To contents
Theoretical Physics
01-3-1135-2019/2023
01-3-1136-2019/2023
01-3-1137-2019/2023
01-3-1138-2019/2023
01-3-1117-2014/2023
Elementary Particle Physics
02-2-1123-2015/2022
02-0-1081-2009/2024
02-2-1144-2021/2023
    02-2-1144 - RUS
02-2-1099-2010/2023
02-0-1108-2011/2021
02-2-1125-2015/2023
02-1-1106-2011/2022
02-1-1096-2010/2022
02-0-1083-2009/2022
02-0-1085-2009/2022
02-1-1086-2009/2023
02-0-1065-2007/2023
02-0-1127-2016/2023
02-1-1097-2010/2021
02-1-1087-2009/2023
02-0-1066-2007/2023
02-1-1088-2009/2022
02-1-1107-2011/2021
Nuclear Physics
03-0-1129-2017/2021
03-5-1130-2017/2021
03-2-1100-2010/2021
03-4-1128-2017/2022
Condensed Matter Physics
04-4-1142-2021/2025
04-4-1105-2011/2022
04-4-1143-2021/2025
04-4-1133-2018/2023
04-4-1140-2020/2022
04-4-1141-2020/2022
04-5-1131-2017/2021
04-9-1077-2009/2023
04-9-1112-2013/2022
04-2-1132-2017/2022
04-2-1126-2015/2023
Networking, Computing
05-6-1118-2014/2023
05-6-1119-2014/2023
05-8-1037-2001/2024
Educational Programme
06-0-1139-2019/2023

02-2-1144-2021/2023

 

Priority:

1

 

 

Status:

New


Search for New Physics in the Charged Lepton Sector

Leaders:

V.V. Glagolev
Z. Tsamalaidze

Deputies 

Yu.I. Davydov
N.V. Khomutov

Scientific leader: 

J.A. Budagov



Participating countries and international organizations:

Belarus, Bulgaria, Czech Republic, France, Georgia, Germany, Italy, Japan, Kazakhstan, Russia, Slovakia, Switzerland, Ukraine, United Kingdom, USA.


Issues addressed and main goals of research:

The Mu2e experiment at Fermilab, COMET experiment at J-PARC and the MEG II experiment at PSI are a dedicated search for the CLFV processes µ -  N e -  N , µ+ e   + γ . Once neutrinos masses are included, the process is allowed but still effectively absent since the rate is proportional to  ( Δ m 2ij/M 2W) 2, where Δ m 2ij is the mass difference squared between ith and jth neutrino mass eigenstates, and MW is the mass of the W boson.

The predicted rates for the µ  - N e   - N  and µ + e + γ   CLFV processes are less than 10 -50 each. This makes this process a very theoretically clean place to search for NP effects. In many NP models that include a description of neutrino mass, the rates for these processes are enormously enhanced so that they occur at a level to which Mu2e experiment will have sensitivity. Conversion measurement at the level of 10 -17, which is the COMET goal, is a factor of 10000 better than the current experimental limit B(µ -+ Auµ e - + Au) < 7·10 -13 from SINDRUM-II at PSI.

Participation in the creation and tests of the theoretical views in the topics. Study of CP-violation in the lepton sector with the help of neutrinos. Study of hyperfine interactions of an acceptor impurity in semiconductors with the aid of negative muons. Investigation of the behavior of positive muons in systems with magnetic nanoparticles.


Expected results in the current year:

  • Tests of the CsI and BaF2 e.m. calorimeter elements with the gamma sources and electron beam.

  • Participation in the construction and tests of modules of scintillator counters for the veto system. Quality control.

  • Filling the batch of Mu2e scintillation counters with CKIN and testing them for leakage.

  • Maintenance of the visualization and control software.

  • Development and tests of the Mu2e e.m. calorimeter preamplifiers at JINR.

  • Participation in the radiation hardness tests of the detector elements.

  • Рarticipation in the creation of an active scintillation target of a new type with a volume of about 2 cubic meters for the T2K experiment.

  • R&D of thin-wall straw tubes for COMET. Development, production and tests of the straw detector and electromagnetic calorimeter prototype.

  • Calibration of LYSO crystals.  

  • R&D of muon veto system elements.     

  • Analysis of the experimental data on the radiative pion decay collected by the PEN experiment.

  • Participation in the development of the positron tracker for the MEG-II experiment, DAQ, data ana-lysis.

  • Participation in the data taking and analysis of experimental data obtained with CERN hadron beams.

  • Software development for data processing and analysis.

  • Study of the behavior of magnetic nanoparticles with high magnetic anisotropy by the muon spin ro-tation technique.

  • Data analysis of the p+t synthesis using the muon catalysis method.


List of projects:


 

Project

Leader

Priority
(period of realisation)

1.

