger-size circles) by fifth-order LIPs. (b) MEMO potential V (r) (points and line 1 [4] ), the asymptotic expansion V as (r) of MEMO function (line 2, [9] ), 

the analytical forms of the potential function V an (r) (line 3 [10] and line 4 [6] and line 5 [5] ). r is given in Å, ˜ V ∗(r) in cm 

−1 . 
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ANTBP 5M [19] , i.e., the upgraded version of KANTBP 4M [20] , im-

lementing the finite element method (FEM) [21,22] in Fortran and 

aple, respectively, is also a subject of the present study. 

The paper has the following structure. Section 2 describes the 

rocedure of approximation of PEC and its extension on large in- 

erval by means of the matching procedure using Hermite inter- 

olation polynomials (HIPs). In Section 3 we present the results 

f calculating the spectrum of vibrational-rotational bound states 

f the beryllium dimer. Section 4 demonstrates the calculation of 

he spectrum of rotational-vibrational metastable states with com- 

lex values of eigenenergy of the beryllium dimer. In section 5 we 

resent examples of scattering states at resonance energies that 

onfirm the existence of the typical metastable states under con- 

ideration. In Conclusion we discuss further applications of the 

laborated method and results. 

. The potential energy curves and its extension on a large 

nterval 

In quantum chemical calculations, the PEC of interatomic in- 

eraction are presented in the form of numerical tables calcu- 

ated with limited accuracy and defined on a nonuniform mesh of 

odes in a finite domain of interatomic distance variation. How- 

ver, for a number of diatomic molecules the asymptotic expres- 

ions for the PEC are calculated analytically for sufficiently large 

istances between the atoms. The Schrödinger equation for a di- 

tomic molecule in the adiabatic approximation (in which the di- 

gonal nonadiabatic correction is not taken into account), com- 

only referred to as Born–Oppenheimer (BO) approximation, has 

he form 

− h̄ 

2 

2 mDa Å
2 

(
1 

r 2 
d 

dr 
r 2 

d 

dr 

)
+ V L (r) −E 

)
�L (r) = 0 , (1) 

 L (r) = V (r ) + 

h̄ 

2 

2 mDa Å
2 

L (L + 1) 

r 2 
, 

where L is the total angular momentum quantum number, 

h̄ 2 / (2 Da ) = 1.685762920 ·10 −7 Å, the reduced mass of beryllium 

olecule is m = M/ 2 = 4 . 506 , r is expressed in Å, Da = 9 . 10938356 ·
0 −31 kg = 931 . 494061 MeV is the dalton (atomic mass unit) [23] , E

s the energy in cm 

−1 and V (r) is PEC in cm 

−1 at L = 0 . The BVP

or Eq. (1) was solved in the following units: the variable r is ex- 

ressed in ( ̊A), the PEC U(r) = (2 mDa ̊A 

2 / h̄ 2 ) V (r) in Å 

−2 , and the

esired value of energy E = (2 mDa ̊A 

2 / h̄ 2 ) E in Å 

−2 , i.e. E = s 2 E cm 

−1 

nd V (r) = s 2 U(r) cm 

−1 , where s 2 = 1 / 0 . 2672973729 is the conver-

ion factor from Å 

−2 to cm 

−1 . 
2 
In Ref. [4] the potential V (r) (in cm 

−1 ) (see Fig. 1 ) is given by

he BO potential function marked as the modified expanded Morse 

scillator (MEMO) tabular values { V M (r i ) } 76 
i =1 

in interval r ∈ [ r 1 =
 . 5 , r 76 = 48] ̊A. These tabular values were chosen to provide bet-

er approximation of the potential V (r) by the fifth-order Lagrange 

nterpolation polynomials (LIPs) of the variable r in subintervals 

 ∈ [ r 5 k −4 , r 5 k +1 ] , k = 1 , . . . , 15 . Indeed, one can see that Fig. 1 a dis-

lays a smooth approximation till r 49 = 12 , where the approximate 

EC coincides with and crosses the asymptotic potential V BO 
as (r) = 

 2 U 

BO 
as (r) given analytically by the expansions [9] 

 

BO 
as (r) = s 1 ̃  V 

BO 
as (r) , ˜ V 

BO 
as (r) = −

(
214 Z −6 + 10230 Z −8 + 504300 Z −10 

)
, 

(2) 

here s 1 = 58664 . 99239 is the conversion factor from aue to Å 

−2 ,

 = r/s 3 and s 3 = 0 . 52917 is Bohr radius in Å. This fact allows con-

idering the interval r ∈ [ r match ≥ 12 , ∞ ) as possible for using the

symptotic potential V BO 
as (r) at large r and executing conventional 

alculations based on tabular values of V (r) in the finite inter- 

al r ∈ [ r 1 , r = 12] (see also [6] ). However, the above MEMO tab-

lar values have been calculated in the unusually larger interval 

 ∈ [ r 1 , r = 48] using special composite basis functions in different

ubintervals, taking into account both polarization and relativistic 

orrections by the Douglas-Kroll-Hess method [24–26] , and the ex- 

rapolation to the infinite basis set [27] marked as DK-MRCI in the 

ubinterval r ∈ [ r = 12 , r = 48] [2] . 

We note that the MEMO tabular values for r ∈ { r 41 = 

 . 5 , . . . , r 48 = 11 } are smaller than the asymptotic ones by 5 . 5 ÷ 6 %,

or r = r 51 = 14 exceed the asymptotic ones by 8%, and beyond 

he interval r ∈ [ r 40 = 6 . 0 , . . . , r 52 = 15] the difference is more than

0%. Based on this fact, in Ref. [11] we considered three cases of 

pproximation of this potential function in the extended interval 

arked by the key K = −1 , −3 or −4 . 

Here we use only the key K = −1 , the potential V (r) in subin-

ervals r ∈ [ r 5 k −4 , r 5 k +1 ] , k = 1 , . . . , 9 was approximated by the

fth-order Lagrange interpolation polynomials (LIPs) of the vari- 

ble r in the interval r ∈ [ r 1 , r 46 = 14] . In subinterval r ∈ [ r e = r 46 =
 , r match = 14] we consider the approximation of the potential V (r) 

y the fourth-order HIPs using the values of the potential V (r) 

t the points r = { r e = r 46 = 9 , r 47 = 10 , r 48 = 11 } and the values of

he asymptotic potential V as (r) and its derivative d V as (r) /d r at the

oint r = r match = 14 . In the r ∈ [ r match = 14 , ∞ ) the potential V (r)

s approximated by the asymptotic expansion (2) . This approxima- 

ion has been accepted in our paper [8] . 

