To contents
Theoretical Physics
01-3-1135-2019/2023
01-3-1136-2019/2023
01-3-1137-2019/2023
01-3-1138-2019/2023
01-3-1117-2014/2023
Elementary Particle Physics
02-2-1123-2015/2023
02-0-1081-2009/2024
02-2-1144-2021/2023
    02-2-1144- RUS
02-2-1099-2010/2023
02-0-1108-2011/2023
02-2-1125-2015/2023
02-1-1106-2011/2023
02-1-1096-2010/2023
02-0-1083-2009/2023
02-0-1085-2009/2023
02-1-1086-2009/2023
02-0-1065-2007/2023
02-0-1127-2016/2023
02-1-1097-2010/2023
02-1-1087-2009/2023
02-0-1066-2007/2023
02-1-1088-2009/2023
02-1-1107-2011/2023
Nuclear Physics
03-0-1129-2017/2023
03-5-1130-2017/2023
03-2-1100-2010/2024
03-4-1128-2017/2023
Condensed Matter Physics
04-4-1142-2021/2025
04-4-1105-2011/2023
04-4-1143-2021/2025
04-4-1133-2018/2023
04-4-1140-2020/2023
04-4-1141-2020/2023
04-5-1131-2017/2023
04-9-1077-2009/2023
04-9-1112-2013/2023
04-2-1132-2017/2023
04-2-1126-2015/2023
Networking, Computing
05-6-1118-2014/2023
05-6-1119-2014/2023
05-8-1037-2001/2024
Educational Programme
06-0-1139-2019/2023

02-2-1144-2021/2023

 

Priority:

1

 

 

Status:

Being concluded


Search for New Physics in the Lepton Sector


Theme leaders:

V.V. Glagolev
Z. Tsamalaidze


Participating countries and international organizations:

Belarus, Bulgaria, Czech Republic, France, Georgia, Germany, Italy, Japan, Kazakhstan, Russia, Slovakia, Switzerland, Ukraine, United Kingdom, USA.


Issues addressed and main goals of research:

    The COMET experiment at J-PARC, the Mu2e experiment at Fermilab and the MEG II experiment at PSI are a dedicated search for the CLFV processes µ - N→e - N, µ +e γ. Once neutrino masses are included, the process is allowed but still unobservable since the rate is proportional to (Δm 2ij/M 2W) 2, where Δm 2ij is the mass difference squared between ith and jth neutrino mass eigenstates, and MW is the mass of the W boson. The predicted rates for the µ -N→e -N and µ +e +g CLFV processes are less than 10 -50 each. This makes this process a very theoretically clean place to search for NP effects. In many NP models that include a description of neutrino mass, the rates for these processes are enormously enhanced so that they occur at a level to which the COMET and Mu2e experiment will have sensitivity. The conversion measurement at the level of 10 -17, which is COMETs goal, will be 10000 times better than the current experimental limit B(µ -+ Au→µ e - + Au) < 7·10 -13 from SINDRUM-II at PSI.

    The T2K experiment is the first to study the mechanism of CP-symmetry breaking in the lepton sector, which is experimentally manifested in the difference between oscillation probabilities of neutrinos and antineutrinos. The observation of CP-symmetry breaking in neutrino oscillations together with nonconservation of the lepton number can serve as an argument in favor of explaining the baryon asymmetry of the Universe through the mechanism of leptogenesis (leptogenesis is a process of the appearance of lepton-antilepton asymmetry (nonzero lepton number) in the early stages of the formation of the Universe). On the basis of data of the T2K experiment, the observation of CP violation with a significance of 3σ or higher is expected in the case of large CP violation, as well as the measurement of neutrino mixing parameters, θ23 and Δm232, with an accuracy of 1.7º or better and 1%, respectively.


Expected results in the current year:

  1. Participation in preparation, engineering, and physics run, data acquisition and analysis of Phase-a.

  2. Finalization of assembling, testing, calibration, installation, cosmic test and maintenance of the straw detector for Phase-I.

  3. R&D program for production of straw tubes with a 12-mm wall thickness and 5 mm in diameter. Creating a straw prototype (64 channels) with new tubes (12 mm, 5 mm) and measurements with the beam.

  4. Test (certification) of LYSO crystals to be used in the calorimeter. Development and optimization of the crystal calibration method for the COMET calorimeter. Participation in calorimeter designing, assembling, installation, cosmic test, and maintenance.

  5. Participation in assembly and maintenance of the CRV for Phase-I.

  6. Participation in assembling, testing, installation, and maintenance of the whole detector system for Phase-I.

  7. Complex detector system (tracker, calorimeter etc.) simulation.

  8. Participation in engineering and physics run, data acquisition and analysis.

  9. Tests of CsI and BaF2 electromagnetic calorimeter elements with gamma sources and the electron beam.

  10. Manufacture and installation of electronics of the Super FGD photodetector calibration system.

  11. Assembly of the SuperFGD as part of the Near Detector of the T2K experiment using a unique box support and top access systems.