Search for new physics in the
charged lepton sector

V.V. Glagolev
Z. Tsamalaidze

1   (2021-2021)



List of Activities:


 

Activity or Experiment

Leaders

Status

 

    Laboratory or other
    Division of JINR
Responsible person

Main researchers

1.

Experiment Mu2e

V.V. Glagolev

R&D
Realization


 

DLNP

A.M. Artikov, N.V. Atanov, O.S. Atanova, V.Yu. Baranov, J.A. Budagov, Yu.I. Davydov, D.L. Demin, Yu.N. Kharzheev, V.I. Kolomoets, S.M. Kolomoets, A.V. Sazonova, A.N. Shalóugin, A.V. Simonenko, I.A. Suslov, V.V. Tereschenko, S.V. Tereschenko, Z.U. Usubov


 

BLTP

D.I. Kazakov, G.A. Kozlov


 

LIT

V.V. Korenkov, O.V. Tarasov, V.V. Uzhinsky


 

VBLHEP

A.S. Galoyan


2.

Experiment COMET

Z. Tsamalaidze

R&D
Realization


 

DLNP

G. Adamov, D.Sh. Chokheli, V.N. Duginov, P.G. Evtukhovich,

I.L. Evtukhovich, K.I. Gritsai, V.A. Kalinnikov, Kh. Khubashvili,

A. Kobey, E.S. Kaneva, A.S. Moiseenko, A.V. Pavlov, B.M. Sabirov, A.G. Samartsev, N. Tsverava, E.P. Velicheva, A.D. Volkov



 

LIT

D. Goderidze, Yu.L. Kalinovsky, A. Khvedelidze


 

BLTP

D. Aznabaev, A. Issadykov, G.A. Kozlov



VBLHEP

D. Baigarashev, V.V. Elsha, T.L. Enik, S.A. Movchan,

S.N. Shkarovsky


3.

Experiment MEG II

N.V. Khomutov

R&D
Realization


 

DLNP

V.A. Baranov, V.V. Glagolev, Yu.I. Davydov, N.A. Kuchinsky, N.P. Kravchuk, V.L. Malyshev, A.M. Rozhdestvensky, A.O. Kolesnikov, V.A. Krylov


4.

Experiment PEN

N.A. Kuchinsky

Data processing


 

DLNP

V.A. Baranov, N.V. Khomutov, S.M. Korenchenko, A.S. Khrykin, E.S. Kuzmin, A.M. Rozhdestvensky, E.P. Velicheva, V.P. Volnykh


 

BLTP

Yu.M. Bystritsky


5.

CERN Neutrino platform

B.A. Popov

Data taking
Data processing



 

DLNP

N.V. Atanov, A.O. Kolesnikov, A.V. Krasnoperov, V.V. Lyubushkin, V.L. Malyshev, S.V. Tereschenko, V.V. Tereschenko


6.

Experiment MUSPIN

V.N. Duginov

Data taking
Data analysis



 

DLNP

E.I. Bunyatova, K.I. Gritsay, A.I. Rudenko, G.D. Soboleva


 

FLNP

M. Balasoiu + 2 pers.


7.

Experiment TRITON

D.L. Demin

Data analysis


 

DLNP

N.A. Baranova, A.I. Boguslavsky, V.N. Duginov, E.D. Gorodnichev, K.I. Gritsay, S.A. Gustov, V.I. Kolomoets, E.V. Kolesov, A.D. Konin, A.P. Kustov, A.I. Rudenko, Yu.A. Polyakov, N.A. Shakun, V.I. Smirnov, Z.U. Usubov


 

FLNR

S.A. Yukhimchuk


 

LRB

V.B. Buchnev, V.Yu. Schegolev

 

Collaboration

Country or International Organization

City

Institute or laboratory

Belarus

Minsk

BSU

 

 

INP BSU

 

 

IP NASB

Bulgaria

Sofia

SU

Czech Republic

Prague

CTU

 

 

CU

France

Paris

IN2P3

Georgia

Tbilisi

GTU

 

 

HEPI-TSU

 

 

UG

Italy

Frascati

INFN LNF

 

Pisa

UniPi

Japan

Fukuoka

Kyushu Univ.

 

Osaka

Osaka Univ.

 

Tsukuba

KEK

Kazakhstan

Almaty

INP

Romania

Bucharest

IFIN-HH

Russia

Gatchina

NRC KI PNPI

 

Irkutsk

ISU

 

Moscow

ITEP

 

 

NNRU "MEPhI"

 

Moscow, Troitsk

INR RAS

 

Novosibirsk

BINP SB RAS

 

 

NSU

Slovakia

Bratislava

CU

 

 

IP SAS

Switzerland

Villigen

PSI

Ukraine

Kharkov

ISMA NASU

United Kingdom

Didcot

RAL

 

London

Imperial College

USA

Batavia, IL

Fermilab

 

Charlottesville, VA

UVa

 

Lexington, KY

UK