In Ref. [6] the potential V (r) (in cm 

−1 ) (see Fig. 1 ) is given

y the BO potential function plus relativistic potential function 
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Table 1 

Comparison of the vibrational spectra E v =0 ,L =0 − E v L =0 (in cm 

−1 ) for the X 1 �+ 
g state of the beryllium dimer: 

the eigenvalues of vibrational energy −E v L =0 (in cm 

−1 ) of the beryllium dimer calculated by the KANTBP 

4M [20] and ODPEVP [15] programs implementing FEM (FEM(MEMO)) using FEM approximation of PEC 

MEMO from [4] and FEM(STO) using FEM approximation of PEC STO from Lesiuk et al. [6] , theoretical 

(EMO) and experimental (Exp) results [7] , combined ab initio [2] and EMO calculations tabulated as mod- 

ified EMO (MEMO) [4] , symmetry-adapted perturbation theory (SAPT) [1] , the Morse-long range (MLR) 

function and Chebyshev polynomial expansion (CPE) [5] , the ab initio potential CV+F+R calculated in [3] 

and Slater-type orbitals (STO) [6] ; D e is the well depth and D 0 = E v =0 ,L =0 is the dissociation energy in 

cm 

−1 , r e is the equilibrium internuclear distance in Å, rms is root-mean-square discrepancy between the 

theoretical and experimental data. 

v STO 

FEM FEM 

MEMO EMO Exp SAPT 

MLR CV + 

STO MEMO CPE F + R 

r e 2.4344 2.447 2.4534 2.4534 2.4535 2.4536 2.443 2.445 2.4436 

D e 934.6 934.4 929.804 929.74 929.74 929.7 ±2 938.7 934.8 935 ±10 

D 0 807.7 807.7 806.07 806.48 806.5 807.4 812.4 808.15 808.3 

1 223.4 223.5 222.50 222.16 222.7 222.6 222.3 222.91 222.7 

2 400.1 398.2 397.34 397.6 397.8 397.1 397.6 397.41 396.8 

3 517.3 519.3 517.71 517.87 518.2 518.1 520.3 518.41 517.8 

4 595.1 595.7 594.89 595.06 595.4 594.8 597.9 595.08 594.7 

5 651.7 652.2 651.91 652.10 652.4 651.5 655.1 651.79 651.6 

6 698.7 699.3 698.92 699.14 699.4 698.8 702.6 699.03 698.9 

7 738.0 738.1 737.72 737.97 738.2 737.7 741.7 737.97 738.0 

8 769.3 768.6 768.27 768.56 768.8 768.2 772.4 768.50 768.6 

9 790.1 790.1 789.74 790.05 790.7 789.9 794.3 790.17 790.4 

10 802.6 802.6 801.66 802.08 803.4 802.6 807.1 802.83 803.1 

11 807.5 807.2 805.74 806.21 811.9 807.53 807.9 

rms 1.0 0.7 0.4 0.4 0.6 3.4 0.3 0.3 
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1  
arked as STO tabular values { V M (Z i ) } 28 
i =1 

in interval Z ∈ [ Z 1 =
 . 75 , Z 28 = 25] a.u. which corresponds to r ∈ [ r 1 = 1 . 9843 , r 28 =
3 . 229] Å. One can see that these tabular values were chosen to 

rovide the best approximation of the potential V (r) by the fourth- 

rder LIPs of the variable r in subintervals r ∈ [ r 4 k −3 , r 4 k +1 ] , k =
 , . . . , 6 . On interval Z ∈ [ Z 25 , Z match = 27 . 5] a.u. we consider the

pproximation of the potential V (r) by the fifth-order HIP using 

he values of the potential V (Z) at the points r = { r 25 = 17 . 5 , r 26 =
0 . 0 , r 27 = 22 . 5 , r 28 = 25 . 0 } a.u. and the values of the asymptotic

otential V as (r) and its derivative d V as (V ) /dZ = s 3 d V as (r) /d r at the

oint Z = Z match = 27 . 5 a.u.. In the r ∈ [ r match = 14 . 552 , ∞ ) Å the

otential V as (r) = s 2 U as (r) is approximated by the asymptotic ex- 

ansion 

U as (r) = s 1 ̃  V as (r) , ˜ V as (r) = ̃

 V 

BO 
as (r) + 

˜ V 

rel 
as (r) , ̃  V 

rel 
as (r) = − (3) (

1 . 839 · 10 

−4 Z −4 + 0 . 11944 Z −6 + 19 . 582 Z −8 −1323 . 5 Z −10 
)
, 

here ˜ V BO 
as (r) and 

˜ V rel 
as (r) are given by (2) and [6] , respectively. Us- 

ng similar behaviour MEMO and STO potential functions on the 

nterval r ∈ [12 , 14] ̊A one can use also (3) for matching MEMO po-

ential in interval r ∈ [14 , ∞ ) ̊A, because of it was calculated by DK-

RCI method. 

For comparison we show in Fig. 1 the potential function V (r) , 

ts asymptotic expansion V as (r) and the analytical potential func- 

ions V an (r) in a.u. (converted into cm 

−1 ), proposed in Ref. [10] .

he MEMO potential function V (r) has a minimum −D e ( FEM ) = 

 (R e ) = −929 . 804 cm 

−1 at the equilibrium point R e = 2 . 4534 Å,

hich is higher than the analytical potential function V an (r) in the 

icinity of this point, −D e ( Sheng ) = V an (R e ) = −948 . 3 cm 

−1 . On

he contrary, in the interval r ∈ (3 . 2 , 6 . 1) the analytical potential

unction V an (r) is greater than V (r) . For r ∈ (2 . 3 , 12) the MEMO po-

ential slightly exceeds the STO one, which, in turn, is a bit higher 

han the MLR&CPE potential. Thus, using the accepted approxima- 

ion with the key K = −1 we have the potential function V (r) in

he analytical form in interval r ∈ (1 . 9 , 14) and its smooth continu-

tion at r ≥ 14 by means of the asymptotic expression (2) . 

