To contents
Theoretical Physics
01-3-1135-2019/2023
01-3-1136-2019/2023
01-3-1137-2019/2023
01-3-1138-2019/2023
01-3-1117-2014/2023
Elementary Particle Physics
02-2-1123-2015/2022
02-0-1081-2009/2024
02-2-1144-2021/2023
02-2-1099-2010/2023
02-0-1108-2011/2023
02-2-1125-2015/2023
    02-2-1125 - RUS
02-1-1106-2011/2022
02-1-1096-2010/2022
02-0-1083-2009/2022
02-0-1085-2009/2022
02-1-1086-2009/2023
02-0-1065-2007/2023
02-0-1127-2016/2023
02-1-1097-2010/2023
02-1-1087-2009/2023
02-0-1066-2007/2023
02-1-1088-2009/2022
02-1-1107-2011/2023
Nuclear Physics
03-0-1129-2017/2023
03-5-1130-2017/2023
03-2-1100-2010/2024
03-4-1128-2017/2022
Condensed Matter Physics
04-4-1142-2021/2025
04-4-1105-2011/2022
04-4-1143-2021/2025
04-4-1133-2018/2023
04-4-1140-2020/2022
04-4-1141-2020/2022
04-5-1131-2017/2023
04-9-1077-2009/2023
04-9-1112-2013/2022
04-2-1132-2017/2022
04-2-1126-2015/2023
Networking, Computing
05-6-1118-2014/2023
05-6-1119-2014/2023
05-8-1037-2001/2024
Educational Programme
06-0-1139-2019/2023

02-2-1125-2015/2023

 

Priority:

1

 

 

Status:

In-progress



Astrophysical Researches with the TAIGA Experiment


Leader:

A.N. Borodin

Deputy   

L.G. Tkachev



Participating countries and international organizations:

Germany, Italy, Japan, Mexico, Poland, Republic of Korea, Romania, Russia.


Issues addressed and main goals of research:

  • Search for local galactic sources of gamma rays with energies above 20-30 TeV.

  • Study of gamma rays fluxes from known sources in the same energy region.

  • Search for diffuse gamma rays from the galactic disk.

  • Study of the energy spectrum and the mass composition of cosmic rays in the energy range of 10 15 to 10 17 eV in order to detect spots of Lorentz invariance violation.

  • Search for galactic PeVatrons.

  • The TAIGA observatory also plans to introduce a "hybrid method" of observation - the combined use of IACT and HiScore wide angle Cherenkov detectors. This method will not only significantly improve the quality of high-energy gamma-rays emission signals selection from background hadron events, but will also help to match currently available parts of the cosmic ray spectrum obtained by ground-based and orbital detectors.

  • In the NUCLEON space experiment, the spectra and elemental composition of cosmic rays were measured in the energy range of 1011-1015 eV. Further progress in applying this technique is the planned OLVE-HERO experiment. The unique parameters of the detector within 5 years of direct extra-atmospheric measurements will provide data, large statistics which allow identifying changes to the cosmic ray composition at the energy up to 1016 eV and measuring the angular anisotropy of the cosmic rays.

Expected results in the current year:

  • Completion of manufacturing and testing the fourth IACT telescope and design of the fifth IACT telescope at JINR.

  • Development of event simulation programs in the TAIGA experiment. Upgrade of software for data collection and processing for the IACT telescope, as well as for their hybrid mode of operation in conjunction with HiScore detectors.

  • MC simulation of the joint operation of the IACT telescope and the TAIGA observatory's wide-angle Cherenkov detectors and optimization of the selection of gamma rays events from the background.

  • Monitoring of the brightest gamma-ray sources in a hybrid mode at the TAIGA observatory. Upgrade of software for the IACT data analysis.

  • Completion of the data analisys of the TUS space experiments.

  • Design and beam tests of OLVE-HERO prototypes.

  • Study of the Crab Nebula gamma radiation in the energy range of 2-10 TeV. Observation of the brightest extragalactic sources of gamma radiation Mrk-421, Mrk-501. 

 

List of projects:


 

Project

Leader

Priority
(period of realisation)

1.

TAIGA

A.N. Borodin

1   (2015-2023)


List of Activities:


 

Activity or Experiment

Leaders

Status

 

    Laboratory or another
    Division of JINR
Responsible person

Main researchers

1.

Experiment TAIGA

A.N. Borodin

Realization


 

DLNP

A.V. Blinov, V.M. Grebenyuk, F.F. Grinyuk, M.V. Lavrova, A. Pan, S.Yu. Porokhovoy, L.G. Tkachev


 

VBLHEP

N.V. Gorbunov, A.V. Skrypnik


 

MLIT

I. Satyshev


2.

Experiment TUS

L.G. Tkachev

Completion


 

DLNP

A.V. Blinov, V.M. Grebenyuk, F.F. Grinyuk, M.V. Lavrova,
A.V. Tkachenko
 

3.

Experiment OLVE-HERO

L.G. Tkachev

Preparation


 

DLNP

A.V. Blinov, V.M. Grebenyuk, N.I. Kalinin, M.V. Lavrova, A. Pan, S.Yu. Porokhovoy, A.B. Sadovsky, A.V. Tkachenko


 

VBLHEP

N.V. Gorbunov


 

MLIT

I. Satyshev


 

FLNP

A.D. Rogov




Collaboration

Country or International Organization

City

Institute or laboratory

Germany

Hamburg

Univ.

 

Munich

MPI-P

 

Tubingen

Univ.

 

Zeuthen

DESY

Italy

Turin

UniTo

Japan

Wako

RIKEN

Mexico

Puebla

BUAP

Poland

Warsaw

UW

Republic of Korea

Seoul

EWU

Romania

Magurele

ISS

Russia

Irkutsk

RIAP ISU

 

Moscow

NNRU "MEPhI"

 

 

SINP MSU

 

Moscow, Troitsk

INR RAS