  12. Preparation of the launch of the Near Detector of the T2K experiment, participation in engineering and operation runs, taking of new data and analysis.

  13. Investigation of systematic uncertainties for measuring δCP.

  14. Search for manifestations of new physics in the T2K data including the search for light dark matter.

  15. Filling the batch of Mu2e scintillation counters with CKTN and testing them for leakage.

  16. Maintenance of the visualization and control software.

  17. Development and tests of Mu2e electromagnetic calorimeter preamplifiers at JINR.

  18. Participation in radiation hardness tests of detector elements.

  19. Participation in development of a positron tracker for the MEG-II experiment, DAQ, data analysis.

  20. Participation in data taking and analysis of experimental data obtained with CERN hadron beams.


List of projects


 

Project

Leader

Priority
(period of realisation)

1.

COMET

Z. Tsamalaidze

1  (2021-2023)

2.

T2K-II

V.V. Glagolev
Yu.I. Davydov

1  (2022-2023)

List of Activities


 

Activity or Experiment

Leaders

Status

 

    Laboratory or another
    Division of JINR
Responsible person

Main researchers

1.

COMET Project

Z. Tsamalaidze

R&D
Realization


 

DLNP

G. Adamov, A.M. Artikov, A.V. Boikov, D.Sh. Chokheli, V.N. Duginov, P.G. Evtukhovich, I.L. Evtukhovich, V.A. Kalinnikov,
Kh. Khubashvili, E.S. Kaneva, A.V. Pavlov, B.M. Sabirov,
A.G. Samartsev,  A.V. Simonenko, V.V. Tereschenko,
S.V. Tereschenko, N. Tsverava, I.I. Vasilyev, E.P. Velicheva,
A.D. Volkov, I.Yu. Zimin

 

BLTP

D. Aznabaev, A. Issadykov, G.A. Kozlov

 

MLIT

D. Goderidze, A. Khvedelidze

 

VBLHEP

D. Baigarashev, T.L. Enik

2.

T2K-II Project

V.V. Glagolev
Yu.I. Davydov

R&D
Realization


 

DLNP

A.M. Artikov, V.Yu. Baranov, A.V. Boikov, A.O. Brazhnikov, D.L. Demin, N.V. Khomutov, N.V. Kirichkov, V.I. Kiseeva,
A.O. Kolesnikov, A.V. Krasnoperov, V.L. Malyshev, B.A. Popov,
A.V. Shaikovskiy, I.A. Suslov, V.V. Tereschenko, S.V. Tereschenko,
I.I. Vasilyev

 

BLTP

G.A. Kozlov, V.A. Matveev

3.

Mu2e Experiment

V.V. Glagolev

R&D
Realization


 

DLNP

A.M. Artikov, N.V. Atanov, O.S. Atanova, V.Yu. Baranov, 
Yu.I. Davydov, D.L. Demin, S.M. Kolomoets, A.V. Sazonova,
A.N. Shalyugin, I.A. Suslov, V.V. Tereschenko, S.V. Tereschenko

 

BLTP

D.I. Kazakov, G.A. Kozlov

 

MLIT

V.V. Korenkov, O.V. Tarasov, V.V. Uzhinsky

 

VBLHEP

A.S. Galoyan

4.

MEG Experiment

N.V. Khomutov

Realization
Data taking
Data processing


 

DLNP

 

V.A. Baranov, Yu.I. Davydov, V.V. Glagolev, , A.O. Kolesnikov,
V.A. Krylov N.A. Kuchinsky, N.P. Kravchuk, V.L. Malyshev,
A.M. Rozhdestvensky

5.

CERN Neutrino platform

B.A. Popov

Data taking
Data processing


 

DLNP

N.V. Atanov, A.O. Kolesnikov, A. V. Krasnoperov, V.V. Lyubushkin,
V.L. Malyshev, S.V. Tereschenko, V.V. Tereschenko

Collaboration

Country or International Organization

City

Institute or Laboratory

Belarus

Minsk

BSU

 

 

INP BSU

 

 

IP NASB

Bulgaria

Sofia

SU

Czech Republic

Prague

CTU

 

 

CU

France

Paris

IN2P3

Georgia

Tbilisi

GTU

 

 

HEPI-TSU

 

 

UG

Italy

Frascati

INFN LNF

 

Pisa

UniPi

Japan

Fukuoka

Kyushu Univ.

 

Osaka

Osaka Univ.

 

Tsukuba

KEK

Kazakhstan

Almaty

INP

Romania

Bucharest

IFIN-HH

Russia

Gatchina

NRC KI PNPI

 

Irkutsk

ISU

 

Moscow

ITEP

 

 

NNRU "MEPhI"

 

Moscow, Troitsk

INR RAS

 

Novosibirsk

BINP SB RAS

 

 

NSU

Slovakia

Bratislava

CU

 

 

IP SAS

Switzerland

Villigen

PSI

Ukraine

Kharkov

ISMA NASU

United Kingdom

Didcot

RAL

 

London

Imperial College

USA

Batavia, IL

Fermilab

 

Charlottesville, VA

UVa

 

Lexington, KY

UK