The MAPLE and FORTRAN programs of approximation of the 

EMO [4] and STO [6] potential functions V L (r) are given in the 

upplementary material. 
3 
. Bound states of the beryllium dimer 

For calculation of the vibrational-rotational spectrum of the 

eal-valued eigenenergies E v L and corresponding eigenfunctions 

v L (r) of the bound states of the beryllium dimer we solved the 

VP for Eq. (1) using the FEM programs KANTBP 4M and ODPEVP 

n the finite element mesh �1 = { 1.90, 1.95, 2.00, 2.07, 2.15, 2.22, 

.30, 2.36, 2.42, 2.50 (0.1) 4 (0.2) 6 (0.5) 14 (2) 44 } with the

econd-type or Neumann boundary conditions (BCs) on the bound- 

ry points of the mesh. In each of the subintervals (except the last 

ne) the potential V (r) was approximated by a LIP of the fifth or- 

er. In the BVP solution at all finite elements of the mesh the local 

unctions were represented by fifth-order HIPs. 

Table 1 presents the results of using FEM programs KANTBP 4M 

nd ODPEVP to calculate 12 energy eigenvalues of the beryllium 

imer. It shows the eigenvalues calculated with the ab initio mod- 

fied expanded Morse oscillator (MEMO) potential function [4] and 

he corresponding FEM approximation. In contrast to the original 

MO function, which was used to describe the experimental (Exp) 

ibrational levels [7] , it has not only the correct dissociation en- 

rgy, but also describes all twelve vibrational energy levels with 

he RMS error less than 0.4 cm 

−1 . The table also shows the re- 

ults of recent calculation using the Morse long-range (MLR) func- 

ion and Chebyshev polynomial expansion (CPE) alongside with the 

MO potential function [5] , and CV+F+R potential function [3] dis- 

ussed early in [2] . Similar results were obtained by Lesiuk et al. 

6] . Their PEC lie below the MEMO one and also include the cor- 

ect long-range behavior displayed in Fig. 1 . As a consequence, one 

an see from the Table 1 , that the corresponding results provide a 

ower estimate whereas FEM and MEMO results give an upper es- 

imate for the discrete spectrum of the beryllium dimer at both 

 = 0 and L > 0 . One can see also that the FEM (STO) eigenener-

ies calculated by using the above mentioned FEM approximation 

f the tabulated PEC STO gives smaller RMS error 0.7 cm 

−1 in com- 

arison with RMS error 1.0 cm 

−1 of the STO eigenenergies calcu- 

ated by using the analytical fit PEC STO [6] . 

The potential functions FEM (MEMO) and FEM (STO) V L (r) from 

 = 0 to L = 36 support 37 + 33 + 30 + 28 + 26 + 24 + 21 + 18 +
4 + 11 + 7 + 3 = 252 and 37 + 33 + 30 + 28 + 26 + 24 + 21 + 18 +
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Table 2 

vibrational-rotational bound states −E v L (in cm 

−1 ) of the beryllium dimer. For each L in upper line MEMO and 

in lower line STO with relativistic corrections. 

L v = 0 1 2 3 4 5 6 7 8 9 10 11 

0 806.0 583.5 408.7 288.3 211.1 154.1 107.1 68.3 37.8 16.3 4.4 0.3 

0 807.7 584.1 409.4 288.3 211.9 155.4 108.3 69.5 39.0 17.5 5.0 0.4 

1 804.8 582.4 407.7 287.5 210.4 153.5 106.6 67.8 37.4 16.0 4.2 0.2 

1 806.5 583.0 408.4 287.5 211.2 154.8 107.7 69.0 38.6 17.2 4.8 0.3 

2 802.4 580.1 405.7 285.8 209.0 152.3 105.5 66.9 36.6 15.4 3.8 0.1 

2 804.0 580.8 406.4 285.8 209.8 153.5 106.7 68.1 37.8 16.6 4.4 0.1 

3 798.7 576.7 402.6 283.2 206.9 150.4 103.8 65.5 35.4 14.5 3.2 

3 800.4 577.4 403.5 283.3 207.7 151.7 105.1 66.7 36.7 15.7 3.8 

4 793.9 572.2 398.6 279.8 204.1 148.0 101.7 63.6 33.8 13.3 2.4 

4 795.5 573.0 399.5 279.9 204.9 149.3 102.9 64.8 35.1 14.5 3.0 

5 787.8 566.5 393.6 275.6 200.5 144.9 99.0 61.2 31.8 11.8 1.5 

5 789.5 567.4 394.5 275.8 201.5 146.3 100.2 62.5 33.2 13.0 2.1 

6 780.5 559.7 387.5 270.6 196.3 141.2 95.7 58.4 29.5 10.0 0.5 

6 782.2 560.7 388.6 270.8 197.3 142.6 97.0 59.7 30.9 11.2 1.0 

7 772.1 551.8 380.5 264.7 191.4 137.0 92.0 55.2 26.8 8.1 

7 773.7 552.9 381.7 265.0 192.5 138.4 93.3 56.5 28.2 9.2 

8 762.4 542.8 372.5 258.0 185.9 132.1 87.7 51.5 23.8 5.9 

8 764.1 544.0 373.8 258.4 187.0 133.6 89.1 52.9 25.2 7.0 

9 751.5 532.7 363.5 250.5 179.7 126.7 83.0 47.4 20.5 3.5 

9 753.2 534.0 364.9 251.0 180.9 128.3 84.4 48.8 21.9 4.6 

10 739.4 521.4 353.6 242.2 172.8 120.7 77.7 42.9 16.8 1.0 

10 741.1 522.9 355.1 242.8 174.2 122.4 79.2 44.3 18.3 2.0 

11 726.2 509.1 342.6 233.2 165.3 114.2 72.0 38.0 12.9 

11 727.9 510.7 344.4 233.9 166.8 115.9 73.6 39.5 14.4 

12 711.7 495.6 330.8 223.4 157.2 107.1 65.8 32.8 8.7 

12 713.4 497.4 332.7 224.3 158.8 108.9 67.4 34.3 10.2 

13 696.0 481.1 318.0 212.9 148.5 99.5 59.2 27.1 4.4 

13 697.8 483.1 320.1 213.9 150.2 101.4 60.9 28.7 5.9 

14 679.2 465.5 304.3 201.7 139.2 91.4 52.2 21.2 

14 681.0 467.7 306.6 202.8 141.0 93.4 53.9 22.9 1.4 

15 661.2 448.8 289.7 189.8 129.3 82.8 44.7 15.0 

15 663.0 451.2 292.2 191.1 131.3 84.8 46.5 16.7 

16 642.1 431.0 274.2 177.3 118.9 73.8 36.9 8.5 

16 643.8 433.7 276.9 178.7 121.1 75.9 38.8 10.3 

17 621.8 412.2 257.9 164.2 108.0 64.3 28.7 1.9 

17 623.5 415.1 260.8 165.8 110.3 66.5 30.7 3.7 

18 600.3 392.4 240.7 150.4 96.6 54.4 20.3 

18 602.1 395.5 243.8 152.2 99.0 56.6 22.3 

Fig. 2. (a) Potential functions V L (r) at L = 0 , 4 , 8 , . . . , 56 . (b) Eigenenergies E v L of vibrational-rotational bound states (lower panel) and real part � E M L v (lower panel) and 

imaginary part −� E M L v with negative sign (upper panel) of complex eigenenergies E M L v = � E M L v + i � E M L v of rotational-vibrational metastable states. V L (r) at L = 0 , 1 , . . . , 36 and at 

L = 0 , 4 , 8 , . . . , 56 . 
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4

5 + 11 + 7 + 3 = 253 vibrational-rotational energy levels −E v L , re-

pectively, presented in Table 2 and 3 . Note, the bound state with 

nergy E L =14 , v =8 = −1 . 44 for PEC STO corresponds to the sharp 

etastable state for MEMO PEC with complex energy E M 

L =14 , v =8 = 

 . 083 − ı 3 · 10 −29 . Fig. 2 b shows also the rotational-vibrational

pectrum E v L ≡ E L v (in cm 

−1 ) of Be 2 vs L . These functions ˜ V L (r) are

isplayed in Fig. 2 a at L = 0 , . . . , 36 with the step 4. One can see
4 
hat the potential V L (r) at L = 0 , L = 1 and L = 2 supports 12 vibra-

ional energy levels. Note that the bound states are supported by 

he potentials V L (r) at L = 0 , 1 , . . . , 36 (see Tables 2, 3 and Fig. 2 a),

hile the metastable states are supported by the potentials V L (r) 

t L = 3, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

8, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

6, 47, 48, 49 (see Tables 4 and 6 , and Fig. 2 a). 
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Table 3 

vibrational-rotational bound states −E v L (in cm 

−1 ) of the beryllium dimer. For each L in upper line 

MEMO and in lower line STO with relativistic corrections. Continuation of Table 2 . 

L v = 0 1 2 3 4 5 6 7 8 9 10 11 

19 577.7 371.5 222.8 136.2 84.8 44.1 11.5 

19 579.4 374.9 226.0 138.2 87.3 46.4 13.6 

20 553.9 349.7 204.0 121.5 72.5 33.5 2.6 

20 555.7 353.3 207.5 123.7 75.2 35.9 4.8 

21 529.1 326.8 184.6 106.3 59.8 22.5 

21 530.8 330.7 188.2 108.7 62.6 25.0 

22 503.1 303.0 164.4 90.8 46.8 11.4 

22 504.9 307.2 168.2 93.4 49.7 13.9 

23 476.0 278.2 143.6 74.9 33.4 0.01 

23 477.8 282.7 147.6 77.8 36.4 2.5 

24 447.8 252.5 122.3 58.8 19.8 

24 449.6 257.2 126.4 61.9 22.9 

25 418.5 225.9 100.4 42.5 5.9 

25 420.3 230.9 104.7 45.8 9.1 

26 388.2 198.4 78.2 26.0 

26 390.0 203.7 82.5 29.6 

27 356.7 170.1 55.7 9.5 

27 358.6 175.6 60.1 13.3 

28 324.3 140.9 33.1 

28 326.1 146.7 37.5 

29 290.8 111.0 10.7 

29 292.7 117.0 14.9 

30 256.3 80.4 

30 258.2 86.6 

31 220.8 49.1 

31 222.7 55.6 

32 184.4 17.2 

32 186.3 23.9 

33 146.9 

33 148.9 

34 108.6 

34 110.6 

35 69.3 

35 71.4 

36 29.2 

36 31.3 

Table 4 

The rotational-vibrational metastable states E M L v = � E M L v + ı � E M L v (in cm 

−1 ) of Be 2 , where “eps” means 

that −10 −5 < � E M L v < 0 (in cm 

−1 ). From left to right MEMO and STO with relativistic corrections. V min 
L 

and V max 
L are minimal and maximum values of potentials V L (r) (in cm 

−1 ) at different values L of the 

total angular momentum. 

L v MEMO STO MEMO STO 

V min 
L V max 

L V min 
L V max 

L � E −� E � E −� E
0 −929.74 0.00 −934.39 0.00 

1 −928.49 0.01 −933.15 0.03 

2 −926.00 0.04 −930.66 0.10 

3 11 −922.26 0.12 −926.92 0.21 0.092 0.014 

4 −917.27 0.22 −921.93 0.35 

5 −911.04 0.42 −915.70 0.52 

6 −903.59 0.71 −908.22 0.74 

7 10 −894.94 1.11 −899.49 1.09 0.504 5.5e-4 0.972 5.6e-3 

8 10 −885.05 1.62 −889.52 1.57 1.508 0.078 2.315 0.149 

9 10 −873.92 2.24 −878.30 2.18 3.781 0.499 

10 −861.56 3.00 −865.92 2.92 

11 9 −847.96 3.92 −852.32 3.92 1.554 eps 0.783 eps 

12 9 −833.12 5.02 −837.49 5.04 4.050 0.031 3.592 1.e-3 

13 9 −817.04 6.27 −821.41 6.27 6.371 0.543 

14 8 −799.73 7.73 −804.10 7.64 0.083 eps 

14 9 −799.73 7.73 −804.10 7.64 9.121 0.295 

15 8 −781.19 9.39 −785.56 9.18 4.605 1.e-5 3.141 eps 

15 9 −781.19 9.39 −785.56 9.18 11.957 0.7940 

16 8 −761.44 11.26 −765.77 10.94 8.992 0.018 7.705 5.0e-4 

17 8 −740.59 13.34 −744.92 12.94 13.016 0.314 12.09 0.032 

18 7 −718.51 15.66 −722.84 15.19 4.788 eps 2.917 eps 

18 8 −718.51 15.66 −722.84 15.19 16.16 0.2586 

19 7 −695.21 18.22 −699.54 17.69 11.517 1.4e-4 9.637 eps 

20 6 −670.68 21.05 −675.01 20.44 17.991 0.036 16.21 2.2e-3 

21 6 −644.93 24.15 −649.25 23.45 6.403 eps 4.200 eps 

21 7 −644.93 24.15 −649.25 23.45 23.915 0.482 22.33 0.090 

22 6 −618.07 27.51 −622.46 26.73 15.497 eps 13.26 eps 

23 5 −590.08 31.24 −594.48 30.30 24.444 3.7e-3 22.220 2.5e-4 

5 



V.L. Derbov, G. Chuluunbaatar, A .A . Gusev et al. Journal of Quantitative Spectroscopy & Radiative Transfer 262 (2021) 107529 

Fig. 3. Plots of real (solid curve) and imaginary (dashed curve) parts of eigenfunctions �L ≡ �M 
Lv (r) of selected metastable states having eigenvalues from the table marked 

by L = 3, 7, 12, 18, 24 and v . 

Fig. 4. Plots of real (solid curve) and imaginary (dashed curve) parts of eigenfunctions �L ≡ �M 
Lv (r) of selected metastable states having eigenvalues from the table marked 

by L = 30, 36, 42, 49 and v . 

Fig. 5. Plots of the real (solid) and imaginary (dashed) parts of scattering functions �L ≡ �L (r) in the vicinity of the resonance energy E(res ) ≈ 4 . 04 4 4958 cm 

−1 at L = 12 

(b) and at energies E = E(res ) − 0 . 5 cm 

−1 (a) and E = E(res ) + 0 . 5 cm 

−1 (c). 

6 
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Table 5 

The rotational-vibrational metastable states E M L v = � E M L v + ı � E M L v (in cm 

−1 ) of Be 2 , where “eps” means that 

−10 −5 < � E M L v < 0 (in cm 

−1 ). Continuation of Table 4 

L v MEMO STO MEMO STO 

V min 
L V max 

L V min 
L V max 

L � E −� E � E −� E
24 5 −561.68 35.18 −565.28 34.17 11.484 eps 8.853 eps 

24 6 −561.68 35.18 −565.28 34.17 32.872 0.169 30.743 0.037 

25 4 −531.76 39.58 −534.87 38.36 22.998 eps 20.324 eps 
∗25 5 −531.76 39.58 −534.87 38.36 40.608 1.156 38.193 0.722 

26 4 −500.63 44.18 −503.34 42.90 7.996 eps 4.773 eps 

26 5 −500.63 44.18 −503.34 42.90 34.354 1.4e-3 31.670 1.3e-4 

27 4 −468.31 49.30 −470.75 47.80 22.032 eps 18.779 eps 

27 5 −468.31 49.30 −470.75 47.80 45.187 0.100 42.567 0.034 

28 3 −434.78 54.66 −436.96 53.00 6.963 eps 3.009 eps 

28 4 −434.78 54.66 −436.96 53.00 35.991 eps 32.731 eps 
∗28 5 −434.78 54.66 −436.96 53.00 55.158 0.963 52.659 0.817 

29 3 −400.25 60.57 −401.96 58.57 23.517 eps 19.452 eps 

29 4 −400.25 60.57 −401.96 58.57 49.669 3.0e-4 46.445 5.2e-4 

30 2 −364.62 66.91 −401.96 64.70 11.354 eps 7.180 eps 

30 3 −364.62 66.91 −365.83 64.70 40.058 eps 35.968 eps 

30 4 −364.62 66.91 −365.83 64.70 62.639 0.155 59.548 0.091 

31 2 −327.81 73.60 −365.83 71.30 32.621 eps 28.549 eps 

31 3 −327.81 73.60 −328.72 71.30 56.534 1.6e-4 52.550 1e-5 
∗31 4 −327.81 73.60 −328.72 71.30 74.625 1.305 71.651 0.818 

32 2 −290.09 80.68 −290.41 78.37 52.660 eps 48.671 eps 

32 3 −290.09 80.68 −290.41 78.37 72.662 0.030 68.982 0.013 

33 1 −251.21 88.21 −250.90 85.94 15.028 eps 8.238 eps 

33 2 −251.21 88.21 −250.90 85.94 71.131 2.4e-4 

33 3 −251.21 88.21 −250.90 85.94 87.630 0.696 

34 1 −211.33 80.42 −210.26 94.04 47.644 eps 40.779 eps 

35 1 −170.41 101.47 −168.69 102.73 80.254 eps 73.432 eps 

36 1 −128.47 124.02 −126.36 120.39 111.593 0.057 105.388 7.1e-3 

Table 6 

The rotational-vibrational metastable states E M L v = � E M L v + ı � E M L v (in cm 

−1 ) of Be 2 , where “eps” means 

that −10 −5 < � E M L v < 0 (in cm 

−1 ). Continuation of Table 5 . 

L v MEMO STO MEMO STO 

V min 
L V max 

L V min 
L V max 

L � E −� E � E −� E
37 0 −85.56 147.94 −83.10 144.01 11.780 eps 9.538 eps 

37 1 −85.56 147.94 −83.10 144.01 143.263 3.429 135.737 3.656 

38 0 −41.66 173.18 −38.98 168.91 53.590 eps 51.2338 eps 
∗38 1 −41.66 173.18 −38.98 168.91 174.945 4.014 167.103 3.847 

39 0 3.20 199.73 6.08 195.12 96.169 eps 93.6727 eps 

40 0 48.96 227.57 52.06 222.65 139.466 eps 136.795 eps 

41 0 95.70 256.70 98.87 251.52 183.406 8.3e-4 180.520 1.2e-3 

42 0 143.28 287.15 146.47 281.76 227.880 0.023 224.726 0.030 

43 0 191.72 318.91 194.87 313.39 272.755 0.148 269.267 0.173 

44 0 241.02 352.03 244.03 345.95 317.922 0.544 314.016 0.621 

45 0 291.13 386.52 293.92 379.25 363.371 1.432 358.964 1.622 

46 0 342.01 422.41 344.47 413.44 409.200 3.007 403.499 5.838 

47 0 393.59 459.74 395.60 449.11 450.402 6.810 445.144 6.238 
∗48 0 445.84 498.57 447.31 487.86 499.563 5.439 489.343 7.245 
∗49 0 498.71 538.92 499.48 528.37 542.927 6.046 

50 552.15 580.82 552.02 570.61 

51 606.00 624.52 604.78 614.64 

52 660.18 670.09 657.53 660.69 

53 714.45 717.43 

54 

Fig. 6. Plots of the real (solid) and imaginary (dashed) parts of scattering functions �L ≡ �L (r) in the vicinity of resonance energy E(res ) ≈ 4 . 78829358850231 cm 

−1 at 

L = 18 (b) and at energies E = E(res ) − 10 −3 cm 

−1 (a) and E = E(res ) + 10 −3 cm 

−1 (c). 
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Fig. 7. Phase shifts δL vs scattering energy E counted from E(0) at L = 12 (a) and L = 18 (b). Phase shifts δ at L = 18 in the vicinity of resonance energy E(res ) (c). Here 

δE(res ) = E − E(res ) . 

Fig. 8. Estimate of scattering length a 0 in Å vs k = 

√ 

E in Å −1 and wave function �0 ≡ �0 (r) at k = 0 . 001 ̊A −1 , L = 0 . 
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. Metastable states of the beryllium dimer 

The complex eigenenergies E M 

L v = � E M 

L v + ı � E M 

L v , (in cm 

−1 ) of Be 2 
otational-vibrational metastable states, where v is the number of 

tates at fixed value of L, are shown in Tables 4 and 6 . Their real

arts � E M 

L v in comparison with the eigenenergies E v L of vibrational- 

otational bound states are displayed in lower panel of Fig. 2 b. 

ote that the real parts of energies � E M 

L v of the metastable states 

arked by an asterisk in Tables 4 and 6 lie above the top V max 
L 

of

he potential barrier V L (r) . The BVP for Eq. (1) was solved by the

EM programs on the above finite element mesh �1 with mixed 

VPs, i.e. the Neumann BC at the left point r 1 of the finite inter-

al r ∈ [ r 1 , r 
max ] and the third-type or Robin BC at the right point

 max which is calculated using the corresponding asymptotic solu- 

ion �M( as ) 
L v (r) in the form of an outgoing wave [22] . 

The BVP for Eq. (1) was solved using the FEM programs 

ANTBP 5M on the finite element mesh �1 = { 1.90, 1.95, 2.00, 

.07, 2.15, 2.22, 2.30, 2.36, 2.42, 2.50 (0.1) 4 ( γ1 ) 6 ( γ2 ) 14

 γ3 ) γ4 } , where γ1 = { 0 . 2 , L < 44 ; 0 . 1 } , γ2 = { 0 . 5 , L < 25 ; 0 . 25 , L <

8 ; 0 . 1(6) , L < 44 ; 0 . 125 } , γ3 = 3 . 1 / 
√ 

V max 
L 9 

, L 9 = max (L, 9) γ4 is the

owest number of sequence 14 + nγ3 , n ∈ N greater than 80, with

he Neumann boundary conditions on the boundary point r = 1 . 90 

nd the Robin boundary condition with logarithmic derivative for 

L (kr) ≡ �M 

L v (kr) 

d�(kr) 

dr 
− R �(kr) = 0 , R = 

1 

�+ 
as (kr) 

d�+ 
as (kr) 

dr 
= 

L 

r 
− k 

H 

(1) 
L +3 / 2 

(kr) 

H 

(1) 
L +1 / 2 

(kr) 

(4) 

hat followed from asymptotic solution for only the outgoing wave 
+ 
as (kr) [22] 

±
as (kr) = 

√ 

π/ 2 √ 

r 
H 

(1 , 2) 
L +1 / 2 

(kr) 

= ∓ı 
exp (±ı (kr − πL/ 2)) √ 

k r 
+ O (k −3 / 2 r −2 ) . (5) 
8 
ere k ≡ k M 

L v = 

√ 

E M 

L v = 

√ 

E M 

L v /s 2 in Å 

−1 is the wave num- 

er and E M 

L v = s 2 E M 

L v cm 

−1 , H 

(1 , 2) 
L +1 / 2 

(r) and H 

(1 , 2) 
L +3 / 2 

(r) are Hankel

unctions [28] ( d 
dz 

H 

(1 , 2) 
L +1 / 2 

(z) = (L + 1 / 2) H 

(1 , 2) 
L +1 / 2 

(z) /z − H 

(1) 
L +3 / 2 

(z) ) and

 2 = 1 / 0 . 2672973729 is the conversion factor from cm 

−1 to Å 

−2 .

he potential functions V L (r) at L = 3 , 7 , 8 , 11 , 12 , 14 , . . . , 49 sup-

orted this set of metastable states. These functions are plotted in 

ig. 2 a at L = 8 , . . . , 56 with the step 4. 

For L > 0 the potential functions at large r decrease proportion- 

lly to r −2 and at L ≤ 38 have the form of a potential well with

 minimum below the dissociation threshold D 0 , while at L > 38 

he potential well has a minimum above the dissociation thresh- 

ld. The height of the centrifugal barrier increases with increas- 

ng L, but its width at the dissociation threshold energy is infi- 

ite. With increasing energy, the effective width of the barrier de- 

reases. The number of metastable states δv at L ≤ 38 is deter- 

ined by the number of positive-energy states in the potential 

ell with the barrier with the height V max 
L 

taken into account, i.e., 

n the well with the potential V ∗
L 

= { V (r) , r < r max ;V max , r ≥ r max } .
or small L < 16 the barrier height V max 

L 
counted from the zero en- 

rgy is smaller than the energy difference between two upper lev- 

ls of metastable states. This means that even one metastable state 

an exist not for all values of L . With the growth of L to L = 33

he barrier height increases, but the width of the well changes 

nsignificantly. As a result, the number of metastable states in- 

reases to three. With further increase in L, when in the inter- 

al r ∈ (3 . 5 , 6) the slope of centrifugal potential exceeds the slope

f MEMO potential, the well width rapidly decreases, so that only 

wo states can exist in the well, a bound state and a metastable 

ne at L = 34 , 35 , 36 and two metastable states at L = 37 , 38 . At

 ≥ 39 the potential well minimum turns to be above the disso- 

iation threshold and the effective barrier width, the width and 

epth of the well decrease. Only one state exists in the well, 

ts width increasing with the growth of L . At L > 49 there are

o energy levels in the well, and at L > 54 the potential well 

isappears. 
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As can be seen from Tables 2, 4 and 6 and Figs. 3 –4 , the eigen-

unctions of metastable states with complex energy values for a 

xed value of the orbital momentum L have an increasing num- 

er of nodes localized inside the potential well. Beginning from 

ach lower state above the dissociation threshold, they have one 

ode more than the last bound state with real energy under the 

issociation threshold (E = 0) with the same value of the orbital 

omentum L . Thus, there is a continuation of the upper and lower 

stimates of the real energy eigenvalues E L v = � E L v to the complex 

lane E M 

L v = � E M 

L v + ı � E M 

L v , labelled by the number of nodes of eigen-

unctions localized inside the potential well, for each value of the 

rbital moment L . 

. Scattering states of the beryllium dimer 

The scattering problem for Eq. (1) at real-valued E > 

 in cm 

−1 was solved using the FEM programs KANTBP 

M on the finite element mesh �1 = { 1.90, 1.95, 2.00, 2.07, 

.15, 2.22, 2.30, 2.36, 2.42, 2.50 (0.1) 4 ( γ1 ) 6( γ2 ) 14 ( γ3 )

4 } , where γ1 = { 0 . 2 , E < 360 ; 0 . 1 } , γ2 = { 0 . 5 , E < 35 ; 0 . 25 , E <

48 ; 0 . 1(6) , E < 320 ; 0 . 125 } , γ3 = 2 . 9 / 
√ 

E , γ4 is the lowest number

f sequence 14 + nγ3 , n ∈ N greater than 80. The eigenfunctions 

L (kr) of the scattering states are subjected the Neumann bound- 

ry conditions (BCs) on the boundary point r = r min = 1 . 90 and the

obin boundary condition formulated by the following relations: 

d�L (kr) 

dr 
= 

d�L 
as (kr) 

dr 
, �L (kr) = �L 

as (kr) , (6) 

t r = r max using the asymptotic form “incident wave + outgoing 

ave” [28] 

L 
as (r) = 

1 

2 

(�−
as (kr) + �+ 

as (kr) S L (E)) . (7) 

ere S L (E) = exp (2 ıδL (E)) is the partial scattering matrix, and 

±
as (kr) are given by formula (4) at real-valued k = 

√ 

E > 0 in Å 

−1 .

Plots of the real (solid) and imaginary (dashed) parts of scatter- 

ng functions in the vicinity of the resonance energy for the nar- 

ow resonance at L = 12 and very narrow resonance at L = 18 are

hown in Figs. 5 and 6 . One can see that the resonant scattering

unctions are localized in the potential well, which is no longer 

bserved with a minor change in the energy of the incident wave. 

s can be seen from Tables 4 and 6 , the energies of resonant states

oincide with the real parts of the energies of metastable states. In 

ig. 7 the phase shifts δ vs the scattering energy E are shown, as 

xpected, the phase shifts take the value δ = π/ 2 for resonant en- 

rgies and change rapidly in their vicinity. For rough estimation of 

cattering length a S of the scattering state at k → 0 one can apply

he formula 

 0 = − lim 

k → 0 

tan δ0 (k ) 

k 
≈ −dδ0 (k ) 

dk 

∣∣∣
k → 0 

≈ −δ0 (k i +1 ) − δ0 (k i −1 ) 

k i +1 − k i −1 

∣∣∣
k i → 0 

,

here k −1 = 

√ 

1 / E in Åand E in Å 

−2 are accepted in our calcu- 

ations. The calculated plot − dδ0 (k ) 
dk 

≈ a 0 presented in Fig. 8 gives 

s an estimate for a 0 ≈ 3 . 348 Å. For example, a plot of the corre-

ponding wave function is shown at k = 0 . 001 ̊A 

−1 . 

. Conclusion 

The efficacy of the applied approach and programs is demon- 

trated by the upper and lower estimates of twelve eigenenergies of 

he vibrational bound states of the beryllium dimer with the re- 

uired accuracy in comparison with those known from literature, 

s well as the vibrational-rotational spectrum bound states and 

otational-vibrational spectrum of narrow-band metastable states 

ith complex valued eigenenergies. 
9 
We believe that these results can serve as a guide for future 

igh-precision laser spectroscopy of weakly-bound, metastable and 

cattering states of the beryllium dimer. Laser spectroscopy of such 

bjects offers unique opportunities for clarifying the nature of elec- 

ron correlation bonding in molecules that could not exist in the 

tandard chemical bond theory based on the Hartree-Fock self- 

onsistent field approximation. 

The presented approach and KANTBP 5M program [19] pro- 

ide a useful tool for further study of approximations of the tab- 

lated potential function in a finite interval and its extension be- 

ond this interval using asymptotic expansions and its matching 

ia interpolation Hermite polynomials, and modeling calculations 

f the weakly bound states with eigenenergies close to the dissoci- 

tion threshold and processes of near-surface diffusion of diatomic 

olecules [12] . 
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Adiabatic representation for atomic dimers and trimers in collinear configura- 
tion. Phys Atomic Nuclei 2018;81:945–70. doi: 10.1134/S1063778818060169 . 

[13] Walsh KA . Beryllium chemistry and processing. ASM International, Materials 
Park, OH, USA; 2009 . 

[14] Allouche A, Linsmeier C. Quantum study of tungsten interaction with beryl- 
lium (0 0 01). J Phys 20 08;117:0120 02. doi: 10.1088/1742-6596/117/1/012002 . 

[15] Chuluunbaatar O, Gusev AA, Vinitsky SI, Abrashkevich AG. ODPEVP: a program 

for computing eigenvalues and eigenfunctions and their first derivatives with 
respect to the parameter of the parametric self-adjoined Sturm-Liouville prob- 

lem. Comput Phys Commun 2009;181:1358–75. doi: 10.1016/j.cpc.2009.04.017 . 
[16] Chuluunbaatar O, Gusev AA, Abrashkevich AG, Amaya-Tapia A, Kaschiev MS, 

Larsen SY, Vinitsky SI. KANTBP: a program for computing energy levels, reac- 
tion matrix and radial wave functions in the coupled-channel hyperspherical 

adiabatic approach. Comput Phys Commun 2007;177:649–75. doi: 10.1016/j.cpc. 

2007.05.016 . 
[17] Chuluunbaatar O, Gusev AA, Vinitsky SI, Abrashkevich AG. KANTBP 2.0: new 

version of a program for computing energy levels, reaction matrix and ra- 
dial wave functions in the coupled-channel hyperspherical adiabatic approach. 

Comput Phys Commun 2008;179:685–93. doi: 10.1016/j.cpc.2008.06.005 . 
[18] Gusev AA, Chuluunbaatar O, Vinitsky SI, Abrashkevich AG. KANTBP 3.0: new 

version of a program for computing energy levels, reflection and transmission 

matrices, and corresponding wave functions in the coupled-channel adiabatic 
approach. Comput Phys Commun 2014;185:3341–3. doi: 10.1016/j.cpc.2014.08. 

002 . 
10 
[19] Gusev A, Vinitsky S, Gerdt V, Chuluunbaatar O, Chuluunbaatar G, Hai LL, 
Zima E. A maple implementation of the finite element method for solving 

boundary problems of the systems of ordinary second order differential equa- 
tions. In: Talk in MAPLE 2020 conference; 2020 . https://www.maplesoft.com/ 

mapleconference/MapleConference2020-LiveQA.pdf 
20] Gusev AA, Chuluunbaatar O, Vinitsky SI, Hai LL. KANTBP 4M — program for 

solving boundary problems of the self-adjoint system of ordinary second order 
differential equations. JINRLIB; 2015 . http://wwwinfo.jinr.ru/programs/jinrlib/ 

kantbp4m 

21] Gusev AA, Chuluunbaatar O, Vinitsky SI, Derbov VL, Gozdz A, Hai LL, 
Rostovtsev VA. Symbolic-numerical solution of boundary-value problems 

with self-adjoint second-order differential equation using the finite ele- 
ment method with interpolation hermite polynomials. Lect Notes Comput Sci 

2014;8660:138–54. doi: 10.1007/978- 3- 319- 10515-4 _ 11 . 
22] Gusev AA, Hai LL, Chuluunbaatar O, Ulziibayar V, Vinitsky SI, Derbov VL, 

Gozdz A, Rostovtsev VA. Symbolic-numeric solution of boundary-value prob- 

lems for the schrodinger equation using the finite element method: scatter- 
ing problem and resonance states. Lect Notes Comput Sci 2015;9301:182–97. 

doi: 10.1007/978- 3- 319- 24021- 3 _ 14 . 
23] Atomic spectroscopy databases. https://www.nist.gov/pml/ 

atomic-spectroscopy-databases . 
24] Douglas M, Kroll NM. Quantum electrodynamical corrections to the fine 

structure of helium. Ann Phys 1974;82(1):89–155. doi: 10.1016/0 0 03-4916(74) 

90333-9 . 
25] Hess BA. Applicability of the no-pair equation with free-particle projec- 

tion operators to atomic and molecular structure calculations. Phys Rev A 
1985;32(2):756–63. doi: 10.1103/PhysRevA.32.756 . 

26] Hess BA. Relativistic electronic-structure calculations employing a two- 
component no-pair formalism with external-field projection operators. Phys 

Rev A 1986;33(6):3742–8. doi: 10.1103/PhysRevA.33.3742 . 

27] Gdanitz RJ. Accurately solving the electronic Schrödinger equation of atoms 
and molecules by extrapolating to the basis set limit. I. The helium dimer 

(He2). J Chem Phys 20 0 0;113(13):5145–53. doi: 10.1063/1.1290 0 01 . 
28] Goldberger ML , Watson KM . Collision theory. NY: John Wiley & Sons, Inc; 1964 .

https://doi.org/10.1117/12.2518409
https://doi.org/10.1134/S1063776106020014
https://doi.org/10.1103/PhysRevA.88.022517
https://doi.org/10.1117/12.2565816
https://doi.org/10.1134/S1063778818060169
http://refhub.elsevier.com/S0022-4073(21)00022-4/sbref0013
http://refhub.elsevier.com/S0022-4073(21)00022-4/sbref0013
https://doi.org/10.1088/1742-6596/117/1/012002
https://doi.org/10.1016/j.cpc.2009.04.017
https://doi.org/10.1016/j.cpc.2007.05.016
https://doi.org/10.1016/j.cpc.2008.06.005
https://doi.org/10.1016/j.cpc.2014.08.002
https://www.maplesoft.com/mapleconference/MapleConference2020-LiveQA.pdf
http://wwwinfo.jinr.ru/programs/jinrlib/kantbp4m
https://doi.org/10.1007/978-3-319-10515-4_11
https://doi.org/10.1007/978-3-319-24021-3_14
https://www.nist.gov/pml/atomic-spectroscopy-databases
https://doi.org/10.1016/0003-4916(74)90333-9
https://doi.org/10.1103/PhysRevA.32.756
https://doi.org/10.1103/PhysRevA.33.3742
https://doi.org/10.1063/1.1290001
http://refhub.elsevier.com/S0022-4073(21)00022-4/sbref0028
http://refhub.elsevier.com/S0022-4073(21)00022-4/sbref0028
http://refhub.elsevier.com/S0022-4073(21)00022-4/sbref0028

	Spectrum of beryllium dimer in ground  state
	1 Introduction
	2 The potential energy curves and its extension on a large interval
	3 Bound states of the beryllium dimer
	4 Metastable states of the beryllium dimer
	5 Scattering states of the beryllium dimer
	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	Supplementary material
	References


